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Zero moInentum limits of two loop finite temperature self-energies in p and p coupling theories
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Calculations of two loop finite temperature self-energies of P and P coupling theories, in the imagi-

nary time formalism, are reported, and their zero external momentum limits are examined. In P theory

the two loop self-energy is analytic in the zero momentum limit, but in P theory it is nonanalytic and

diverges.

PACS number(s): 11.10.Wx

I. INTRODUCTION

Recently much attention has been paid to the zero
external momentum properties of self-energies in finite
temperature quantum field theory. The point is that,
when the external momentum tends to zero, the limiting
value of the self-energy does or does not depend on the
direction of the limiting procedures: the spacelike limit
(po~0 then p ~0) and timelike limit (p ~0 then po~0)
[1]. More recently, Weldon [2] has shown that the two
limiting procedures lead to different values based on the
detailed analysis of calculations, and Bedaque and Das
[3] confirmed those results.

However, these arguments are limited to one loop con-
tributions to the self-energy. So we wish to present here
two loop calculations and discuss the zero momentum
limits. We take up two theories: one is scalar fields with

coupling and the other is P coupling. We use the
imaginary time formalism of finite temperature quantum
field theory.

Fig. 1(a) is easily calculated and is independent of the
external momentum.

The contribution from Fig. 1(b), denoted as II(p), is

given as
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where A, is the coupling constant, T is temperature,
and po=2qrinT, ko=2srij T, qo=2qrilT (nj, l =0,+1,
k2, . . . ). The double summation of j and l can be per-
formed by splitting each propagator into partial frac-
tions; for example,
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II. TWO LOOP CALCULATIONS
IN $ COUPLING THEORY

In Fig. 1 we show two loop diagrams of the self-
energies in P coupling theory. The contribution from

Ek=V k +m

An example of a double summation is given in the Ap-
pendix. After the summation and analytic continuation
ofpo to a real continuous value we obtain
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k —q
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FIG. 1. Two loop diagrams of the self-energy in P' coupling
theory.

where

FIG. 2. Two loop diagrams of the self-energy in»)' coupling
theory.

U =coth(Ek /2T )coth(E» /2 T),
V= coth(Ek /2T )coth(E~ „+»/2T ),
IV=coth(E /2T)coth(E k+ /2T) .

As can be seen from this result, II(p) approaches to
one and the same limit when p~O in a spacelike and
timelike way.

In P theory, the one loop contribution is independent
of the external momentum. Thus there is no nonanalytic
behavior in the limit p ~0, up to two loop order.

III. TWO LOOP CALCULATIONS
IN Q COUPLING THEORY

In P coupling theory, the nonanalytic behavior of the
finite temperature self-energy in the limit p~0 seems to
be established, in one loop calculations. In Fig. 2 we
show two loop diagrams. We first calculate the contribu-
tion of Fig. 2(a), which we denote H, (p):

&4T + + d'k d'q 1 1 1 1 1

(2n. ) (2n ) k —m (k —q) —m q
—m k —m (p —k) —m

where pp kp qp are the same as in Eq. (1). In this contribution the inner loop can be calculated separately, which we
denote as II,(k). The calculation of II&(k) is well known and it can be expressed as

in 1 dq X Y Y X
4 (2»rT)2 (2»r)3 j+i (x —y) j+i (x +y) j i (x+y—) j i(x —y)— (4)

where ko=2mijTand

x =Ek /2nT, y =E /2.»rT, X=coth(nx) —coth(ny ), Y=coth(nx )+coth(ny ) .

Here it should be noted that, when we do the analytical continuation of ko to real continuous values, II,(k) is nonan-

alytic in the k ~0 limit, but at this stage of calculation we do not need such a continuation. Inserting this H~ into H,
and splitting each propagator into partial fractions, we obtain the j summation

2
1 1

j —iz j +iz
1 1

J —
Pl

—EW J —/l + it8

X Y Y X
j+i (x —y) j+i (x +y) j i (x+y) —j i (x —y)—

where

z=Ek/2mT, w=E k/2mT .
1 1 Z

Thus we have 24 terms in all, and classify these terms
into 6 classes A, B, . . . , F according to the 6 terms ob-
tained from the first two sets of parentheses in Eq. (5):

1 1 Z
J —iz J —n +iw j +&u
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where u =+(x+y} or k(x —y} and Z=+Yor kX cor-
respondingly. Each class contains four terms.

After the j summation, terms of each class are given as
follows. Here we redefine new notation:

(a, b, c,d, f)=2qrT(x, y, z, w, u)

A: mZ
1

(c —d+po)(c+ f )2T sinh (c/2T)
coth(c /2T )+coth( f /2T ) coth(c /2T }—coth(d /2T )

(c+f) (d+f —p ) (c —d+p ) (d+f p)—+
2

(6)

1 coth(c/2T)+coth(f /2T) coth(c/2T)+coth(d/2T)B: mZ
(c+d+po)(c+f)2Tsinh (cl2T) (c+d) (d f+po—} (c+d+po) (d f+po—)

coth(c l2T) coth(c/2T) —coth(f l2T)
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po )(c+d +pc )(d f po )— —

1 coth(c /2T) —coth( f /2T )
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coth(c /2T ) +coth(d /2T )

(c+d —po) (c+f po)— (10)

F: vZ
1

(c —d —po)(c —f )2T sinh (c/2T)
coth(c /2T ) —coth( f /2T ) coth(c /2T )

—coth(d /2T )+
(c f )'(d f—+p, ) — (c —d p, )(c —d+p, )(d—f+p, )—

The self-energy 0, is expressed with these A, B, . . . , F as

d'k d'q A 8 —C +D —+E F—
7 3 3 22 qr (2qr) (2n ) Ek EqEk qEp

where A, B, . . . , F represent sums of four terms in each class.
Next we consider the behavior of these terms in the p ~0 limit after analytical continuation of po to real and con-

tinuous values. In each term, in the limit p ~0, d approaches c and a, b, c,f are independent ofp. From the inspection
of Eq. (6) to Eq. (11) we can easily draw the results: the first terms of A, D, F class diverge in the limit p~0 both in
spacelike and timelike limits; the third terms of A and F class diverge in the spacelike limit but approach zero in the
timelike limit; the third terms of C and D class approach finite values in the spacelike limit (differentiation of hyperbolic
cotangent) but go to zero in the timelike limit. All of these anomalous terms are temperature dependent as can be seen.
Other terms do not show such anomalies.

The contribution of Fig. 2(b) is given as

4 2 q 1 1 1 1 1n, (p)-x r z
2m 2w —m p —k —m q

—m —
q

—m p — +q —m
(13)

We split each propagator into partial fractions, as before, and obtain 32 terms in all. However, they have an analogous
structure and we present typical calculations of the double sum in the Appendix. After summations, each of the 32
terms can be expressed by the general form

IF(a,d, c, ) F(a,f,c,po)+F(—b,f,c) F(b, d, c, —po))—, (14)

and

a =+Ek, b =~Ep k, c = Eq, d =~Ek q, f= Ep k +q

F(r, s, t)= Icoth(r/2T) —coth(s/2T}) Icoth(t/2T) —coth((r —s)/2T)I
r —s —t
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r —s —t
F(r, s, t,po) =F(r, s, t)

r s t pp

All of the 32 terms can be classified as follows: A class, a and b same sign, d and f same sign; 8 class, a and b same
sign, d and f different sign; C class, a and b different sign, d and f same sign; D class, a and b different sign, d and f
different sign.

In these classes A, B, C, and D, c= Eq Terms with c=E and have the same structure as A, B,C,D are classified
as A, B,C,D, respectively. Each class A, B, . . ~, D contains four terms. Then,

iA, d k d q (A —A) —(8 —8)—(C C—)+(D D)—
2 n. (2n. ) (2qr) EkEp kEqEk qEp k+q

where A, A, . . . , D represent the sum of four terms of each class.
Next we consider the zero momentum limits. We show the spacelike limit of one of the A class terms, denoting it as

A t, as an example. In this term we take a, b, d,f as positive and c = E:—
A, ~ IF(a, d, c) F(a,f—, c)+F(b,f,c) F(b,—d, c) )'p, -o (a b)(d —f)—

~ iqr F(r, s, c )
p-o r Bs r =Ek, s=Ek

Thus we obtain the spacelike limit of the whole A class terms:

F(r,s, c)
r ds

c}2+ F(r, s, c)
F.„, = E—„—BrBs r=Ek, s= —Ek

+ F(r, s, c)
r s

Analogously we obtain

+ F(r, s, c)
E„, =E —BrBS r=E s=Ek' k —

q

(16)
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Bs
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A, B,C,D, classes are obtained by changing c = —E to c =E .
The timelike limit of A &, as an example, is

4im T3, — I2F(a, d, c) F(a, d, c,po) F(—a, d, c, —po—)I .
p~p pp

This goes to an indefinite form when pp~0. So we must use differentiation with respect to pp. Then we obtain A class

terms:
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Analogously,
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D class terms are equal to Eq. (19) also in the timelike
limit.

Thus, it is evident that the two limits are finite but do
not coincide. It seems rather difficult to separate the
temperature-dependent part in these expressions.

I

ism. This result may suggest, more generally, that the
analytic property at the zero momentum limit depends on
the kind of interactions.

APPENDIX

IV. CONCLUSION

Finite temperature self-energy in (() coupling theory is
analytic in the zero momentum limit, but, in P coupling
theory, it is nonanalytic and diverges in the same limit, at
least up to two loop order in the imaginary time forrnal-

Here we present the details of the calculation of the
double summation of a product of five propagators in
Fig. 2(b) as an example.

We split each propagator into partial fractions as was
shown in the text. Then we obtain the following typical
form of double summations:

1 1 1 1 1

„j+aj n+—b 1+cj —1+d j —1 n+—f '

where a, b, . . . ,f are constants and n is an integer. We split a product of the first two fractions into partial fractions
and the likely last two fractions:

1 1

j+a j—n+b
1 1

n+—b —a j+a j n+b—
1 1 1 1 1

j—1+d j—1 n+f — n+f —d—j —1+d j —1 n+f—
Then

1 1 1 1 1 1 1

(a b+n)(d —f+n) .
&

—j+a j —1+d j+a j —1 n+f— j n+b—j—1+d

We perform the j summation:

1 1 1

j n+b j —1 —n+f —1+c

7r cot(ma )—cot[n(d —1)] cot(ma ) —cot[n(f —1 n)]-
(a b+n)(d f +—n}

&

— 1+a —d 1+n+a f-
r

cot[a(b n)] —cot[a(d ——1)] cot[a(b n)] —cot[m(f ——1—n)]
1 n+b —d- 1+b f—1

1+c '

2
S=

(a b+ n )(d f+n—)—[cot(ma )
—cot(~d ) ][cot(mc ) —cot(n (a —d ) ) ]

a —d —c

[cot(~a }—cot(n f )][cot(nc)—cot(~(a —f ) }]
a f —c+n-

[cot(m b )—cot( n d ) ][cot( m c ) cot( n ( b ——d ) ) ]
b —d —c —n

Here, because of the periodicity of cot, n and 1 in the variable can be dropped and all cot s are independent of n and 1,
so we can perform 1 summations. Thus we obtain the result

r

+ [cot(m.b) —cot(of )][cot(mc)—cot(n.(b —f ))]
b f —c—
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