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Perturbative renormalization group for Hamiltonians
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I. INTRODUCTION

This paper presents a new, generic treatment of
field theory Hamiltonians with ultraviolet divergences—
reducing a Hamiltonian with divergences and appropri-
ately chosen counterterms to an efFective Hamiltonian
which is finite to all orders in perturbation theory. Light-
&ont Hamiltonians of quantum 6eld theory are of spe-
cial interest but the formalism is general. The purpose
of developing a new formalism is to isolate problems
of renormalization from problems of nearly degenerate
states. Then perturbative renormalization can be car-
ried through regardless of any near-degeneracy problems
that ordinary perturbation theory might encounter. The
reduction takes the form of a unitary transformation on
the initial Hamiltonian with an ultraviolet cutoff. By
"ultraviolet divergences" we mean all large energy di-

vergences, including both small p+ and large p+ diver-

gences for light-&ont field theory. The reduction does not
handle in&ared divergences associated with emission and
absorption of zero-mass particles with all components of
their four-momenta near zero. The paper draws on pre-
vious work by Glazek and Wilson [I]. Some original and
review articles which discuss the light-front and closely
related in6nite momentum &arne dynamics are listed in
Ref. [2].

For an ultraviolet divergence to occur in nth order in
perturbation theory for a Hamiltonian H with an inter-
action term HI, it must be possible to reach eigenstates
of the unperturbed Hamiltonian Ho with eigenvalues of
order the ultraviolet energy cutoff after at most n/2 tran-
sition matrix elements of HI, starting from a state of
fixed energy. If the energy cutoff is A, then at least one

of these transition matrix elements must make a transi-
2

tion where the final energy is of order a factor A larger
than the initial energy (or vice versa). If uo such matrix
elements exist, then it is impossible for n/2 matrix ele-

ments multiplied in a sequence to reach an intermediate
state energy of order the cutoff energy A starting &om a
constant energy, and this in turn makes it impossible for
the Hamiltonian to exhibit cutoff-dependent ultraviolet
divergences.

Our strategy for eliminating divergences is to perform
a unitary transformation on the initial Hamiltonian, the
result of which is an effective Hamiltonian which has no

matrix elements providing energy jumps that exceed a
fixed, finite factor once the initial energy is larger than
a 6xed bound Ao. This means energy jumps by a fac-

2
tor A are not possible if A is large enough, for any
given order n, and this in turn rules out divergences as
long as individual matrix elements of the effective Hamil-
tonian are themselves free of divergences, which has to
be achieved through the presence of counterterms in the
initial Hamiltonian. The required unitary transforma-
tion is introduced in Ref. [I]. In that paper, the initial
Hamiltonian is algebraically transformed into a similar
Hamiltonian in one step. In this paper, the strategy is to
perform a series of in6nitesimal unitary transformations,
the end result of which is a similar effective Hamiltonian.
We compare both procedures and explain the differences.

The in6nitesimal unitary transformations will define
a continuum of Hamiltonians Hp which interpolate be-
tween the initial Hamiltonian (A = A) and the effective
Hamiltonian Hp, . The interpolating Hamiltonians will

be defined so that no energy jumps by more than a 6xed
factor occur as long as the base energy is & A. This means
the initial Hamiltonian has bounded energy jumps only
above A itself, whereas Hp has bounded energy jumps
above the base A. We also forbid jumps from arbitrarily
smaller energies to energies higher than the same fixed
factor times A. Finally we insist that all matrix elements
of Hp are in6nitely differentiable functions of both A and
all initial and final state momenta except for explicit b

functions of momenta, the latter including both the mo-

mentum conservation b functions and the extra p+ b func-

tions of in&ared counterterms and compositions thereof
in light-&ont Hamiltonians. The infinite differentiability
is needed because the compositions of infrared counter-
terms can lead to derivatives of h functions of arbitrarily
high orders and integrals involving these derivatives of b

functions need to be well defined.
There is one other constraint that will be imposed

on the infinitesimal unitary transformations. This con-
straint is that energy denominators E; —Ey that occur
involving the energy difference of two states

~
i) and

~ f)
shall never be smaller than a constant factor times the
sum E,. + Ey + A. The presence of A in this constraint
ensures that the energy denominators are never smaller

than the effective cutoff A. This requirement will ensure
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that power counting arguments can be carried through
that might be voided by energy difFerences which are ar-
bitrarily smaller than either energy separately. We will
also try to ensure that matrix elements of Hp which mat-
ter never act as if they were very much larger than A, en-
suring that high orders of perturbation theory cannot be
more divergent than lower orders, and in particular en-
suring that matrix elements of Hp, whose size is much less
than A due to the presence of low energy external lines
(in a Feynman diagramlike sense), cannot be compen-
sated for by either small energy denominators or other
matrix elements of Hp that are much larger than A.

The energy denominator constraint means that initial
Hamiltonian cannot be fully diagonalized by the series of
infinitesimal unitary transformations, except in the limit
A -+ 0. Fortunately, there is no confiict between this
constraint and the demand that ofF-diagonal matrix ele-
ments of Hp involving sufficient large energy jumps all
vanish, leaving a form of banded matrix whose matrix
elements involving smaller (but nonzero) energy changes
are nonzero.

The infinitesimal unitary transformation defines the
derivative of H~ with respect to A:

where Tg is anti-Hermitian, T& ———T~, while Hg is Her-
mitian for any A. This equation, however, is incomplete
because Tp itself has still to be specified. To avoid small
energy denominators, we will set Tpy; = 0 if Eyp is close
enough to E;~. However, our basic aim is to eliminate
matrix elements of Hpy; whenever these matrix elements
could cause large jumps in energy beyond the scale set by
A, i.e., when Eyp is suKciently separated &om E,p and
the larger of these is well above A itself. We set this con-
dition so that as A is reduced more of the far-ofF-diagonal
part of H~ is eliminated, and so that as A decreases it
is mainly terms which jump from much lower energies
to energies of order A that are being eliminated —terms
jumping to much higher energies have already been elim-
inated and jumps between smaller energies are yet to be
handled. Equations which define Tp are given in Sec. II.

The other issue is the boundary condition for the dif-
ferential equation. The initial cutoff Hamiltonian is Hp
which would provide the necessary boundary condition
if Hp were known. Unfortunately, Hp includes unknown
counterterms, and in the standard renormalization group
&amework, the operators in Hp which cause divergences
are specified by conditions on H~ at A = Ao instead
of A = A. The remaining operators are specified at
A = A. The difFerential equation is solved with these
mixed boundary conditions. In a perturbative treatment,
we start with a bare Hamiltonian Hg cut oR' at A. This
Hamiltonian is finite (no counterterms). Then the first
approxixnation to Hp is Hg with the cutofF A, for all A.

We will imagine that Hp is doxninated by its diagonal
part which we will denote Hop with eigenvalues Ep.

(1.2)

Since Hop is the full diagonal part of Hp including self-

" dA
(1.4)

Knowing Sp and H one can find Hp. This path is fol-
lowed in Ref. [1]. One can also find H~ knowing Tq and
integrating Eq. (1.1). This path is followed here. Note,
however, that Ref. [1] introduces Hq ——Hs+ Hip where
Ho is the bare &ee Haxniltonian which is independent of A

while here we introduce Hs~ which is the diagonal part of
Hg, allowed to include self-interaction efFects that make
it depend on A and the interaction.

II. DIFFERENTIAL EQUATIONS

In order to define the infinitesimal unitary transforma-
tions and the infinitesimal changes in Hp when A changes
by an infinitesimal amount, we need to introduce various
zones of the operators. Let an operator 0 have matrix
elements Oy;.= (f]O]i). We introduce an auxiliary func-
tion, z~y; = (f~zg]i), of the state labels f and i, for a
given A. For example, we choose

(2 1)

where Eyp and E;p are the diagonal xnatrix elements of
H~ (We assn. me that A dependence of Eyp and E;p is
negligible when they are of order A, so that there are
no multiple energy scales for which either Eyp A or
E;q A.) The function z~y; has the following proper-
ties. Its modulus is close to 1 when one of the energies
is much larger than the other and large in comparison to
the cutofF A. On the other hand, zpy; is close to 0 when
the energies are similar or small in comparison to the
cutofF. In the language of Ref. [1], moduli of the matrix
elements of xp are close to 1 in the diagonal remotum of
xp and close to 0 in the diagonal proximum of zp.

Zones of an operator 0 are defined by introducing
smooth functions ugly; and rp f;.

(2.2)

and

rpy; = 1 —
ugly; = r(zpy;), (2.3)

where u(z) is a suitable function. We need these func-
tions to ensure smoothness and diRerentiability, as befits
a difFerential equation approach, and establish zones of
operator xnatrix elexnents with sxnooth A dependence in
each zone and full difFerentiability across boundaries of
the zones. The zones are introduced in order to define
the Hamiltonians which cannot make large energy jumps
and therefore have xnatrix elexnents mainly in the zone

energy effects, Ep will be dependent on coupling con-
stants.

The effective Hamiltonian Hp will be obtained &om
the initial Hamiltonian Hg = H by a similarity transfor-
mation:

H, = S„'HS, .

Therefore, according to Eq. (1.1),
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close to the diagonal. The infinitesimal unitary transfor-
mations which eliminate the Hamiltonian zone far away
from the diagonal have matrix elements di6erent from 0
only in the zones away from the diagonal, so that they
cannot involve small energy denominators. The full infi-
nite differentiability is required because @CD generates
Hamiltonians with derivatives of h functions and to en-
sure that these h functions have valid integrals all other
momentum functions have to be differentiable.

An operator ug[O] is defined as follows. If an op-
erator 0 has matrix elements Oy, = (f~O~i), then

the operator ug[O] has matrix elements [ui, [O]]y,
(f~uq~i)(f [0~i). For example, according to Eq. (2.2),
[up[0]]y, = u(xp f')(f)O)i). In order to simplify the no-

tation ug[O] is often written as ugO. There is also the
difFerentiation rule d(uO) = (du)O + u(dO). rp[O] is
defined in the same way using function r in place of u.

One can choose the function u(z) in various ways.
For example, if one chooses u(z) = 8(zo —~x~), then

u~O = DP[0] and ri, O = DR[0], where DP and DR de-
note the diagonal proximum and diagonal remotum of the
operator 0 as defined in Ref. [1]. Namely, the parameters

P and Eo introduced in Ref. [1]are P = (1+zo)(1—xo)
and Eo ——zo(1 —zo) A/2. In the present paper, we in-
troduce smooth functions. The function u(z) = u(~x~)
stays equal 1 for ~x~ & zi, drops smoothly from 1 to
0 between ~z~ = zi and ]x~ = x2, and stays equal 0
for )x( & z2. The function r(z) = r((z() stays equal
0 for ~z] & zi, raises smoothly from 0 to 1 between

~z~ = zi and ~z~ = z2, and stays equal 1 for ~z~ & z2,
0 & xi & x2 & 1. Thus, when zi and x2 approach zo
one obtains the diagonal proximum and diagonal remo-
tum from Ref. [1].

Zones of an operator 0 are defined as follows. The
"band" zone of 0 is the part of upO where matrix ele-
ments of up equal 1, shortly expressed as up ——1, rp

——0,
and ~z~ & xi. The "transition" zone is where matrix el-

ements of ug vary from 1 to 0, shortly expressed as that
up varies &om 1 to 0, while rp varies &om 0 to 1 and
zi & ~x~ & x2. The "far-ofF-diagonal" zone is a part of

rqO where uq equals 0 and rq equals 1 and z2 & ]z] & 1.
The infinitesimal unitary transformations and the dif-

ferential equation for the Hamiltonian Hp are now de-
fined. We assume that

dup dGp
Gq + uw ——[How, Tw] + [HI&, Tz] . (2 5)

(2.4)

Solving Eq. (1.1) means finding Gg for a chosen up,
which includes determining boundary conditions (coun-
terterms) which guarantee that Hp is independent of the
initial large cutoK A for A (( A m oo and defining an
iterative procedure for finding a solution which is able to
interpolate between the required boundary conditions.

In terms of Gp, Eq. (1.1) reads

dGp dup
[&~, Ho~]+ u~ = [Hn, &~]— (2.6}

The right hand side of this equation is denoted by Q~.
Then, one part of Q~ is chosen to equal [Tp, Hoi, ] and the
remaining part gives up &&". The parts of Qg will be de-

fined using the operation rp introduced above. Namely,

and

[&i,Hoi] = r~[Qi] (2.7)

up —
Qp —r p [Qp]—:ug [Qp] .

dA
(2.8)

Evaluating the matrix elements of both sides of the above
equations in different zones of the operators one obtains
differential equations for matrix elements of Gp. Equa-
tion (2.4) provides matrix elements of Hp.

In terms of the matrix elements (f [Hp[i) = Hpy; and

(f~Tp~i) = Tpy; the equations are the following. In the
band zone (0 & ~z~ & xi., ref —0 usaf

=' 1), '

Tp fi —0 (2.9)

and

dHpf; = [Hl~, &~]y' (2.io)

In the transition zone (zi & ~z~ & x2, both, ri, y, and

usaf,

changing),

TPfi dupf; Hpfi
&iy' = [Hli, &i]y'—

~iP EfP dA upfi

and

(2.11)

dHp f dup f Hp f
dA

' ' ' '
dA upf, .upfp[Hli& Tp] f& + rpfp . (2.12)

In the far-oK-diagonal zone (x2 & ~z~ & 1; ri,f —1;'
ugly, = 0),

TP fi
1

[Hli, &i]y;
Eip fp

(2.i3)

and

dHpfi
dA

' = Hpfi ——0. (2.14)

The beauty of these equations is that energy denomi-
nators E;~ —Eyp only arise when ~z~ & xi, which means

Gp are considered to be known, and "&&" and Tp to be
unknown. Since we have only one equation and two un-

knowns, we need to introduce another equation which
will define a method for findin "&&" and Tp separately.
We group the unknowns on the left hand side and knowns
on the right hand side, putting the commutator [Hlq, Tq]
on the right hand side since it is assumed to be small and
taken into account by successive approximations. Thus,

Note that Gp can be arbitrary in the far-oK-diagonal re-

gion where up —— &&"
——0 as long as it is finite and its

derivative is finite. In Eq. (2.5), up, Ho~, Hlp, and

1 1 1
(2.15)

EiP —EfP &l. @'P + EfP + ~

and so for estimates of orders of magnitude of various
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dA
= [~]~' (2.16)

in the region where u~y; g 0. In the band zone one has

dGp = [Hl~, Ti], (2.17)

terms in perturbation theory we can replace the energy
difFerence by a sum including A—in particular, no recip-
rocal of an energy difFerence can be larger than a constant
times A . But, second, when A is small enough, Hy;p
vanishes if Eyp » E;p or vice versa which means low
energy eigenstates of Kp, computed in any given order
of perturbation theory, involve only a bounded and fi-
nite range of intermediate energies, independently of how
large the energy cutofF A is. This limitation prevents any
ultraviolet divergent diagrams being generated from the
efFective Hamiltonian if A is held fixed while the initial
cutoff A becomes arbitrarily large, as long as the initial
Hamiltonian has all counterterms needed to ensure that
the low energy matrix elements of Hp are all independent
of the cutofF A. Moreover, in all our equations, operators
are multiplied only through commutators, which ensures
that no»~&inked product can be formed —all products
are linked through the commutators of at least one field
operator from the pair forming each link.

However, it should be noted that the operators Tp are
defined only implicitly, and it is important that Hrg be
small compared to the diagonal part of Hq in order that
the Tq equations be soluble by a convergent iteration pro-
cess; otherwise Tp may start linking states widely sepa-
rated in energies, separated by much larger energy than
A itself. The iteration process is described in the next
section.

A brief digression is in order concerning possible al-
terations of the zone structure. A situation of particular
interest appears when the band and far-ofF-diagonal zones
disappear. Namely, one may consider a smooth function
u(z) which equals 0 only for ~z~ = 1 and equals 1 only
for z = 0 and makes a transition between 0 and 1 in
the vicinity of some point z = zo. In this situation there
is only one zone spread over the entire Hamiltonian ma-
trix, analogous to the transition region. The utility of the
various zone structures depends on the structure of the
initial bare Hamiltonian. One may also consider zones
defined using functions u(z) and r(z) which depend on A

themselves. The idea is that the parameters z;, i = 1, 2,
determine the zone boundaries in H~ and Tg through
the parameters Eo; ——z;(1 —z;) A/2 and the slopes
P; = (1+z;)(1 —z;) which are analogous to Eo and P
&om Ref. [1]. Both the energy bounds analogous to Eo
and the slopes analogous to [9 are allowed to vary with A

in order to create the most convenient setup for numer-
ical computations. Finally, operators up can be defined
employing also eigenvalues of operators other than Hop.

Equations (2.7) and (2.8) can be written in the opera-
tor form in different zones, using Eq. (2.4) and

dGp dup

d~
= [Hri, &i] —„„&i, (2.19)

dtLp
[&j„,HO&] = ~w ([Hsx &x] —

&& Gx),
and in the far-ofF-diagonal zone one has

[T~, Ho~] = [Hli, Ti],

(2.20)

(2.21)

Hp ——0. (2.22)

[In the case of only one zone (transition) one has only
three equations: (2.4), (2.19), and (2.20).]

Since "z&" does not vanish outside the transition zone
of G~, one may worry that the matrix elements of the
resulting operators will not necessarily be infinitely dif-
ferentiable functions of the state labels f and i. We will
show later that no such problem arises.

III. RENORMALIZED HAMILTONIANS

Hip = Hw, = epHs, (3.1)

where Hs is the initially given bare Hamiltonian and e&
is similar to ug. According to Eq. (2.4),

Gip ———Hs (3.2)

where

e& = u& exp(r&), (3.3)

which means elf = usaf 'exp(ref').
In the next approximations one includes corrections

induced by the commutators. Once the Hamiltonian is
written as

Hp —epXp + Hgp

one obtains

dxp„=exp( ~~)[HIA TA] —.

Therefore,

(3 4)

(3.5)

Hp ——ep ds exp —&~ HIa, T, +Xg +Hqp

p
—:ep ds exp( —r, )[HI„T,] + Xp + Hg, (3.6)

We describe the renormalization group calculation of
the continuu~ of effective Hamiltonians Hq.

Both Hp and Tp are found in an iterative procedure
of successive approximations while the initial cutoff A is
being made very large.

In the first approximation one neglects the commuta-
tors with Tq and Hl~. In this approximation the family
of the effective Hamiltonians is of the form

in the transition zone one has

(2.18) where Xp is a suitable initial condition (counterterm)
which guarantees A independence of Hp for A = Ap when

» Ao
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Ap

X~ = Zo — ds exp( —r, )[HI„T,] (3.7)

where Zo is a finite part added to the divergent counter-
term given by the integral. Using this initial condition
one finally obtains

The first step in analyzing and subtracting out diver-
gences by the counterterms is to study how low energy
matrix elements of Hp vary when A is of order the ini-
tial cutofF A, identifying terms that are divergent as a
power of A or potentially divergent as lnA. The latter
terms arise whenever matrix elements of H~ change by an
amount that is independent of A but nonzero as A drops
Rom well above A to a small constant times A. As long
as the energy scale in Hri, never exceeds the bare cutoff
A, and in fact contains a small coupling parameter, we
see that no A-dependent changes in Hpy; can exceed the
cutoff scale A itself, and all denominators are of order A
too. One splits [HI„T,] into the diverging and converg-
ing parts [HI„T,]" and [Hr„T,]'. The diverging part
is the part which behaves as 1 or s . The converging
part is the remaining part which behaves as s z, s
etc. H, is of order s and T, is of order s i. The coun-
terterm Xa is defined by the condition that it removes
the A-dependent parts of the integral when A = Ao..

This equation is to be solved by successive approxima-
tions. The solution for A )) Ao defines a continuum of
renormalized Hamiltonians labeled by the parameter A.

The finite part of the counterterm, Lo, is specified by
fitting observables.

The operator Hp is clearly infinitely differentiable be-
cause the expression in the curly brackets has no reason
to diverge for any finite A. Moreover, the factor ep en-
sures that matrix elements of Hp vanish whenever up
does.

IV. CONCLUSION

%e have succeeded in defining a sequence of renor-
malized Hamiltonians Hi, which (a) are finite if counter-
terms can be found, and (b) can be computed pertur-
batively without ever getting energy denominators with
differences less than order A. This latter result ensures
that nearly degenerate states do not give large effects in
the perturbative computations. This is opposed to ef-

fective Hamiltonian schemes where some basis states are
kept and other basis states eliminated, where the energy
difference between the highest state kept and the lowest
state dropped appears and can cause diKculties.

Hp ——ep ds exp —r, Hl» T,

+ ds exp( r~)[HIaiTs] —+ &o + Ht, . (3.8)
Ap
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