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Thermal matter and radiation in a gravitational field

A. P. de Almeida, F. T. Brandt, and 3. Prenkel
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, 01/99 SP, Brasil

(Received 7 September 1993)

We study the one-loop contributions of matter and radiation to the gravitational polarization
tensor at finite temperatures. Using the analytically continued imaginary-time formalism, the con-
tribution of matter is explicit1y given to next-to-leading (T ) order. We obtain an exact form for the
contribution of radiation fields, expressed in terms of generalized Riemann ( functions. A general
expression is derived for the physical polarization tensor, which is independent of the parametriza-
tion of graviton fields. We investigate the effective therma1 masses associated with the normal modes
of the corresponding graviton self-energy.

PACS number(s): 11.10.Wx, 11.15.Bt

I. INTRODUCTION

Many properties of plasmas in thermal field theories
can be understood from the study of the polarization
tensor evaluated at finite temperature [1—5]. This ten-
sor, which is the two-point correlation function, describes
phenomena such as the propagation of waves and dump-
ing of Gelds in the plasma. In thermal quantum gravity,
the behavior of the polarization tensor is also of interest,
especially in connection with cosmological applications.
If the temperature T is well below the Planck scale, per-
turbation theory can. be used to calculate the thermal
Green functions. Thus, one obtains loop diagrams in
which the internal lines represent matter and radiation
in thermal equilibrium, and the external lines represent
the gravitational fields. There has been a lot of work on
hot quantum Geld theory in the presence of a gravita-
tional field [6—9]. Thus far these investigations have been
mainly restricted to the study of the hard thermal loops
contributions, which are obtained in the high tempera-
ture limit.

The purpose of this work is to study the behavior of the
graviton polarization tensor at all temperatures, which
might be useful in some applications. Since these calcula-
tions are considerably more complicated than those per-
formed at high temperatures, we have restricted for defi-
niteness to work to one-loop order with thermal bosonic
Gelds, which may be of spin 0 or 1. The method we use is
that of Ref. [9],where the Green functions are related to a
momentum integral of the forward scattering amplitude
of thermal particles in a gravitational Geld. Then, the
temperature-dependent part of the graviton polarization
tensor can be written at all temperatures in the form

d3II""' (k) = E" '
( k)

(2~)s 2 Q exp (Q/T) —1

Here q„= (Q, q) represents the on-shell momenta
of a thermal particle with mass m and energy Q

~q~ + m2. I'~" ~ (q, k) is the forward scattering am-

plitude, summed over the polarizations of thermal parti-
cles, which is a covariant function of q and the external
momenta k. This temperature-independent amplitude is
weighted in (1.1) by the Bose distribution factor. Be-
cause of the angular integrations, II""' ~ is no longer a
Lorentz covariant function. It depends on the timelike
vector u", representing the local rest kame of the plasma.
For simplicity, we work in the comoving coordinate sys-
tem where ui' = C The. above method simplifies very
much the calculations in the present case.

In Sec. II we consider the contribution of matter parti-
cles described by the scalar field P, coupled to a gravita-
tional field. The coupling characterized by the term (RP
is included, where ( is a numerical factor and R denotes
the Ricci scalar. We verify that II""' ~ satisfies the Ward
identity which reHects the invariance of the action under
general coordinate transformations. We obtain a general
expression for the leading (T4) and next-to-leading (T )
contributions to the graviton polarization tensor. The
special case when ( = —1j6 and m = 0 is of particu-
lar interest, since then the scalar action is also invariant
under conformal transformations [10]. Because of this
invariance, II" ' ~ satisfies in this case a Weyl identity
which is explicitly verified.

In Sec. III we discuss the coupling of radiation fields
which may be photons or gluons, to a gravitational Geld.
This coupling is also invariant under general coordinate
transformations as well as under conformal transforma-
tions. We remark that the thermal contributions associ-
ated with internal gauge fields represent gauge-invariant
quantities. The Ward and Weyl identities determine
uniquely the (T ) contributions, which are the same for
all thermal particles, apart &om numerical factors which
count the number of degrees of keedom. Using general
properties of the forward scattering amplitude, we show
that all other contributions can be expressed in terms
of just two parameters which are not Gxed by the Ward
and Weyl identities. Rather, these parameters depend
specifically on the nature of thermal particles.

In Sec. IV we obtain a closed form expression for the
contributions of thermal radiation Gelds to the graviton
polarization tensor. We show that these can be expressed

0556-2821/94/49{8)/4196{13)/$06.00 1994 The American Physical Society



THERMAL MAL I'ER AND RADIATION IN A GRAVITATIONAL FIELD 4197

r 4444444
n

444MIIIea & q
mw wwwwwVVW wwwwwwwwm'w% ~q q~

(b)

FIG. 1. Lowest-order matter contributions to the thermal
1PI graviton two-point function. Curly lines denote the ex-
ternal gravitational field and solid lines represent the scalar
particle.

in terms of generalized Riemann ( functions ((—n, t) [1lj
for natural values of n, t being a ratio of external mo-
menta and the temperature. In the high temperature
limit, this expression yields a series of decreasing pow-
ers in the temperature, which includes leading (T4) and
next-to-leading (T2) contributions. Some technical as-
pects which arise in the calculations are discussed in the
Appendixes.

In Sec. V we analyze the dependence on the
parametrization of the graviton 6elds, of the one-particle
irreducible (1PI) contributions to the graviton polariza-
tion tensor. This behavior occurs generally because of the
nonvanishing of the thermal graviton one-point function.
We show that the physical polarization tensor, identified
with the graviton self-energy, is described by a traceless
function which includes contributions Rom thermal one-
point functions. A general expression for the physical
self-energy at 6nite temperature is derived, which is in-
dependent of the graviton parametrization.

In Sec. VI we discuss the effective graviton propa-
gator, obtained by iterative insertions in the free prop-
agator of the physical self-energy. We analyze, in the
static limit, the corresponding poles which describe three
normal modes of dynamical screening. While one of
the modes remains unshielded, a nonvanishing screening
mass m2 = 32+Gp/3 appears in the spatially transverse
one, where p is the thermal energy density. The spatially
longitudinal mode is characterized by an imaginary mass
m2J ———32vrGp, similar to the classical Jeans mass, indi-
cating an instability of thermal quantum gravity.

(b)

FIG. 2. The forward scattering graphs corresponding to
Fig. 1. Crossed graphs with (k ~ —k) are to be understood.

II. MATTER CONTRIBUTIONS TO THE
POLARIZATION TENSOR

We consider here thermal matter represented by scalar
particles of mass m, coupled to the gravitational 6eld via
the Lagrangian

gpv = gpv + tC ~pv) (2.2)

where r = /32vrG. In order to derive the one-particle
irreducible (1PI) contributions to the thermal graviton
two-point function, we consider the Feynman graphs
shown in Fig. l. According to Eq. (1.1), these can
be expressed in terms of the forward scattering ampli-
tude of on-shell scalar particles, as indicated in Fig. 2.
The corresponding contributions to the amplitude can be
expressed in terms of a basis of 14 independents tensors

T,
""'

(q, k), which are symmetric under the interchanges

(p ~ Iy), (of ~ P) and (p, Iy) ~ (o., P). These tensors
are covariant functions of q and k, being polynomials of
maximum degree 4 in the momenta. They can be ob-
tained from Table I, replacing the vectors (X,Y) by the
pair (q, k). With help of the Feynman rules given in Ap-
pendix A, it is straightforward to obtain for the forward
scattering amplitude the expression

(2.1)

and expand the metric tensor g„„ in terms of the devia-
tion &om the Minkowski metric g„„:

F""' ~
(q k) =

(2.3)

K —]~-(k'+ (k'k. q ~T,
"" -~ —

~

-k'+-k. q ~T,
" ~+T, " ~

(k +2k q) (8 4 1 4 2 q)

+I —(k +( k — (k k. q+— (k q) ~

T4""' —+
~

—k +(k
~

Ts""' ~+ Tg"' ~—
+~ —(k + —(k.

~

T""' ~ —(T""' ~+ T""' ~ — (T""'—~+(2T""'—C1 1 „„1„1
8 4 q)s 9 410 2 11 12

—
~

—( k + ( k TP~"' ~ +
~

—( k ——k q ~

TP~"' ~ + (k ++ k) . —

To obtain the leading (T ) and the next-to-leading (T ) contributions to the polarization tensor, we need to expand

the energy Q =
g~(q~( + ms in powers of (m / ~(q[ ), as well as the Feynman denominators:

k' k4 k6

k2+ 2k. q 2k q (2k. q)2 (2k q)s (2k q)4

The T4 contributions come from terms in the forward amplitude (2.3) which are homogeneous functions of q of degree
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T,""' s(X, Y)
T,"" s(x, Y)
T,"" s(x, Y)
T,""' s(X, Y)
T,""' s(x, Y)
T,""' s(x, Y)

T,""' s(X, Y)
Ts""' s(x, Y)
Tg""' s(X, Y)
T" s(X Y)
T,","' s(x, Y)
T,"," '(X,Y)
Ti"s""(»Y)

(» Y)

TABLE I. A basis of 14 independent tensors Tf ' S (X,Y).
tv Pp + exp Pv

= x~ (xs &-"+x ~'") + x (xs &"+ x zs )
=X X~X.X"

cxP pv

=X.X & ~+X-X~&"
=Xs (Y"g "+Y"rj ")+Ys (X"g "+X"rj ")
+ X (Y" rjs" + Y"gs") + Y (X"rjs" + X" s")

= Y"X X~X"+ Y"X X~X"+ Y~X X"X"+ Y X~X"X"
= Y~Y g "+Y~Y"g + Y Y g/'"+ Y Y"q/'"

= Y"YvX X~+ Y Y~X"X
= (Ysx + Y Xs) (Y"X"+ Y"X")
= Y~Y"Y X + Y Y"YvX~+Y Y~Y"X"+ Y Y~Y"X
= Y Y~Y" Y
= Y"Y" r] ~+Y Y~g""
= (Y"X" +Y"X") q s+ (YsX + Y Xs) i1""

2. These are given by

Tg
' ~

(-q, k) —
2

T~""' ~
(q, k) + Tf ' ~ (k, q)

= —(n'q"q + n" q"q'+ n"'q"q + n" q q')

(k q)'
q"q"q q x (q"q" q k + q"q k q + q"k"q q + k"q"q q ) . (2 5)

f lql d lql 7r'T'

[exp (lql /T) —1]
(2 6)

Q [exp (Q/T) —1)
. (2.7)

The angular integrations can be done using the methods
described in [9]. The result can be expressed in terms
of the basis of 14 tensors T,"' ~ (u, K), obta. ined from
Table I, where we replace the pair (X,Y) by (u, K). Here
u" = b" and

Note that terms involving the parameter ( do not con-
tribute to (II). These contribute only to next-to-leading
(T2) order, which result from terms of degree zero in q
in the forward amplitude. In order to Gnd these contri-
butions, we perform the lql integration in (1.1) using the
formulas

K
n, (r, K, g) = —~'T' l, (r, K) +

l
kl' T' n, (r, K, ()30

+m T s; (r, K, () + (2.10)

The explicit form of the dimensionless functions l;(r, K),
n; (r, K, () and s, (r, K, () are given in Appendix B. These
exhibit, apart Rom a logarithmic dependence in r, a poly-
nomial behavior in K of maximum degree 10. The coeK-
cients l; (r, K) which contribute to the leading (T ) order
have been obtained previously [8] and are included here
for completeness.

As a consequence of the invariance of the theory un-

der general coordinate transformations, the 1PI graviton
two-point function satis6es the Ward identity

2
k n~. .~(k) =k~r ~ —k. (r-~»+r~ q ")

(2.11)
t' k.K"= =

i
—,k~—:(, k). (2.8) Here I' ~ denotes the thermal graviton one-point func-

tion, which is given by

Then the 1PI contributions to the polarization tensor can
be written up to the next-to-leading order in the form

II" -~ (k, m, g) = ) n, (,, K, g) T& -~ (u, K), (2 9)

~'T4K
p

'7t T K p p
180 0 0

+ g ~ —2b0b0~ +. . . . (2.12)

where
With the help of the expression given by Eqs. (2.9) and
(2.10), the Ward identity (2.11) can be explicitly verified
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to this order. It is well known [10] that in the conformally
coupled case, when f = —1/6 and m = 0, the action is
also invariant under conformal transformations given by

It is convenient for computational purposes to fix the
gauge by choosing

&~- (&) = f~' (*) ~~- (2.13)
~fi- = ——v'-g (*) (&~A") (&-A")

20!
(3.2)

P (z) = 0 ' (x) P (x) . (2.14)

where V„ is the covariant derivative. The corresponding
Faddeev-Popov Lagrangian is given by

As a consequence of this invariance, the 1PI graviton two-
point function will also satisfy the Weyl identity [8,9]:

-'11~" (k) = -r~".
K

(2.15)

This identity is explicitly verified by our expression for
II"" ~ (k) [Eq. (2.9 )] and for I'"" [Eq. (2.12)] evalu-
ated at ( = —1/6 with m = 0.

III. RADIATION FIELDS CONTRIBUTIONS TO
THE POLARIZATION TENSOR

1
y' e(*)—g"-"P—(~pA —& Ap)

4
x (B„Ap —8~A„) . (3 1)

I

In this section we analyze the contributions of spin-
one gauge fields, which may be photons or gluons. Since
for our purpose the self-interactions of the Yang-Mills
particles can be neglected, there is no loss of generality
in considering only the contribution of an Abelian field
A". For non-Abelian fields the contributions are the
same, up to an overall color factor. The coupling of the
gauge field A" is described by the Lagrangian

~FP = g" v' g(-*) (&~~) (~ &) (3.3)

where y and y are the ghost fields. The form of the
above interactions is such that the theory is invariant
under local coordinate transformations, as well as under
conformal transformations given by

4(*)= A~(&) u~. (*) = fI' (&) &~- (3.4)

As we have seen, these invariances ensure the 1PI gravi-
ton two-point function to satisfy the Ward and Weyl
identities given, respectively, by Eqs. (2.11) and (2.15).
Here I ~ is obtained multiplying (2.12) by a factor 2 and
setting m = 0.

With help of the Feynman rules listed in Appendix A,
we can evaluate the 1PI graphs contributing to II""'
which are shown in Fig. 3. The diagrams contribut-
ing to the corresponding forward amplitude are repre-
sented in Fig. 4. It is important to note that the thermal
contributions from internal gauge fields represent gauge-
independent quantities. We have verified this indepen-
dence explicitly, performing all computations in the gen-
eral class of covariant gauges defined by (3.2). The de-

pendence on the gauge parameter n cancels in the final
expression of the forward scattering amplitude, which is
given by

2KF~" ~(q, k) =
~

-(k. q)'T,"" ~(q, k) — T,"" ~(q, k)+T,"" ~(q, k)k2+2k q 4
k2 k4

(k q) T~—""—' ~(q, k) — T,""' ~
(q, k)—+ Ts""' (q, k)—

+ Tg"' ~(q, k)+— Tg""' (q, k) ———TP~"' (q, k)
~
+ (k m k)— (s.5)

~~p K d Q 1 p
(2~) Q exp (Q/T) —1

(3.6)

At this point, it is interesting to compare (3.5) with the
amplitude corresponding to the scalar case [Eq. (2.3)],
evaluated for m = 0 and ( = —1/6. We see that in
both amplitudes, the coefficients of the tensors T,.""'
(i = 2, 3, 7) which contribute in the high temperature
limit [cf. Eq. (2.5)] are the same, up to a factor of 2
which counts the degrees of freedom of a physical gauge
particle. On the other hand, all other coefficients seem
to be diferent in general.

In order to understand this behavior we consider now
the consequences of the Ward (2.11) and Weyl (2.15)
identities on the structure of the forward scattering am-
plitudes. To this end, we use the following representation
of the graviton one-point function:

I

Then, we find from Eq. (1.1) that the Ward and Weyl
identities ensure the forward scattering amplitudes to
obey, respectively, the relations

1 k„F""' ~ (q, k—) = k"q q~ —k. q (q g" + q g" ),
K

(3.7)

1 F"" (q, k) = ——2q"q" (3.8)

We will now investigate the constraints imposed by the
relations (3.7) and (3.8) on the general form of the ampli-
tudes E""' ~. Since these are Lorentz covariant functions
of q and k, they can be expressed in terms of the tensor
basis T,""' ~

(q, k) as.
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FIG. 3. One-loop contributions of radiation fields to the
graviton polarization tensor. Wavy lines denote the gauge
field and broken lines represent ghost particles.

F"" ~ (q, k) = K' ) F, (k', k q) T,""' ~
(q, k), (3.9)

We see that the invariance of the theory under local co-
ordinate and conformal transformations does not fix the
functions Ftt, Fq2, and Fq4 Fur. ther constraints are pro-
vided by the property of the forward scattering amplitude
of being a function with dimension of (momenta) 2, which
is even under (k::—k). Furthermore, to one-loop or-
der in perturbation theory this amplitude can have at
most one denominator involving (k + 2k q). For in-

stance, these general properties require the functions F3
and Fy to have the structure

where F, are invariant functions of k2 and k q. Insert-
ing (3.9) into the Ward identity (3.7) and identifying the
coefEcients of the independents tensor structures yields
ten relations among the F;. Similarly the use of the Weyl
identity (3.8) gives four more relations. However, not all
of these relations are independent, so that we can express
11 functions F; in terms of the remaining three as

Fs = cs
I(k2+ 2k q k2 —2k q)

'!+

1 1F, =c,
!(k2+2k q k2 —2k q)

'

(3.11)

(3.12)

where c3 and c7 are constants. Furthermore, it follows
that F2 must be an even function of k, having the struc-
ture

3k'
F1 —— F12 + k qF14,

4
k4

F2 F11 +
2 2k ~

k2
F6 — F11 F14

2

1 2k4 k'
2k q (k q)2 (k q)2

k q ak2
F8 F11 F12

2 4

k2
F14 )

q k ~ q
k2 2k6 k4

2(k q)' (k q)
'

(k . q)
k4

F4 ————F/2 —(k q) F/4,
2

k2
5

(k )
14)

(3.10a)

(3.1ob)

(3.10c)

(3.10d)

(3.10e)

(3.1of)

(3.1og)

(3.10h)

1 1
!F, =c,k q!(k2+ 2k q k2 —2k q)

+c,'k'
!

, , (
(k2+2k q k2 —2k q)

'+ ! (3.13)

where c2 and c2 are constants. Similar structures can be
found for all other functions appearing in Eqs. (3.10).
These structures yield a set of relations which must be
satisfied identically in Eqs. (3.10), for all values of q and
k. In this way, we find that the constants c2, c3, and c7
are uniquely determined as

1 1
c2 — ) c3 —1, c72' '

2
(3.14)

Note that the functions F3 and F7, as well as the part of
F2 which determine the T contributions [cf. Eq. (2.5)]
are now uniquely fixed. This is in accordance with the
argument [9] that all hard thermal particles should con-
tribute the same, up to a weight factor. The above rela-
tions imply further the equation

k o !c -k
ig

«q

k2 (k q)
F14 ——2k F11+

2 k4 —4(k. q)
(3.15)

(a) (b) Using (3.15), we see from Eqs. (3.10) that the only in-

dependent functions left over are F11 and F12. From the
general properties of the forward scattering amplitude,
these functions must have the structure

(c)

FIG. 4. For+sard scattering diagrams containing ghost par-
ticles connected with Fig. 3. Crossed diagrams (k ~ —k)
should be included.

11 cll I( k2 2k
+ k2

F12 ——C (k2+ 2k q

(3.16)

(3.17)
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1
C11 12'

1
36' (3.18)

whereas in the case of internal gauge 6elds we 6nd that

where c11 and c12 are constants which depend speci6cally
on the nature of the thermal particles. For instance, in
the scalar case we get

butions corresponding to P~ (r, K) (j = 1, 2, 3), which are
not proportional to T . These contributions, which we

denote by P~ (j = 1,2, 3) can be found from Eq. (4.3)
by using for the graviton two-point function the expres-
sion (1.1). Substituting here the expression (3.5) for the
forward scattering amplitude, we are lead to integrals of
the form

C11 = C12 = 0. (3.19)

The above relations explain the features of the forward
scattering amplitudes described by Eq. (2.3) [at $
—1/6 and m = 0 ] and by Eq. (3.5).

Is (k, T) = Q'
(27r) 2Q exp (QIT)

1
X

(k2+2k q k2 —2k q)
'!+ (4.5)

IV. EXACT EVALUATION OF RADIATION
FIELDS CONTRIBUTIONS

We will now evaluate all finite-temperature contribu-
tions in closed form, using the techniques described in
the first paper of Ref. [12]. To this end, we express the
1PI graviton two-point function in terms of the tensor
basis T,""' ~ (u, K. ) in a way analogous to (2.9):

I 2 ' dx

(2~)' 4 i (kp —lklz)'
oo qs+i 1

p exp (Q/T) —1 Q2 + (2~Ty)'

Is (k, T) =—

(4.6)

where S = 0, 2, 4 and Q = lql. In terms of z = cos (8),
where 8 is the angle between k and q, we find that the
above expression becomes

14
II""' ~(k) = ) II; (r, K)T,""' ~ (u, K. ). (4.1) where

According to the discussion of the last section [cf.
Eq. (2.10)], we can write the functions II; (r, K) as

X'T4
II; (r, K) = ~ l, (r, K) + lkl T N;(r, K) , (4.2)

W

where the functions t; (r, K) are given in Appendix B.
Our task is to determine the functions N; (r, K), which
should be nonleading in the high temperature limit. For
this, it is convenient to consider 6rst the projections
of the graviton two-point function into the tensor basis
TPv, aP

P;(r, K) = II"" ~(k)T,—„„p(u,K). (4.3)

Once we find these (see next), the functions II; in (4.2)
can be determined by the relation

II, (r, K) = 8(T,""'
T, „„p) 'P. , (r, K.)

=—8 (T;,) 'P, (r, K), (4.4)

where (T,~) denotes the inverse of the matrix T;~

We now proceed with the evaluation of the functions
Pz (r, K) in (4.3). From Table I, we see that for j =
4, 5, . . . , 14 these involve the contraction of II""' ~ (k)
with g"", g ~ or with the external momenta. Using the
Ward (2.11) and Weyl (2.15) identities, the correspond-
ing functions P~ (r, K) will be given by a linear combi-
nation of graviton one-point functions. These are pro-
portional to T4 [cf. Eq. (2.12) with m = 0], and so
will contribute only to the functions l; (r, K) in (4.2).
The functions N; (r, K) are determined &om the contri-

I'
4ivrT kp —lkl

z' (4.7)

Apart &om simple functions, the integration in (4.6) can
be reduced to the basic integral [11]

qdq 1

p q2 + (27rTy) exP (Q/T) —1y ~~

0

= -O[Re(y)]! lny- ——y(y)
2 q 2y

(4.8)

where Q(y) = —lnl'(y) denotes the Euler Q function.

The real-time limit of the Green's function can be ob-
tained from the analytically continued imaginary-time
formalism via the prescription [13]kp = (I+is)Kp, where
e + 0+ and Ko is real. With the presence of the ie factor
being understood, we find in (4.8) that Re(y) = s'Re(kp),
with e' —+ 0+.

Many of the angular integrations in (4.6) can be easily
done in terms of elementary functions, after changing
variables &om z to y. The most diKcult one involves an
integrand containing @ (y) multiplied by a power of y",
for n = 0, 1, 2, 3, 4. The relevant integrals can be put in
the form

1- —= O[R (ko)1 [J-(t(k.)) —J-( —t(—k.))]
+ [kp ++ —kp], (4.9)

where

T)"
J-(t) =

l l

y" »(y) —— &(y) dy-
E lkl) c . 2y

(4.10)
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The choice of C is immaterial, since any constant is
irrelevant for our purposes because it cancels out in the
expression (4.9). Here t (kp) and t —(—kp) denote the
limits of the y integration corresponding, respectively, to
x = 1 and z = —1 in Eq. (4.7). Hence,

kp + ~k~

4i AT
(4.11)

These integrals can be expressed in closed form in
terms of derivatives of generalized Riemann ( functions

(( n,—t) for natural values of n = 0, 1, 2, 3, 4. For in-
stance we have that

Nip(r, K) = K Pi+ (3K +5K ) P2

+ (30K'+ 35K') P.,

N„(r, K) = r—Pi + (2+ 5K ) P2

+ (20K'+ 35K') Ps,

N]2 (ry K) —Pi + (4 + 5K ) P2

+ (8 + 40K + 35K') Ps,

N„(r, K) = P, ——K'P2+ (4K'+5K') Ps,

N„(r, K) = r (Pi + K P2 + 5K Ps) .

(4.183)

(4.18k)

{4.181)

(4.18m)

(4.18n)

J (t) = in(&) ~(&)
IkI

l7/ T 2y(kf, 1tint —('(o, t) —t —-lnt,ixT 2
(4.12)

At high temperatures, the Riemann I,
' functions can be

expanded in a power series in t, as shown in Eq. (C10).
Then, in the high temperature domain, we can express
the functions P~ (j = 1, 2, 3) as a series of powers of
(1/T). The dominant terms in these series are given by

J,{t) = 1
u»{v) ———4(v) du

2y

= t('(0, t) —('(—1, t) + —lnt — t'-
2 4

(4.13)

K2 K
Pi (r, K) = — — Jp,

96 32
K2 K4 K' K'

P2 = L (r) — Jp —r Ji — J2,
48 32 4 2

K' K4 K
PB ——— + L (r) — Jp —r Ji

576 192 256 16
2+ 3K2

8
J2 —r J3 —J4

where we have defined

(4.14)

(4.15)

(4.16)

{4.17)

In the above expressions, the derivative is taken with
respect to the first argument of the generalized ( func-
tion. The functions J„(t)are discussed in more generality
in Appendix C [cf. Eq. (C6)]. In this way, we find that
the functions P~ (j = 1, 2, 3) in Eq. (4.3) are related to
J„ in (4.9) as

K2

96 '

K2
L(r),

1 —3K'L(r)
576

Pg ———

P2 ——

(4.19)

(4.20)

(4.21)

V. THE GRAVITON SELF-ENERGY AT FINITE
TEMPERATURE

In thermal quantum field theory the 1PI contributions
to the graviton two-point function are in general depen-
dent on the parametrization of the graviton Gelds. How-

ever, as shown in the second work of Ref. [12], the trace-
less quantity

Although the above contributions are gauge invariant,
they do not directly describe the physical properties of
the plasma at finite temperatures in a gravitational Geld.
This problem is related to the fact that the thermal gravi-
ton two-point function depends on the choice of the basic
graviton fields.

Np(r, K) = (2+ K') P, + (6K'+ 5K') P,
+ (30K'+ 35K') P, , (4.18i)

With the help of these relations, the functions N, (r, K)
can be explicitly determined from Eqs. (4.2) and (4.4).
After a straightforward calculation we obtain

N, (r, K) = P, + K P2 + K PB, (4.18a)

N2(r, K) = K Pi+ 2K P2+ 5K Psl (4.18b)
N, (r, K) = K4P, + 5K'P, + 35KBPB, (4.18c)
N4(r, K) = Pi —K P2+ —K PB, (4.18d)
N.(,K) = K'P, —K'P, +5—K'P„ (4.18e)

B(r, K) = —r (Pi + 2K'P, + 5K'P, ), (4.18f)

N7(r, K) = r(K Pi + 5K P2 + 35K—PB), (4.1.8g)

NB(r, K) = P + (1+2K') P2+ (4K'+5K') P„
(4.1811)

l+~-11&»+~"~II»
Pi P~ )

(5.1)

represents at high temperatures a quantity which does
not depend on the choice of basic graviton fields. In this
domain, the masses can be electively neglected so the
theory is invariant under conformal transformations. The
representation independence of II then follow in conse-
quence of the Ward and Weyl identities. As we have
seen, the contributions from internal massless particles
are invariant under local coordinate and conformal trans-
formations. Consequently, the physical amplitude given
by (5.1) can be identified in this case with the graviton
self-energy even at finite temperature.

However, for contributions from thermal matter, which
are characterized by the presence of massive particles,
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II""' P is no longer independent of the graviton field

parametrization at finite temperatures. Our task is to
generalize (5.1) in such a way that the corresponding
quantity should represent a physical graviton self-energy
at all temperatures. To achieve this we consider the ef-
fective action which generates the one-particle irreducible
thermal Green functions. In the representation (2.2) for
the h fields, we have that

s.,= r„ok.o(o)+ —f s4krr"„o(k) k„.(k)

corresponds to a special case of (5.3), with

1 1 1a= —1, b= —, c= ——, d=1, e= —, 1f = ——.
4

In what follows we shall assume, without loss of gener-
ality that a = 1. This can always be achieved by a
further rescaling of the hr fields in (5.3) (see Ref. [12]).
Furthermore, we shall consider for simplicity the class of
parametrizations characterized by the conditions

xh p( —k)+ (5.2) ab —ac+ 2bd = 0, b+2f =0, (5.6)

Starting &om these fields, the most general re-
parametrization of the graviton fields can be written as

h,""= a h"" + b h "&g""+ c h "& h"" + d h"" h"&

+. (h"„)'&~"+fh.,h P&~" +". , (5 3)

where a, b, c, d, e, and f denote arbitrary constants. For
example, a basic graviton field often used in the litera-
ture, which is defined by [9]

which are explicitly verified by all the graviton represen-
tations discussed in the literature [6—9].

Since the effective action is invariant under a general
reparametrization of the graviton fields, it can be written
in terms of h& as

s.„=r„ok, (o)+ , f s4krr„"—'(k)k,„.(k)

xh, p( —k)+ (5.7)

Q—g (z)g""—:))""+ ~h", ", (5.4)
Identifying with the help of (5.3), the corresponding
terms in (5.2) and (5.7), we obtain the relations

I'q" ——a I'q" + b g""I'q
I h) p~

rr"" o(k) = rr""' o (k)+ ab rr""~ o o +II o' ~ o"" + b rl '~ o"'o o+ c I'"'o o+r' oo"'}h h) h) p h) p h)cr p h) ~ h) ~

+ —
~

I'"„g"p+I'"„q" +I'„",g"p+I'"„)7" ) + 2el'„,))""r) p+ f I'„,())»g" +q" g p).

(5.8)

(5.9)

When the theory is invariant under conformal transformations, the following Weyl identity holds [12]:

p pv a+ 4c+ 2d pv pv
hgP

( +4b) hg h, & (5.1O)

~%t

where I'~h" is a traceless function. In general, this is no longer true in the presence of thermal matter at finite
temperature. In order to take this fact into account, we generalize (5.1) by considering the traceless quantity

II"" p(k) —= II"" p(k)+ -b," (r)" ))"p+))"pq" ) —())""b, p+)) p)h"")
2

+ (+pagvp + ~Op)kbva + ~vag» + vpg)ba) (5.11)

where the tensor 6""is given by

4&" = — IIP ~" + r&" ——IIP
1 „-v 1 r'

4 P 32&

(5.12)

We remark that when the Weyl identity (5.1O} is appli-
cable, b,""vanishes so that Eq. (5.11) reduces to (5.1)
as expected. For this reason, only the contributions &om
thermal matter will appear in Eq. (5.12).

It is now straightforward to verify, with the help of the
relations (5.6), (5.8), and (5;9) that

II&" -P (k) = IIv""P (k) + II,".","P (k),

where II,"„' is give»y

(5.14)

11,".",-P(k) = -'~&v-f"P+&»f'" +&" f'»+~"Pf'
4

I

This equation shows that the graviton self-energy given
by the relations (5.11) and (5.12) is invariant under re-
parametrizations of graviton fields at all temperatures.
In order to understand the mechanism which enforces
the above property, using the relations (5.1), (5.11), and
(5.12), we write the expression for the graviton self-
energy in the form

II"„"-P
(k) = II„""-P (k) . (5.13) y v~~P ~P ~4v (5.15}
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(6.4)

The effective propagator satisfies certain fundamental
constrains. In view of the traceless property of II, Eq.
(6.2) requires that

FIG. 5. Lowest-order contributions of graviton one-point
functions to IIt q. The black dot represents terms propor-
tional to g.

As mentioned before, 6 vanishes in the case when the
thermal fields can be considered as being electively mass-
less. The contributions associated with the graviton one-
point function in (5.15) can be represented diagrammat-

ically as shown in Fig. 5. Both II and I' depend individ-
ually on the choice of basic graviton fields in a way that
ensures II to be independent of these parametrizations.
Hence, in order to obtain a physical self-energy, one must
consider in addition to 1PI graviton two-point function,
also the corresponding "tadpole" contributions. Since
the graviton self-energy {5.11) is parametrization inde-

pendent, it may be conveniently evaluated in the repre-
sentation (2.2) of the gravitational fields, from the con-
tributions of thermal matter and radiation fields given,
respectively, by Eqs. (2.9) and (4.1).

VI. THE EFFECTIVE GRAVITON
PROPAGATOR

K

k2 2 "" 12

x(k I —II) p „, (6.5)

where the energy density p is given by

(6.6)

Here u denotes the total number of degrees of freedom
of the thermal particles.

In what follows we shall be interested only in deter-
mining the e8'ective dynamical masses in the static case
kp = 0, which are relevant in the process of dynami-
cal screening. To this end, we project the corresponding
contributions of II into the traceless normal modes

Furthermore, the Ward identity (2.11) expressing gauge
invariance requires a longitudinal contribution in II con-
nected with the background energy-momentum tensor
[cf. Eq. (2.16) in the second paper of Ref. [12]]. Con-
sidering for definiteness the high-temperature limit, it is

then straightforward to verify that Eq. (6.2) implies

In order to investigate the thermal mass of gravitons,
we will study the properties of the poles in the effective
graviton propagator. This is obtained by iterative inser-
tions of the physical self-energy in the classical graviton
propagator k P"&, where

4 1T" ' ~ = ——Ts(u) ——T4(u) + —Ts(u)
12 3

S V, ~P
- pv, cxP

Tg
"' ~ = ——T2(u) + 2Ts(u)

2
'

(6.7)

(6.8)

bpgv + gPgv pv pv
Pyv ~ P P ~ ~ ~~~ gPv I I~P (61)aP P

which is insensitive to changes of parametrizations [6,12].
As we have seen, because of the inclusion of graviton

one-point functions, the graviton self-energy (5.14) is also
independent of the parametrizations of graviton fields.
These properties ensure that physical quantities such as
masses are independent of the choice of basic graviton
fields. Using the fact that the physical self-energy is
traceless, P behaves eH'ectively like the identity when act-
ing on II. Hence, the effective graviton propagator can
be written in the form:

D"p(k) = —P"p + —II"p(k)

t'1
+

~

—„',
~

fl;:(k)fi'.,(k)+. . . .
(k2) P~ (6.2)

k P""—II" Dp = I"
pa pa ex@ aP

The right-hand side of this equation sums up to a geo-
metric series, giving the relation

k, k~Tq'"" ——0 (i, j = 1, 2, 3). {6.9)

In terms of these tensors, we can decompose the self-

energy as

11 ..i'(k =0) =~'
~
T, ~ — T" ~ ~. -(6.10)

3

It is then easy to invert Eq. (6.3), yielding for the effec-

tive graviton propagator the result

D " -~ (k = 0) = T""-'+ —T""-'1 -- 1
~'p+ 3

Tp'V) Wp1
k2 —K2p

(6.11)

where the normal mode TU given by

where the tensors T,
""'

(u) (i = 1, . . . , 5) are obtained
from the corresponding ones in Table I by replacing X
with u = ho . The normal modes Tg and Ts are idempo-
tent (up to a minus sign) and orthogonal to each other.
While the mode TJ is three-dimensionally longitudinal,
the mode Ts is spatially transverse in the sense that
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pv npT""' = --Tg(u) + -T2(u) ——Ts(u)
2 3

7
- pv, ap

T—4(u) —-Ts(u)
12 3

(6.12)

~2p 32+Gpm~=
3 3

(6.13)

is orthogonal to the modes TJ and Tg.
We see that in the normal mode TU, the gravitational

plasma is unscreened. This is somewhat similar to the
spatially transverse mode in the /CD plasma. On the
other hand, a nonvanishing screening mass appears in the
mo de Ts.

a proper study of the gravitational instability requires
taking into account the effects of the curved space-time
induced by the thermal energy-momentum tensor [6,7].
Furthermore, in the regime of extremely high tempera-
tures the curvature effects become important throughout,
so that the concept of an effective graviton propagator
may no longer be of direct physical relevance.
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analogously to the behavior shown by the spatially lon-
gitudinal mode in the /CD plasma.

The mode TJ is characterized by an imaginary mass:

m J ———32xGp (6.14)

which is similar to the classical Jeans mass. This anti-
screening mode indicates a gravitational instability for
density fiuctuations with wavelength larger than [mJ

~

owing to the attractive nature of gravity. One may gen-
eralize this calculation by including internal gravitons
in thermal equilibrium at high temperatures [9]. Their
contributions will not affect the above conclusion, since
these change only the weight factor ro appearing in p [cf.
Eq. (6.6)] which counts the total number of degrees of
&eedom.

In conclusion, we point out the limitations of the
present approach. We have been concerned with grav-
itational perturbations around a Minkowski space-time,
at temperatures well below the Planck scale. This is
justified in the regime R « k2 « T2, where the cur-
vature (R) corrections are negligible compared with the
thermal contributions. However, at momenta of the or-
der of the Jeans mass (6.14), which is of the same order
of magnitude as R, the curvature effects are relevant to
the calculation of the (anti) screening masses. Therefore,

I

APPENDIX A

In this appendix we present the Feynman rules for the
couplings and propagators involving scalar, gauge, and
graviton fields. These rules can be obtained from the re-
spective Lagrangians given in Eq. (2.1) and Eqs. (3.1),
(3.2), and (3.3). In a perturbative calculation we first
have to expand all the metric-dependent quantities up to
some given order in the graviton field h. These expan-
sions and the subsequent reading of the momentum space
Feynman rules is a straightforward procedure (but a very
tedious task for humans) which was accomplished using
an algebraic computer algorithm written in MATHEMAT-
K",A. Here we will only present the results for the vertices
involving up to two gravitons, which are relevant for the
calculation of the graviton polarization tensor. We will
also restrict only to the Abelian couplings of the gauge
fields [cf. Eq. (3.1)].

In all the expressions which follows we will always de-
note the graviton momenta and indices by [kq, (p, v)]
and [k2, o., P]. The momenta of scalars and ghosts are
denoted by pq and p2. The gluon momenta and indices
are denoted by [pq, p] and [p2, o']. Using this notation,
we obtain Rom the Lagrangian (2.1) the scalar scalar-
graviton interaction vertex

V„„" '(k—q , pq, p2) = p', „p,„+p, „p,„—pq

pearl„„—

m l»r+ 2( (k,„k,„—ky rig v) (A1)

and the scalar-scalar-graviton-graviton interaction vertex

V v np (kl)lk2i pl) p2) = 8 p~v p2p 'Qnp + 2 pl p2 rjnp 'Qpv + 4p~n pgp '9pv pl p2 'Qnp 'Qpv

+m (2 re„gPv —rinP rj„v) + ( (4 k,„k,v rinP + 4 k, „k,v rinP —4 k,P k, v re„
—6k pk, g „—4k pk, „g „+2k pk, „g „—4k, k, „gp„—2k, k, „gp„
+2 k& k2 p~„ppp —4 k, ~ k, p pp„—8 kip 2~ Yap& + l~ k2p 7fp„+ 8 k] 7f~p 'Qp„

+4k/ k2'Qn&rjpv + 8k& kzpnrl&v + 4k, p kq rjpnv 4k& rlnp r]„v —2k& kz rinp rii, v), (A2)

where in the expression above one has to perform a sym-
metrization over the graviton indices and permutation of
the scalar particles.

From the ghost Lagrangian we obtain the ghost-ghost-
graviton interaction vertex

'ghost—V „(kg) pg, p2) ——p, v p, p
—p, g p, v + pz ' p2 rjpv~

K

(A3)

and the ghost-ghost-graviton-graviton interaction vertex
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go~st—V p (ky& k2& py& p2) = 4P&rc p&v rIap + 8p&p p~v 'gap

2 pl p2 gap 'gpv

1

D(k) = (

, m2-k2

for the ghost,

for the scalar.

+Pl P2 gaP gp v ~ (A4)

Expression (A4) has to be symmetrized over the graviton
indices. Notice that, as can be easily seen from Eqs. (2.1)
and (3.3), the interaction vertices of ghosts or scalars
with the graviton field, differ only by a minus sign when
( = m = 0. The corresponding propagators are given by

I

From Eqs. (3.1) and (3.2) we can obtain the gauge
fields Feynman rules in the general covariant gauge char-
acterized by the gauge-fixing parameter o.. In this class
of gauges the gauge field propagator is given by

P (k) = —, rll
—(1 —~) "," (A6)

1 k„kv

The interaction vertices will also depend on the parame-
ter o.. The gauge-gauge-graviton coupling is

TI' g+uge(k
pv'P o' ykl j pl& p2) pycr pgp 9pv + p1cr pgv gyp + p1v pgp /per + pter p&p gvP + p1P paP Iver pl ' p2 gyp Iver

1—2P»p» Qp a+'pl 'P2rlpv Oper+ ( 2pcpp, cr gl v p, ppqcr tv 2pcvpza9pp

+ Pl Pv1p Acr + P'pcP2 vlpcr)&

and the gauge gauge gr-aviton--graviton vertex is

gauge
2

V v ap (kcrl& k2i Ply P2) = 2Pqcr Pg p 'gap '913v 4Pq Pcrgv 'gap 'gPp 4Pyv Pgp gnp g'Pcr +'4Pq p Pr v 'gap 'gpcr

—P, ~P~P'QaP Qpv + 2P1nP&P pap'Qpv + 2P1P Pqp'Qao Ppv + 2P1~Pga 7PP'Qpv

+2P1a P~p gPcr lpv 4P1 ' P2'Gap /Per lpv 4P1a P2v IPcr '9pp 4P1cr P~P jap Ivp

4P1p Pgp. Iacr 'gvp + 8P1 ' P2 lap, &pa gvp 4P1p Pqp gap, Iver + 4P1a Pgp fy, p &vcr

+8P»P, P ga„oper 2Pl 'P2 Pap, PPv /per 4P1a PgP Qpv /per+ Pl 'P2 PaP Qpv /per

1
+—(16kc v pc p '/acr 'gp p

—8 k~ cr pc p 'gay. 'gpv —2 pz p p ger 'ga p 'gpv + 2 k c p kg cr 'gap gpv

+4 k1cr P1p gaP 'gpv + P1p Pzcr gat9 gpv 8 k1cr P1P r/ap 'gpv 4P1P Pqcr gap 'gp. v

—4 k, p k, p @acr gpv —8 k, p p, p pao 'Qp, v 4 p1 p pg p '&acr 'Qp, v 4 k1v k2cr gap gyp

+8 P& P Pp cr 'pav Pp p + 8 k1 v k& P /acr /p p + 8 P1 v Pg P &acr gp p
—8 k1 v P1 p QaP '&per

+8 kc p pq p 'b'av 'grccr + 8 pz p pq p 'b'av 'gcccr + 16 kq v pq p gap gpcr +'8 kc n pz p gpv gcccr ) ~ (A8)

Similarly as in the scalar vertices, one has to symmetrize
the gauge field vertices over the graviton indices and in-
clude the permutations of the gluons. In all interaction
vertices there is momentum conservation, with all mo-
menta inwards.

From the expressions above we can perform the explicit
computation of the scattering amplitudes shown in the
Figs. 2 and 4. This was done using these Feynman rules
as an input to an algebraic computer program.

APPENDIX B

In this appendix we present the leading and next-to-
leading structure functions for the matter contribution to
the polarization tensor. The leading structure functions
presented here are the same for all thermal particles. The
explicit result for the functions l;(r, K), n;(r, K), and
s;(r, K) appearing in Eq. (2.10) is

K' K' L
l

6 24 8
—5K4 5K2( 5Ksl

192 16 64
5 5K2L

8l = ——+
8 16

1 K 5K 5K L
l2 ————+

3 12 24 8
25K6 5K I 25KSL
192 32 64

5K2 15K4L
8 16 16

n2— (B2)

(B3)

l4 ——
—K2 K L

24 8
—5K' 5K'

32 192
5K4(1+

5K2L
16

5K4I. 5K'I,
8 16 64

(B4)

-K' 7K' 35K' 35 K'L
l

3 12 24 8
—5K 175K 25K L 175K L

32 192 16 64
25K4 75K6 L

8 16 16
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5K4
l5 ——

12 24 8
—5K 25K 5K ( 5K L

32 192 8 8
25K L 15K (L

64 8
—5K' 15K'L

16 16
( —1 5K2 5K L)

12 24 8

(25 K4 5 K4 L 25 Ks L t

192 32 64

( 5 15K'L)
ss ——

1

——
g16 16 )

(B5)

(B6)

5K4L
12 24 2 8

—5K2 25K4 5(
A8 +—

48 192 16
5K'I, 15K4L 25K'L

32 32 64
5 5L 15K L
16 8 16 (B8)

fl 7K 35K 35K L't
3 12 24 8

t'5K4 175K 25K L 175K L)32]92]6641()
(-5 25K' 75K4L)
( 8 16 16 )

(25 15L 75K~ Li
(16 8 16

1r;

13 35K 35K4L
+ L+ 5K'L+

12 24 8
115K 175K 5( 15K L

A 12
24 96 192 4 8

+ —+
75K L 175K L 5(L 15K (L

, (B12)
4

&13

25 5 15L 75K2L
16 8 K2 4 16

5K' K2L 5 K4L
12 24 2 8

-25K 25K 5K ( 5K L 15K L
96 192 8 16 16

25Ks L 5K2(L 15K4(L
64 8 8

(B13)

5 L 15K'L
16 8 16

(—1 5K2 5K4L'i
'4 =

1~12 24 8

(5K2 25K4 5K (2

32 192 8

15K4(L)
8

1r

5K'L
8

25K'L
64

(B14)

»4=1 ——
16 16 )

1r.

The dimensionless quantity L is a function of r given by

2K 35K 15K L 35K L
6 3 24 4 8
—15K 175K 5K ( 15K L

16 192 8 16
125K L 175K L 15K (L

32 64 8
(B9)

r r+1
L(r) = —ln —1.

2 r —1

APPENDIX C

Here we calculate the integrals

(B15)

A1P =

(B1O)

75K4 L
8 16 4 16

1 2K 35K 15K L 35K L
6 3 24 4 8
—5K2 15K4 175K6

32 16 192
45K L 125K L 175K L

32 32 64

1
C( &y) ) ~ (i )z'

i=p +~ ' (C2)

(. T)ni-
J~(t) =

I 1
~y y" ln(y) ———4(y) (C1)

2Q

in terms of the generalized ( function, defined as

(B11)

25K' 15K'L 75 K4L
8 16 4 16

(1 35K' 5 K'L 35K4LI
4+ 24 2 8 I

r,
8 )

(65 K2 175K4 5 ( 5 K2 L 25 K4 L11— +
96 192 8 8 8

175K' I. 15K'(L)
64

+
8

To this end we express the vP function as

1
@(y) = lim ——((1+&, y)@~0

and use the formula

t 1
dye(~, y) =, &(1 —~ t)

(C3)

(C4)

that can be easily verified from Eq. (C2), and can be
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generalized to

). (n —l)! I'(1 —z)
n! I (l+ 2 —z)

xt"((z —l —I, t), (C5)

which is Eq. (C4) integrated by parts n times.
Substituting Eq. (C3) in Eq. (Cl) and using Eq. (C5)

we can verify, using the properties of ( function, that the
divergent term as e —+ 0 cancels out, as expected. For
n g 0 the remaining terms give

(i~Ti)" ' t"+' tn+1 tn (n)
J„(t) =

i i
lnt-, ———) (-I)' t" 'i -. i('(-J, t)

i Ik[ ) n+ 1 ("+1)'

(C6)

where B„are the Bernoulli polynomials [ll]. For n = 0,
Jp(t) is given by Eq. (4.12).

Now we discuss the behavior of the generalized ( func-
tion for asymptotic values of the parameter t(kp)
i "'+&, which correspond to high temperature expan-
sion. To this end, we start from the representation [11]

z —1 —tx

0
(C7)

Expanding (C7) in power series of t, making use of
the integral representation of Riemann's ( function and
Euler's p function we 6nd

&(, t) =
—,, +). —„((+l) (C8)

" r(z+i) (-t)'
l=o

Taking the derivative of (C8) with respect to z we ob-

tain in terms of the g function Q(z) that

& ( & ) = ) l| P [&( + ) &( )]&( + )
(—t)' I'(z + l)

t=o

+j' jz + I ))
—t*lnlz) .

We are actually interested in the values of ('(z, t) for
z ~ —n where n is a natural number. After a straight-
forward calculation we obtain

". (n'I t"+' (
('(—n, t) = ) ~ i

('(I —n) —((I —n)) ,
— t' —t"ln(z) — p —)

, , )I)
I =n —l+Z

)- ( I).+itt '( — —
)'((t

L=n+2

(C10)

With help of this formula we can compute the functions J„ in Eq. (C6) and express P„ from Eqs. (4.14), (4.15),
and (4.16) as a series of decreasing powers of T. Then, it is straightforward to arrive at Eqs. (4.19), (4.20), and (4.21).
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