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Sets of rules are proposed that allow one to write down the amplitude associated with a dia-
gram at temperature 7" once the energy running around each loop has been summed over, in the
imaginary-time formalism. Alternative forms are given: one is based on tree diagrams, another one
on possible intermediate states. A close analogy to the T' = 0 case is obtained. The amplitude’s an-
alytic structure is explicit. A factorization property is found for the N-point imaginary-time Green

functions.

PACS number(s): 11.10.Wx, 03.70.+k, 05.30.—d

I. INTRODUCTION

Perturbation theory for a relativistic field theory is
more intricate at T # 0 than at T = 0. The formalism
is well established [1,2], but there are few calculations
beyond the one-loop order or beyond the two-point func-
tion [3]. On the other hand, the objectives are ambitious:
resummation of infrared divergences in high temperature
QCD [4] or generalization to T' # 0 of the cancellation
of the infrared divergences in physical processes [4]. Re-
cently, there has been renewed interest in the N-point
functions at T' # 0 in the relationship between the time-
ordered functions and the advanced ones, in the real-time
formalism, and also in the connection to the functions
arising in the imaginary-time formalism [5—7].

This paper is concerned with the amplitude associated
to a diagram contributing to an N-point function at T' #
0 in the imaginary-time formalism. The ®3 theory is
chosen as an example.

It will be shown that the summation over the energy
running around each loop is easily performed at any loop
order. One is left with an integral over the space momen-
tum, and the integrand is a sum of terms. The analytic
properties of the resulting amplitude with respect to the
external energies are explicit as they are the consequence
of the presence of simple poles in those variables in the
denominator of the integrand. The numerators have the
full T dependence, stressing the similarity between the
T =0 and T # O cases.

More precisely, each diagram is written in the
imaginary-time formalism. The summation over the en-
ergy running around each loop is performed, and the re-
sult is a form where the external energy variables p‘; are
imaginary and the space momentum variables are real.
This form is analytically continued to the real values of
those p‘]? variables. The properties of this analytical con-
tinuation have been considered recently by Evans [6] for
a general N-point function.

One result is that the relevant analytical continuations
may be characterized by the way one approaches the real
values for the NV external energy variables p? — p;’ + €5,
where the ¢; are infinitesimal real constants, appropri-
ately chosen [6]. Different choices for the €; lead to dif-
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ferent amplitudes.

The properties to be exhibited in this work are valid
whatever the choice for the ¢;. The analytically contin-
ued N-point amplitude will be called the “full” ampli-
tude.

In the forms to be written later on, the external energy
variables only appear in the denominator factors of the
integrand, in a linear way, and one may make the sub-
stitution pg-’ — p? + 2¢; everywhere, if one wishes. More-
over, as will be shown, those NV-point amplitudes are the
ones that do appear in the amplitude associated with a
multiloop diagram contributing to the self-energy, when
written in terms of intermediate states. That amplitude
is insensitive to the choice of the ;.

Two forms are proposed for the integrand, and each
one exhibits interesting features. One form is a very com-
pact one, in terms of an expansion in powers of (n+3) (n
is the Bose-Einstein factor) and of 7' = 0 tree diagrams.
In the second form, the full amplitude is written as a sum
of terms, each corresponding to a possible intermediate
state. Those states are a simple extension of the familiar
ones at T = 0; all energies’ signs are allowed. The valid-
ity of those forms is proved, completely to the five-loop
order, and partially to all-loop orders. They have been
checked, by direct computation of diagrams, up to the
four-loop order.

In Sec. I, it is shown how the coth method may be
used to perform the sum over the energy running around
each loop, at any loop order. It leads to compact forms
for the resulting amplitude in terms of tree diagrams. In
Sec. III, the amplitude is written as a sum of terms, each
associated with an intermediate state. Rules are given to
write down the result immediately; the analytic structure
is exhibited. Conclusions are in Sec. IV.

II. THE COTH METHOD FOR THE DISCRETE
SUMS

In the imaginary-time formalism, all the energy vari-
ables take on discrete imaginary values. There are several
ways to perform the discrete sum over the energy run-
ning around a loop [1,2]. We want to show that the coth
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method [2,8], often used for the computation of one-loop
amplitudes, but, to our knowledge, not for higher orders,
can be extended to any-loop order and leads to concise
forms for the resulting amplitudes.

A. Method

The summation over the energy may be performed in
the following way:

TS f(kﬂ:in27rT)=/ 2 o)y cothﬂz, (1)

n=-—oo

where the contour C originally runs around the poles of
the coth function and is deformed to two straight lines
running on each side of the imaginary axis, provided f(z)
has no singularity along that axis. One may then further
deforn1 the contour in the complex plane to pick up the
poles of f(z), with coth going to 1 as |z| = oo.

We use the method to compute a one-loop and a two-
loop amplitude. One feature of our method is to write
the propagator associated with an internal line

1
- - - - 2
ki —k2—-m2 2E, .:zi:1 ko — sEy 2)
with By = (k2 + m?)3.
The one-loop self-energy in a ®3 theory is (see Fig. 1)

Br 1
G(po,p) = /(—2;)—3@21, (3)

8182
— 51E1)(po — k — s2E3) ’

=-T Z (4)

where both k2 and p, take on discrete imaginary values,
and where E,, F, are the on-shell energies associated
with the propagators of lines 1 and 2, when written as in
(2). With the use of Eq. (1) one picks up both poles of
k9 to obtain

8182 coth §31E1 — coth g(po - 82E2)

I= . 5
2 po — 81E1 — 52E> ®)

One now has to analytically continue the form towards
the real values of pg, in order to obtain the real part of
the self-energy.

Before the analytic continuation, one substitutes Gpy =
2iwr in the numerator so that py drops out of the argu-
ment of the coth. That substitution rule is commeon to all

FIG. 1. A two-particle intermediate state.
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methods of performing the discrete sum in the imaginary-
time formalism [9—13,6]. One then recovers the familiar
form M,,,, for the numerator [14,13]. Indeed

B B

1 84
3 coth gs,E, = 2 coth EEi = s;[n(E;) + %] s (6)

fai = '—;(1 + coth gs,Ei) , 8i==1, M

Malsg-'-a,. = Hfs.' - Hf—a.' ’ (8)

where n(E) is the Bose-Einstein factor, f; and f_ the
weights associated with the emission and absorption of a
Bose particle in a thermal bath, and M, ,,...s, the sta-
tistical weight associated with an n-particle intermediate
state in the bath.

In a ®* theory, the next-to-lowest contribution to the
self-energy is a two-loop diagram. With a straightforward
generalization of (3) to this two-loop case, the summation
to be performed is

I'=T1? s %2
,;n (k) — s1B1) (I3, — s2E»)
83
8 (po — k3 — 19, — s3E3) ’ ®)

where k2,12 ,po take on discrete imaginary values. For
fixed m, one performs the sum over n with the use of (1),
and one obtains

818283
TZ lO - SzEz
1 1 coth élel —coth & 2 (Po — [ 33E3)
2 Po — lO - 81E1 - S3E3

(10)

Here, before considering the summation over m, one sub-
stitutes SIS, = 2imm, Bpy = 2inr in the numerator, so
that both po and I2, drop out of the argument of the
coth. One then performs the sum over m, picking up
both poles of 12, with the result

I' = 31_342i3_ (coth élel + COth [—383E3)

[COth ﬂSzEz — coth é(}70 - 81E1 — 83E3)]
po — $1E1 — 82 E; — s3F3 ’

(11)

Dropping po out of the coth, one obtains

818283 1

I =
4 po—s1E;y —s2E; — s3E;

X (coth §SIE1 coth §82E2
+ coth '[2—332E2 coth gs;,Es

+ coth 'glel coth §33E3 + 1) . (12)
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With (7) and (8), one recognizes in the numerator the
statistical weight M, ,,,, associated with a three-particle
intermediate state. Note that the prescription, to drop
out the terms in the coth, gives a result independent of
the choice of the loop variable. Also the substitution in
(10) introduces a pole in 12, which is picked up at the
next step.

Those features are general for any number of loops.
One performs the summations in consecutive order. The
strategic step is from (10) to (11). At each loop sum-
mation, the function f(z) of (1) is a sum of terms. In
each term, there is a one-to-one correspondence between
the poles and the internal lines of one loop. Also the
choice for the order of the summations is irrelevant, as the
symmetric result, to be described later on, shows. The
summations for a three-loop amplitude are performed in
Sec. II of the Appendix.

For any number of loops, the prescription is (i) per-
form the sums in consecutive orders and (ii) at each
step, drop out of the argument of the coth any possible
term before considering any other summation. There are
alternative methods for the summation over the energy
running around a loop: (i) the Fourier transform of the
propagator with respect to the energy variable [11,12];
(ii) the analytical continuation of the Kronecker § func-
J

1 1 1
TzZHkg—ai];Il?n—bjIl‘:Ikg-{—l?n-{-ck

nm 1

tion in the energy variable [2,9,10]. We have checked
that the coth method gives the same answer as those two
methods for the following diagrams in a ®3 theory: the
two-loop contribution to the 2-point and 3-point func-
tions, the three-loop contribution to the free energy. The
algebra is much more involved in those other methods.
Another easy comparison is the lowest contribution to
the self-energy in a ™ theory for m = 5,6,... .

One central feature of the resulting forms is that the
denominators are those of T' = 0 tree diagrams. Indeed to
perform the summation over the energy running around
a loop is to pick up a pole of the integrand. A pole of
a Feynman diagram corresponds to an internal line put
on shell. For an [-loop diagram, to perform all the sum-
mations is to pick up successively ! poles, i.e., to put (
internal lines on shell; therefore, the resulting denomina-
tor is associated with a tree diagram. For example, for
the diagram of Fig. 1, one tree corresponds to line 1 on
shell and the denominator of form (5) is line 2’s propa-
gator (the numerator is then coth §31E1)- In the other
tree, the roles of lines 1 and 2 are interchanged. Similarly
in form (12), two among the lines 1, 2, and 3 are on shell,
and the denominator is the third one’s propagator.

It follows from (12) a relation that allows one to write
down an alternative form for any two-loop amplitude:

1 1
:ZHai—ai/Hbj—ber
3'#3

k'#k

1,5,k i #1

where Cta; = coth —‘;—ai. To go from (12) to (13), one
makes use of the expansion

1 1 1
HMZZkg—aiHai_ai,' (14)

i

Another useful property follows. The function f(z), to be
used in (1), is a meromorphic function, decreasing faster
than |z|~! at infinity, and the sum of the residues of f(z)
is zero, as follows from considering a contour integral of
f(z) along a large circle enclosing all the poles.

A similar method may be used for the fermion case,
where the numerator in (2) has an extra factor (yosEx —
~-k+m), independent of ko, and for example, tanh func-
tions replace the coth ones, in the statistical weight as-
sociated with a two or three fermions intermediate state.

B. Results

We discuss now the resulting forms for the amplitudes
in a ®3 theory. Examples are given in Sec. 1 of the Ap-
pendix for one, two, three, and four loops.

For the one-loop amplitudes, one has to pick up succes-

Cp' — Cg 4

1 l Cta,Ctbj + Cta;Ctcy, + Ctbthck + l) (13)
a; + b]' + Ck ’

sively each pole of f(z) in (1). As a result, the amplitude
is written as a sum of terms [15,13]. To each internal
line 7 (k2,k;), is associated a term whose numerator is
coth gsiEi and whose denominator is given by the dia-
gram’s residue at the pole k0 = s;E; = s;(k? + m?)/2 .
In other terms, the factor multiplying coth gsiEi is the
T = 0 tree diagram obtained by cutting line ¢ and giving
it the four-momentum (s;E;, k;) (see the explicit form of
the one-loop vertex in the Appendix).

For the two-loop amplitudes, there will appear in the
numerators a product of two coth and, possibly, a term
1, as in (12). The denominator associated with a fac-
tor cothgsaEa coth gstb is given by the T' = 0 tree
diagram obtained from the original diagram by cutting
lines a and b and giving them, respectively, the energy
$qoFE, and spEp. Indeed the presence of both coth means
that one has picked up the residues of both poles. One
has to sum over the terms corresponding to all ways of
cutting two lines of the diagram so that a connected tree
diagram is obtained. In addition, there are terms whose
numerator is 1. They arise from lines which belong to
both loops, as in (12), and are associated with a possible
three-particle intermediate state of the diagram. They
are obtained by modifying the numerators of the trees
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where one common line is cut, according to the following
rule.

Rule for the ¢;; terms in two-loop diagrams. Let
i be the momenta belonging to only one loop, j
those belonging to the other loop, and k the mo-
menta common to both loops. The substitution is, for
all j and k, coth gsjEj coth gskEk is replaced by
(coth gsjEj cot.hgskE;= + €jk) (5 = —1if j and &
have the same orientation in the loop, +1 otherwise),
and no change is made for all coth %s,-E,- coth gskEk .
Alternatively, one can make the substitution for all i,k
and no change for all j,k . Both methods give the same
total result; indeed, when line k is cut, one is left with
a one-loop diagram, and the sum of the residues of the
function f(z) in (1) is zero for that loop. As an example,
the integrand corresponding to the diagram of Fig. 2(a)
is written down in the Appendix. To summarize, there
are alternate choices for those class of trees, where a term
1 appears in addition to the product of two coth, in the
numerator. Those alternate forms give the same total
result.

At the three-loop level, numerators are a product of
three coth, plus, possibly, terms with a single coth. The
denominator associated with a three coth term is given
by the tree diagram obtained by cutting those three lines.
For one single coth, that line is cut, the resulting diagram
is a tree with a two-loop diagram inserted in it, and one
modifies the numerator of the associated trees according
to the rule just given for this two-loop diagram. (See two
examples in the Appendix.)

For a four-loop diagram, the trees are obtained by cut-
ting four lines. One then cuts two of those lines, a two-
loop diagram is obtained where one modifies the trees’
numerator according to the rule for the ¢;; terms for this
two-loop diagram. The leftover terms, with no coth, in-
volve a few trees, they are obtained in the following way.

Rule for the €;jer terms in four-loop diagrams. If
the diagram possesses two loops which have no com-
mon line, add the term ¢;;€x; to obtain (cothi cothj +
€ij)(cothk cothl + €g;) in the numerator of the relevant
tree, where lines ¢,j belong to one of those loops, and
lines k,! to the other one. Sum over all the 7,j and k,!
that are involved in the substitution rule for two loops.
If the diagram does not have such pair of loops, one con-
siders the five-particle intermediate states. The modifica-
tion occurs in the related trees where three lines, common
to two loops, are cut. For example, for the free energy,
there are as many such new terms as there are ways of

(A) ®)

FIG. 2. Two-loop diagrams (A) and (B) for the self-energy.
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cutting the diagram to obtain a five-particle intermediate
state. (An example is in the Appendix.)

A new rule will be needed at the six-loop order; a gen-
eral substitution rule probably exists to all orders; we
have not found it.

In practice, the quickest way to obtain the form, is to
compute the diagram, i.e., to perform the summations
with the coth method, and, at the same time, to inter-
pret each term as a tree, or a piece of it. Indeed, the trees
organize themselves naturally into regular patterns. Be-
fore each loop summation, the merging of some terms
is fairly apparent. The rules are useful to organize the
many terms of the result, to check the systematics of the
terms which have a definite power of coth, and to write
down alternative forms for that class of terms.

An alternative form may be written that emphasizes
the connection, at a given loop order, between the dia-
grams contributing to the free energy and those for an
N-point function. That connection is of importance to
two aspects, to be examined in Sec. III: (i) the possi-
ble multiparticle intermediate states, which control the
€;; terms just discussed, (ii) the analytic properties of
the amplitude. For example, for any two-loop ampli-
tude, one may make use of Eq. (13) where a;, b;, and
cr contain both external and internal energies. For the
diagram contributing to the free energy, i, j, k take one
value each, and when the denominator vanishes in (13),
so does the numerator; therefore, the form is regular, an
expected feature for the free energy, a real quantity. For
an N-point amplitude, the external energies only enter
the denominator factors. In some terms those energies
will not appear in the sum a; + b; + ¢k, and the form will
be regular when that sum vanishes. The case of a double
pole, i.e., a; = a; in (13), is easily handled. A two-loop
example is in the Appendix.

More generally, at a given-loop order, that form em-
phasizes that the basic loop pattern is given by the di-
agrams contributing to the free energy. The result of
sticking external legs to the internal lines may then be
obtained with the use of the partial fraction expansion
(14). As a consequence, that alternate form has the fol-
lowing feature: it groups the terms in a way such that
whenever a denominator involving only internal energies
vanishes, so does the numerator in an explicit fashion.

We summarize the results of the section. For an l-loop
diagram at temperature T', the summation over the en-
ergy running around each loop can be performed easily.
One is left with the integration over the space compo-
nents of the internal momenta. The integrand is written
as the sum over all possible connected tree diagrams ob-
tained by cutting [ internal lines, and attributing the on-
shell energy s;E; to a cut internal line ¢ (s; = +£1). For
each tree (i) The T = 0 tree diagram gives the denomi-
nator. (ii) The numerator is an (even or odd) /th degree
polynomial in %coth gs,-E,- = [n(E;) + %]si. The highest
term is the product of the coth for the I cut lines. For
the two next terms, a rule has been given, with multiple
equivalent forms.

(iii) The whole T dependence is in the numerator.

(iv) The external energies p? only appear in the de-
nominator, which is a product of factors that are linear
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in the p? variables. Those are initially discrete imaginary,
and may be analytically continued towards real values.

(v) All possible cases for the signs s,, of the internal
lines’ energies are separate, as the propagator is written
as in (2). There is a factor

17
2L 2E,,
m

where m runs over all internal lines and L is the number
of loops.

(vi) The sum over the loops’ space momenta and over
the signs s, is made at the end.

That expansion in terms of 1 coth %E =n(E)+ 1 has
similarities with the expansion of the amplitudes in terms
of n(E) and of the T = 0 scattering amplitudes [16,17].
It is much more concise.

III. SUM OVER INTERMEDIATE STATES

The forms obtained in the preceding section are well
suited to study the analytic structure of the amplitude
associated with a diagram at T # 0. Indeed, a cut of the
integral arises from a pole of the integrand. At 7 = 0
the analytic structure of the amplitude is expressed in
terms of Lorentz invariants. At T # 0, a condition on
a Lorentz invariant translates into a condition on the
energy component of the Lorentz invariant (in the plasma
rest frame), i.e., a condition involving the external energy
variables. The Landau equations that give the location
of the possible singularities are the same at T = 0 and
T # 0 [18]; however, only some of those are present on
the physical sheet at T = 0.

In this section, it will be shown that the full amplitude

associated with a diagram may be written as a sum of
J
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terms, each one corresponding to a possible intermedi-
ate state of the diagram. Each term factorizes into three
parts, one factor describes the intermediate state. The
other ones are the amplitudes associated with the two
pieces of the diagram, sitting on each side of the cutting
plane, as computed in the previous section. That expan-
sion emphasizes the similarity of the analytic structure
for the T = 0 and T # 0 cases. The intermediate states
are a simple extension of the familiar ones at T' = 0, as all
possible signs for the intermediate energies are allowed.

A new tool will be needed: the real part of the
integrand associated with an n-particle intermediate
state in a plasma. The statistical weight M, asso-
ciated with that state enters.

The integrand may be obtained from the lowest-order
contribution to the real part of the self-energy in a ™!
theory and the generalization of Egs. (3) and (5) is

_ &k 1 Moroa-sn
G(po,p) = /I:[W (HEE) > Po— 3, 5iE:

1 all s;

182°°8n

(15)

with M, ,,...s,, given by (8). For our purpose, pg will be
replaced by the sum of the external energies situated on
one side of the intermediate state.

In the following, it will be convenient to think in the
following way, the particles appearing in the intermedi-
ate state are on mass shell; i.e., the particle ¢ with space
momentum k; has the energy s; E; = s;(k? +m?)Y/2 and
the line ¢ will be called as usual a cut line; however, the
incoming energy po is not equal to the energy > . s;E;
that we now associate with the intermediate state. In-
deed the quantity (po — Y, s; E;) precisely appears in the
denominator of form (15).

We shall need

M,,,, = 131—;3 (coth glel + coth gszEz) y M, sy, = 51'1283 (coth glel coth §52E2 + perm + 1 ) ,
| (16)
M, 5,858, = 51_283_3_51 (coth glel coth §82E2 coth §53E’3 + perm + coth glel + perm) .

The T = 0 limits may be written
Malsz = 5153152 ; M815263 = 516815268133 PREREA (17)

Care must be given to signs: (i) if the orientation of line
2 is reversed in Fig. 1, s is changed into —s; in the
integrand of Eq. (15), both in the denominator and in
My, 5,6, ; (i) the denominator of the integrand in (15)
is the sum of the energies entering the vertex situated at
the left side of the cut (the rule is invariant by a rotation
of 7 of the diagram).

The other building block is the propagator, as written
in (2):

f

1 1 s
kg —kZ —m? N ZEk s:Z:tl kO—SEk ’

Once the energy running around the loop has been in-
tegrated over, ko has a precise value to be specified later
on. That value will be referred to as the energy flowing
through the propagator and the propagator will be called
an uncut propagator (or unthermalized propagator). As
explained further on in this section, the flow will be ori-
ented and the energy flowing through a propagator will
be the incoming flow.

In Sec. IIT A, we will concentrate on the self-energy,
whose properties at T # 0 are well understood. The ex-
pansion in terms of intermediate states will be obtained
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and the resulting properties, factorization and analytic-
ity, will be exhibited.

A. Self-energy

We now show how the expansion in terms of interme-
diate states amounts to an expansion, in terms of simple
poles of the incoming energy po, of the forms previously
obtained. Consider for example the diagram of Fig. 2(a),
written as a sum of trees in Sec. 1 of the Appendix. A
factor (po — e Ea — s5Ep) ™! can only appear in two types
of trees: either line a is cut and it is line b’s propagator,
or line b is cut and it is line a’s propagator. If one per-
forms an expansion in terms of simple poles in py , one
has to set pg — sqEq — spEp = 0 in the remaining fac-
tors associated with those trees; i.e., one puts an extra
internal line on shell. As a result, the trees are split into
two pieces, where both lines a and b are on shell. Those
pieces are multiplied by

M, s,
= )
Do — saEa - stb

1 coth gsaEa + coth gstb _
sa3b2 Do — sa.Ea - stb

where %coth gsaEa comes from the trees where line a is

cut, and %coth gstb from the trees where line b is cut.
Summing over all the relevant trees, the pieces (with both
lines a and b on shell) build up, on each side of the cutting
plane, a 3-point Green function with external legs po, a, b.
For the case of Fig. 2(a), one is treelike, the other is one
loop. Those functions are expressed so that py does not
appear.

The argument generalizes to any two-particle interme-
diate state of any diagram contributing to the self-energy,
at any loop order. The internal lines a and b must belong
to the same loop and to no other loop. The two 3-point
Green functions (po, a,b) are expressed as a sum of trees,
whose numerators are those needed.

Similarly, considering again the diagram of Fig. 2(a), a
factor (po — 8qEqs — sgEf — scE.)™! appears in the trees
|

S1...
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where two among the three lines a, f, and c are cut, and
it is the third one’s propagator. To pick up the residue
of that pole splits those trees into two pieces where the
three lines are on shell. Consequently those pieces are
multiplied by M,_,,s. (Po — $aEa — sfEf — scE.) " with
M,_,,s.given by (16), where the extra term 1 in the nu-
merator comes from the tree where line f (common to
both loops) is cut and, say, line a as explained in Sec. II.
Again the argument holds for the three-particle inter-
mediate state a, f,c of any loop diagram. Such a state
involves two nearby loops, with one line common to both
loops and one line from each of those loops (not common
to any other loop). When one sums over all the relevant
trees and one puts lines a, f,c on shell, one builds up a
4-point Green function (py, a, f, c) on each side of the cut-
ting plane, which is expressed so that py does not appear.
A three-loop example is in Sec. 1 of the Appendix.

We summarize the results that are of general validity.
If one integrates over all the energies running around the
loops, the amplitude is the sum over all possible trees
made from the diagram. Under this form, an expan-
sion in terms of intermediate states is an expansion into
simple poles of the incoming energy po. If one is in-
terested in an n-particle intermediate state ¢,...,¢q, of
the diagram, one selects the trees that contain the pole
(Po— X1, s:E;)™1. They are the trees where n—1 lines,
among the n lines q;,...,¢q, are cut, i.e., on shell, the
uncut line g; carries the energy po — Z# ; s;E; and the

looked-for pole is line g;’s propagator. To pick up the
residue of the pole in the remaining factors of each tree
amounts to splitting the tree into two pieces where the
n particles are on shell. The strategic properties are (i)
only a subset of trees contribute to an n-particle inter-
mediate state and (ii) the n particles are on-shell in the
residue of the pole.

With this result from the tree expansion, one is able
to make a general proof, along the lines of the Appendix
of Weldon’s original paper [14]. One considers an l-loop
diagram and the cutting plane that goes through the lines
q1y---,9n- One wants to isolate all the terms relevant
to the n-particle intermediate state q;,...,q,. With a
parallel orientation of these momenta, the product of the
factors associated with the n internal lines is

Sn

(67 — 51E1) (28 — 52B2) -+ (@)1 — $n—1En-1)(Po = X;n & — 5nEn)

First, one sums over the imaginary discrete energy ¢?, which runs around some loop; this summation is made with
the coth method of Sec. II, and one picks only the two poles corresponding to line ¢; and to line ¢,. Then, one sums
over ¢J and picks up only the two poles corresponding to line g, and line g,, (or ¢;). One similarly performs the n — 1
summations, leaving the other (! — n + 1) summations undone. The pole (po — Y ., s;E;) ™! is now obtained as the
common factor of 2" ~! terms. One computes the residue by setting on-shell the n particles g;, ¢ = s;E; i =1,...,n
in the full factor that multiplies the pole.

One resulting factor is the product of the denominators from the remaining internal lines of the diagram, with
(I = n+ 1) undone loops. This factor splits into two pieces: one is the (n + 1)-point Green function associated with
the diagram piece on the left side of the cutting plane G4 (p;q; . ..gn); the other one is associated with the right side
G®(q1 ---4n;p); in both Green functions the n particles are on shell. The other factor collects the 2"~! numerators
resulting from the n — 1 summations; it is
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S

12n__fn (Ctlel + CtSnEn)[CtSQEz + Ct(lel + SnEn)] e Ctsn.nlEn_l + Ct( Z S,’Ei):l
i#Fn—1

where Ct is for coth‘z—a ; it may be written in a symmetric way and is M,,...,, defined in Egs. (8), (16).

To summarize, the amplitude associated to a diagram contributing to the self-energy, may be written as a sum
of terms. Each term corresponds to a possible intermediate state of the diagram, and the sum is over all possible
intermediate states. To the intermediate state qy,...,q, is associated the term

G(z’(po,p)=§:/il;[1(éﬂq)i3 52:1) GA(piqr .- Ji/jz 5B - G%(q1---4n; ) (18)

n, and po = ), s;E;. That property was known for

where, in the Green funtions G4 and GB, ¢0 = s;E; i = 1,.. .,
the imaginary part [19]; it is true for the real part.

As an example, the forms for the two-loop diagrams, shown in Fig. 2, will be written down. In each term, the pieces
on each side of the cutting plane involve treelike propagators, written as in (2), and possibly, a one-loop amplitude.
An easy way to take into account that py should not appear in those pieces is to define, in each piece, an oriented
energy flow. It flows from the cut lines toward the external vertex, through the treelike propagators and into the loop
amplitude. This prescription is valid at any loop order. The flow specifies which energies are entering the multiloop

amplitude, i.e., which are the relevant energy variables, but this loop amplitude is a black box for the flow.

We use a simplified notation

$qEs =a spEp = b . (19)

For the diagram shown in Fig. 2(a), the integrand is the sum of four terms

cut(afc) + cut(bfd) + cut(ab) + cut(cd) .

Each cut divides the diagram into two pieces, where the energy flows towards the external vertex.

Two terms

correspond to a three-particle intermediate state; the two other terms correspond to a two-particle intermediate state

multiplied by the one-loop vertex:

2 d3k dsl
G )(pmp) =/ H 2E Z (20)

with i = a,b,¢,d, f and

DA =

Mscﬂasf Sb Sd Msbad—af Sa Sc
pp—a—c—fc+f—-ba+f—-d pg—b—d+fd-f—ab—f—c
MB 8 Macsd
po—a— g b p{=b,py=—a;s5s.—84 Po—c— d pd=—d,pS=c;—8f—8a5b > (21)

Where Vo

P9p%is.aps. 1S the one-loop vertex written in
q. (A1) of the Appendix. The energies entering the
vertex are the cut lines’ ones.
The integrand corresponding to the diagram shown in
Fig. 2(b) is the sum over the three possible intermediate
states

cut(abe) + cut(ed) + cut(cf) .

In the two last cuts, a one-loop amplitude shows up, and
the energy flow, as defined at the two-loop level, specifies
that the energy incoming the one-loop amplitude is the
cut line’s one, but is irrelevant to the description of the
interior of that loop:

DB — M, 5. Sd Sf
po—a—b--ca+b—da+b—f
+ M, s, St M;,, s,
po—d—cd—fd—a—-b
Msfsc Sd Ms,,sl,

e f—cf—df—a-b" (22)

r

We now point out the remarkable analytic properties
of the resulting forms, in connection with the Cutkosky
rules. An important property follows. The total inte-
grand, such as D) or DB) is regular when any de-
nominator involving only internal lines vanishes. The
reason is that the integrand must be regular for any
Bpo = m2im, i.e., when the diagram is fully Euclidean
in the imaginary-time formalism. For example, consider
the pole a + b — d = 0 in the form (22); its residue is
a meromorphic function of the complex variable py that
must vanish for Bpy = n2im; it vanishes everywhere as
that function decreases faster than |pg|~' for large |po|
(it does along the imaginary axis). The same argument
applies to any denominator involving only internal lines,
for any diagram. An alternative argument is that most
of those denominators arise from the partial fraction ex-
pansion, and the remaining ones are present in the corre-
sponding form for the free energy (see the remark at the
end of Sec. IIB). The absence of the polea+b—~d =0
in (22) is easily checked with the use of forms (16) in the
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numerators, and for the pole f — d = 0 the form with a
derivative [19] is recovered.

Consequently, the only poles of the integrand are those
involving po, and they are associated with the interme-
diate states. The integrand does not inherit from the
singularities of the pieces on each side of the interme-
diate state. Now the cuts of the amplitude, as given by
(20), arise from the poles of the integrand D. The discon-
tinuity across a cut [20] is the difference between the two
ways of avoiding the pole by distorting the integration
contour, as it is summarized in

1

= PP
Po —a =t i€

Po—a

Find(po — a) . (23)

Thus, from the amplitude’s real part, we obtain its imag-
inary part. And we find a very simple generalization
to the case T # 0 of the perturbative unitarity relation
[21]. The discontinuity across a cut associated with an n-
particle intermediate state involves the statistical weight
associated with that state, multiplied by two (n+1)-point
Green functions. One does not need a tie prescription
to the internal lines of those Green functions, because,
as just said, the whole integrand does not have those
poles. So, provided one computes, for one value of po,
the full imaginary part of the self-energy, i.e., the discon-
tinuity across all cuts sitting at that po value, the *ie
are unnecessary. The Cutkosky rules at T = 0 [21] or
at T # 0 [22] are more precise, as they provide the dis-
continuity across each cut separately, and there, a *ie
prescription to the internal lines is necessary. For exam-
ple, for the diagram shown in Fig. 2(a), if one considers
the discontinuity across the cut (ab), the one-loop vertex
(a,b,po,out) has a two-particle cut, identified by a factor
(@+b—c—d)~!in (21) and (Al); however, if one sums
over the discontinuities across the cut (ab) and the cut
(ed), those vertex’ singularities cancel.

To conclude, for any diagram contributing to the self-
energy, the expansion in terms of n-particle intermediate
states provide an easy way to obtain both the real and
the imaginary part of the amplitude. There enter the
statistical weight associated with the intermediate state,
and the (n + 1)-point thermal Green functions. These
functions are obtained from the imaginary-time formal-
ism by a straightforward analytical continuation of the
external energies.

B. N-point Green functions

We now want to show how the properties, just found
for the self-energy, generalize to any N-point Green func-
tion, as obtained in Sec. II. For simplicity, we shall re-
strict ourselves to planar diagrams. For these, the ex-
pansion in terms of intermediate states is an expansion
in terms of a particular set of variables, well known at
T = 0, the multiperipheral variables. For an N-point
amplitude, with external momenta p;, p3, ps, ... all incom-
ing, one such set of N — 1 variables is p;, p; + p2, p1 +
P2 + Pp3,... ; they are convemiently drawn from a poly-
gon [23] whose sides are made from the external mo-
menta, see Fig. 3(a). All other combinations of momenta
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FIG. 3. N-point amplitudes. (a) The polygon and a set of
multiperipheral variables. (b) One-loop amplitude. (c) The
set of cutting planes associated to the set of variables drawn
in (a).

intersect the drawn lines, and are called dual variables
P2, P2 +P3,.... There are N equivalent sets of such vari-
ables. The analytical properties, written at T = 0 in
terms of a Lorentz invariant (p; +p2 + -+ + p;)?, are ex-
pressed, in the plasma rest frame, in terms of its energy
component p? +p3 + - -+ p? .

We shall first show how those variables occur in the
one-loop Green function, written in Sec. II as a sum of
N trees. Consider the tree where the internal line on-
shell is line N, with energy syEn [see Fig. 3(b)]. The
associated factor depends on the set of multiperipheral
variables p?, p? +p3,..., P? +P3+--- +pX_; , to be
called set 1. The integrand has a pole in each of those
variables, associated with the tree’s internal lines. Sim-
ilarly, each other tree diagram depends on a set of mul-
tiperipheral variables, but only one of them belongs to
the set 1 [see the polygon in Fig. 3(a)], the other ones
belong to the set of variables dual to the set 1. In or-
der to write the full amplitude’s integrand as a sum of
terms, each one having a pole in only one of the vari-
ables of set 1, one just has to write the first tree diagram
(whose numerator is %coth gsNEN) as the sum of the
other (N — 1) T = 0 trees. The resulting form is the
sum over (N — 1) terms, each corresponding to a possi-
ble intermediate state of the diagram. For example, the
tree where the internal line ¢ is cut [see Fig. 3(b)] has
now the numerator %sisN(coth gsiEi — coth %sNEN) =
M_,, sy, and the propagator of the internal line N is
P +p%+ -+ P9 + s,E; — snEn)~! . The product of
those two factors is the factor associated with the inter-
mediate state ( ¢ N ) with the following interpretation.
The cutting plane goes through the lines 7 and N, and
the total external energy on one side of the cutting plane
is p? +pJ + - -+ p?, while the intermediate state’s energy
is sNEn — s;E; . The factors associated with the other
internal lines’ propagators build up, on each side of the
cutting plane, two T = 0 treelike amplitudes, which are
expressed in terms of dual variables.

To summarize, the one-loop N-point amplitude may
be written as a sum of (N — 1) terms, each one associ-
ated with a possible intermediate state of the diagram.
Each term factorizes into a factor associated with the
two-particle intermediate state, and into two treelike am-
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plitudes. The location of the (N — 1) cutting planes as-
sociated with the set 1 is shown in Fig. 3(c) . There exist
N alternative expansions of that amplitude, one for each
set of multiperipheral variables.

In a multiloop planar diagram, external vertices are
ordered. Such a diagram may be obtained from the one-
loop diagram by adding lines that join internal vertices.
According to the rules of Sec. II, the denominators of the
amplitude’s integrand are those of all possible tree dia-
grams. Those trees depend on the external variables in
the manner of the one-loop case; i.e., the multiperipheral
variables are the relevant ones. It is easy to perform the
expansion in terms of simple poles in each variable be-
longing to set 1, i.e., 3, p$+p3,..., P2 +pJ+--- +P(1)V—1-
Indeed, it may be considered as an expansion in terms
of simple poles in p? (the dual variables are expressed
independently of p} and p%).

In Sec. IIT A, an expansion in simple poles in py was
used for the proof on how a specific n-particle interme-
diate state was built up from the treelike form. That
same proof applies to each variable belonging to the set
1. First, one selects the class of trees where there appears
the denominator characteristic of the intermediate state.
One picks up the residue of this pole and, as a result,
each tree is split into two pieces. From those pieces, one
builds up two Green functions, one on each side of the
cutting plane, expressed so that p$ and p, do not appear.
A practical way to write down those Green functions is
to define, on each side, an oriented energy flow, sinking
at pd or p%; it will prevent those variables from entering
any propagator or loop amplitude. There are N alter-
nate expansions, in terms of intermediate states, of such
an amplitude, one for each set of multiperipheral vari-
ables, a remarkable planar duality property.

We now state the rules that allow to write down imme-
diately the form for an N-point multiloop, one-particle
irreducible, planar diagram, as an expansion in terms of
intermediate states.

(1) Select one set of (N — 1) multiperipheral variables
for the external energies, say pJ, p? + p3,..., p9 + p9 +
-+-+p%_;- The definition of the set of (N —1) associated

J
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cutting planes is done as in Fig. 3(c). The two external
vertices where pJ and pY; are attached are called the en-
ergy sinks.

(2) A cutting plane divides the diagram into two pieces.
The associated term factorizes into three parts: one fac-
tor describes the intermediate state, the other ones are
associated with the pieces on each side of the cutting
plane.

(3) The factor associated to an n-particle intermediate
state is defined in Eq. (15), where the relevant external
energy po is the sum of the external energies situated on
one side of the cutting plane.

(4) An oriented energy flow is defined in each piece.
The energy flows from the cut lines and the external lines
towards the energy sink defined in rule 1.

(5) The factor associated with each piece is a one-
particle reducible Green function made of treelike parts
and of loop amplitudes. The total energy incoming a
propagator, written as in (2), is, as usual in a tree dia-
gram, the total energy of the cut and external lines situ-
ated on the appropriate side of the propagator.

(6) A loop-amplitude is a lower-loop amplitude, as
computed with the same rules. The energies incoming
that amplitude are specified by the orientation of the en-
ergy flow. The loop amplitude is a black box for that
flow.

(7) The sum over all possible intermediate states is
obtained by summing over all positions of the internal
vertices with respect to the cutting planes, so that the
diagram is cut into two, and only two, pieces [21].

(8) The sum over the loops’ space momenta and over
the signs s; = 1 of the internal lines’ energies is made
at the end.

We now turn to explicit examples.

The one-loop vertex is shown in Fig. 4(a), with p; in-
coming and p; outgoing. One possible set of variables is
p?,p3, associated with [cut(ab)+cut(ac)]; the dual vari-
able is p} — p3. Another set is p?,p? — p3, linked to
[cut(ab)+cut(bc)], with dual variable p . The third set
is p3, p9 — pJ linked to [cut(ac)+cut(bc)]. With the use of
the rules, the three alternative forms are [13]

d3k 1
0 . 0 —
V(p17p1 y P2y p2) - / (27!')3 23EaEbEC . 25;8 Vpgpg;ﬂagb‘gc ) (24)
1 M,,. M,,,

V . = aZb — 8 ae , 25
PIP3isassse Pg — P? + spEp — s.E. (Scp(l) —8.E, — sy Ey bpg — SaB, — ScEC> 29

1 M, 8 M—sb 8
= 2 + Sa < y 26
Pg - saEa - scEc (SCP? - saEa - stb Pg - P(1) + stb - ScEc) ( )

1 20 M_,, &
— a8c + c . 27
p(l) - sa.Ea - stb (prg - SaEa - scEc sapg - Pg + SbEb - ScEc ( )

We now look at two-loop diagrams. For the planar di-
agram shown in Fig. 4(b), the amplitude may be written
as the sum of four terms:

cut(ace) + cut(acf) + cut(ab) + cut(ad) .

f

The line a is always cut, and links the two energy sinks.
In the two-particle intermediate states the full one-loop
vertex enters, where the incoming energies are the cut
line’s one and p? — pJ. As a result of the rules, the am-
plitude is written as a sum of simple poles in p or pJ,
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FIG. 4. Diagrams for the vertex. (a) One-loop. (b) Planar
two-loop. (c) Non-planar two-loop.

whose factors are functions of (p? — p?), a form to be
compared to the one-loop form (25). Alternatively, the
amplitude may be written as the sum over the following
intermediate states:

cut(ef) + cut(bd) + cut(ecd)
+cut(bcf) + cut(eca) + cut(ba) .

The energy sinks are the vertices with leg p; or p; — pa.
The amplitude is now written as a sum of simple poles
in p9 or p§ — pJ, whose factors are functions of pJ.

The nonplanar vertex, shown in Fig. 4(c), may be writ-
ten as the sum of the cuts

cut(acf) + cut(ace) + cut(bdf)
+cut(bde) + cut(ab) + cut(cd) .

Going from (ace) to (bdf) is switching the internal ver-
tices with respect to the cutting plane. The energy sinks
are the external vertices with a p; or p; leg. In the one-
loop 4-point amplitude, the entering energies are the cut
lines’ ones and p? — pJ. As a result the amplitude is a
sum of simple poles in pd or pJ, whose factors are func-
tions of p — pJ. The two alternate ways of writing the
amplitude in terms of intermediate states are similar, be-
cause of the symmetry of the vertex with respect to the
external vertices (the line joining the internal vertices is
the symmetry axis).

Similarly for a planar diagram contributing to the 4-
point function (see Fig. 5), the integrand may be written
as a sum of simple poles in the variables p9, p?+p3, p?+
p3 + pY = —pJ and the factor multiplying each pole is a
function of the two variables pJ and p}. Another set of
compatible variables is p3, p3 + p3, p3 +p3 + p = —p9.
The familiar singularities in the s channel (¢ channel)
for the on-shell amplitude at T' = 0, here appear in the
p? + pJ variable (p3 + p? variable).

Generalizations may be made for nonplanar diagrams,

FIG. 5. A three-loop diagram for the 4-point function.

with more complicated rules, as they obey nonplanar du-
ality.

We summarize the result of this Sec. III B. For a planar
diagram at T # 0, contributing to an N-point Green
function, a form has been exhibited, where the following
remarkable features are explicit.

(i) Unitaritylike property. The full amplitude is writ-
ten as a sum of terms, each corresponding to a possible
intermediate state of the diagram. Such a term factorizes
into two Green functions, associated with the two pieces
of the diagram, and a factor describing the intermediate
state.

(ii) Dualitylike property. There are N alternative ex-
pansions in terms of intermediate states.

(iii) T = O-like property. The whole T' dependence is
in the statistical weight of the intermediate states, either
of the amplitude or of lower-loop amplitudes.

In another context, those properties, factorization and
duality, are the main ingredients of the dual resonance
models [24]. The rules to write down those forms are
simple, they make use of the T = 0 propagator and of
the amplitude associated with an n-particle intermediate
state. The demonstration of those properties relies on the
treelike form of the integrand, once the energies running
around the loops have been summed over. A complete
proof has been given for an n-particle intermediate state,
n < 6, and a partial proof for higher n.

All those properties have been checked by direct com-
putation, and expansion, of the amplitudes associated
with diagrams contributing to N-point functions, as far
as the four-loop order.

We now comment on the analytic properties of the
resulting amplitudes. The expansion, in terms of sim-
ple poles, of the integrand allows an easy reading of
the analytic structure of the amplitude. The remarks
made for the self-energy can be extended to the N-point
Green functions. There is no singularity associated with
the vanishing of any denominator involving only internal
lines; i.e., the amplitude does not inherit from all the sin-
gularities of the pieces on each side of the cutting plane.
Consider the diagram of Fig. 5 with the choice of vari-
ables p?, p?+p3, p?+p3+pJ and the rules for the energy
flow. At T' = 0, one may obtain from the resulting form
the discontinuity across all cuts sitting at the same value
of p? + p3, for example, and the discussion of the connec-
tion with the Cutkosky rules is similar to the self-energy
case. At T # 0, the expansion, in terms of intermediate
states, can be done when the external energy variables
are discrete imaginary, as it amounts to a partial frac-
tion expansion. Then one may compare various ways of
approaching the real values of those variables. The ana-
lytic structure of the form is explicit and similar to the
T = 0 case; one has separately the contribution from
each type of cut, as each cut arises from a pole of the
integrand. All the complexity of the T # 0 case is buried
in the multiple cuts and in the discontinuity across those
cuts. Those explicit forms should be useful to study the
connection between those analytically continued N-point
Green functions, and those which are defined in the real-
time formalism [5,6,7], their real and imaginary parts,
and also the relation to physically relevant quantities.
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IV. CONCLUSION

For an l-loop diagram at T # 0, the summation over
the energies running around the loops are easily per-
formed in the imaginary-time formalism. One is left with
an integral over the space momenta of the internal lines.
Two alternative forms for the integrand have been pro-
posed, their common features are the integrand is written
as a sum of terms, the T dependence is in the numera-
tors as [n(E) + 1] factors, and the external energies only
appear in the denominator factors in a linear way. Rules
have been given to write down the result immediately.
The form in terms of intermediate states is unique, in
contrast with the form in terms of trees, whose lowest
powers of n(E) + 3 have multiple forms.

Two new remarkable features of those imaginary-time
N-point Green functions have been exhibited: their fac-
torization property and their 7' dependence. It can be
put entirely into statistical weights associated with in-
termediate states.

The analytic structure of the amplitude is explicit; the
relevant variables are the multiperipheral ones, for planar
diagrams. Those forms should be useful for a further in-
vestigation of the relationship between those Green func-
tions and those of the retarded-advanced type, for N > 3.

It is to be noted that any diagram contributing to the

self-energy has been written under a form where only
those Green functions enter as real quantities.
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APPENDIX A
1. Tree diagram examples

Notation : a = s4,E; , b = spEp--- and Cta =
coth %saEa. Each internal line’s propagator is split ac-
cording to Eq. (2); for example, s,(ko — soE,)7!
Sa(ko — @)~1! is for line a, with a overlined for an easy
identification.

One- and two-loop examples. For the one-loop vertex
of Fig. 4(a), the integrand in (24) is

Cta Cte

SaSbSc Ctb
Voorg; = +
Pipdieaceee = T | (0§ — P + 0 - O)(pY ~b—a)

0

- + _
P —a-b)(P}—a—-¢) (p)—c—a)®P}—pY+c—b)

(A1)

In the first term, line b is cut and given the energy s, FEp = b; the resulting tree diagram gives the associated factor.

For the two-loop self-energy diagram of Fig. 2(a), the integrand in (20) has two types of terms. There are eight
terms whose numerators are product of two coth, corresponding to all possible ways of cutting the diagram so that a
connected tree diagram is obtained; we write down half of them, as the other ones are similar. When lines b and c are
cut and given respectively the energy spFp = b and s.E. = c, the resulting tree diagram gives the factor associated
with Ctb Ctc. Dropping out a factor ssp5.5455/4, one has

D - Ctb Ctc N Ctb Ctd
YT po—b-a)b—c—fpo—c—d)  (po—b—a)(~po+b+d— f)(po—d—c)
Ctf Cta Ctf Ctb

(A2)

e D ta-dpo-a—1-0  po-b-a)b-T-Apo+i-b-d)

The terms whose numerator is 1 may be written in several ways. They can be obtained from (A2) by replacing
Cta-Ctf and Ctb- Ctf respectively by (Cta-Ctf + 1) and (Ctb-Ctf — 1) (if one imagines having performed the abf
loop first), or by replacing Ctc- Ctf and Ctd - Ctf respectively by (Ctc-Ctf +1) and (Ctd-Ctf — 1) (if the loop cdf

is performed first). Alternatively they are linked to the three-particle intermediate states and a suggestive form (see
Sec. IITA) is

1 (=1)
(po—a—T - ta-d(f+ec-b) mo-b+rf-dd-f-a)b-1-3

D, = (A3)

For an alternative form for that two-loop self-energy diagram, one starts from the free-energy two-loop diagram
and one sticks two external legs. The resulting form is given by (13) with a1 =a, aa =po—b, b1 =f, c1 =
—d , c2 = ¢—po . The sum over i,k gives four terms; no external energy enters the denominator a; + b + ¢ for the
two terms associated with three lines joining at an internal vertex.

Three-loop diagrams. A three-loop diagram contributing to the free energy is drawn on Fig. 6(a). The integrand
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is the sum over all possible tree diagrams. For example, when line g is cut, one is back to the two-loop self energy

diagram of Fig. 2(a) just examined. The associated term is

Ctb Ctc

Ctf Ctc Ctf Ctd

Ctg [ afd + afc bed acd

where the denominators have been written in a condensed
way, a is for the propagator of line a and the first term
in (A4) is for the first term in (A2) with po = g (for the
appropriate orientations), and so on. A choice has been
made between the alternative forms for the ¢;; terms.

There are similar terms where the role of g is played by
any other line. Each tree occurs once, and the numerator
is the product of the coth for the three cut lines. There
are 16 trees. In addition, the full set of terms with one
power of coth is

I, = Ctg (€fa + €g1) + Ctb (€4a + €4g) + Ctc (€ad + €ag)
+Ctf (€ga + €ga) + Cta (ecf + €ca)

+Ctd (€pg + ebf) s (A5)

where each term’s denominator has not been written
down as it is fixed precisely. Indeed the set of lines ap-
pearing in the denominator is the set complementary to
the set of lines appearing in the numerator, as in (A4).

A diagram contributing to the self-energy may be ob-
tained from the diagram in Fig. 6(a) by sticking two ex-
ternal legs, for example on lines b and ¢ as shown on
Fig. 6(b). There are now two more propagators b’ and
¢’ in each term of (A4), and there are new trees where
line &’ or (and) ¢’ is cut. The extra terms with one single
power of coth are

I{ =Ctg € + Cctb' (edg + eda) + Ctc (€aa + eag)
+Cta (Eclf + fc’d) +Ctd (eb’a + eb:f) . (Aﬁ)

The expansion of this integrand in terms of
intermediate states is now considered. In each tree as-
sociated to Fig. 6(b), the external momentum p, flows
through a string of internal lines, and one may perform
an expansion of this string in terms of simple poles in
po. For example, for the intermediate state (g a f ')
in Fig. 6(b), if the orientations of the momenta g, a, f, ¢’
are chosen parallel to p, one looks for the denominator
(po — g —a — f —c); it appears in the trees where three
lines among the four [g a f ¢'] are cut and it is the re-

(a) (b) ©)

FIG. 6. Three-loop diagrams.

Ctb Ctd | Ctf Ctatesa , Ctf Cthteny  CtaCtc  CtaCtd

bfd bfe bad bac ’
(A4)

—

maining one’s propagator. To take the residue of that po
pole is to split the tree into two pieces where the four
lines [g a f '] are on shell. The pieces are the same for
all four trees so that the full numerator is N; + N, with

N, = Ctg Cta Ctf + Ctg Cta Ctc' + Ctg Ctf Ctc'
+Cta Ctf Ctc',

Ny =Cta €us + Ctf €qg + Ctg €a5 + Ctc' €09, (AT)

where Ny has been extracted from I + I. All the ¢;;
are +1 for parallel orientations. N; + N; is the weight
M, 5,545, associated to the four-particle intermediate
state (gafc’) as given in (16).

If one considers the intermediate state (b'ag) in
Fig. 6(b), there appears on one side of the cutting plane
a one-loop 4-point function (b’ a g pout) written as a sum
of trees (the loop is d f ¢’ ¢). One selects the following
trees: two lines among [b’ a g] are cut and one line among
[d f ¢’ c] is cut. The residue of the pole pp—a—g—b' =0
is such that the three lines [b' a g] are on shell. The terms
with one power of coth are extracted from I; + I3:

1 Ctf Ctc Ctd Ctd
N3 - 'I; €ag E de’ + de + f—cc7€ab’ €ag| » (AS)
where €2_ = 1 has been inserted in the last term. Both ¢

a,
are +1 for a parallel orientation of b’, a, g. N3 contributes

the €,y term of the weight M,n,g,i associated to the in-
termediate state (b'ag), as given in (16).

Lastly, if one considers the intermediate state (bb') in
Fig. 6(b), one selects the trees where one line is cut among
[b &']. That line is multiplied by a two-loop self-energy
diagram by construction.

One may stick other external legs to the diagram of
Fig. 6(b) in order to build an N-point function. The
previous analysis of the expansion in terms of intermedi-
ate states extends in a straightforward way to the case
of planar diagrams. Indeed, as discussed in Sec. III B, it
amounts to an expansion of the trees in terms of simple
poles in one single variable. It is now clear that the germ
of any intermediate state is in the integrand contributing
to the free energy.

A Four loop diagram. A vacuum four-loop diagram
is shown on Fig. 7. The trees are obtained by cutting

FIG. 7. A four-loop diagram.
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four lines and the associated product of coth is in the
numerator. There are terms with two coth, those lines
are cut and the remaining diagram is a two-loop diagram
where the ¢;; terms are written down as previously. In
addition, there are two terms with no coth, €45, €5, and
€gh €fa, and those terms originate from

efp+ Ctf Ctb
acdjk

€fa + Ctf Cta
bedjk ’
(A9)

(egn + Ctg Cth)

as line g is common to two loops and line f is common
to two other loops. In particular, those terms with no
coth contributes to the weight of the five-particle inter-

|
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mediate states (bfdgh) and (cfagh), respectively. For
any vacuum four-loop diagram, the summation over the
energies is easily performed with the coth method, and
the systematics of the terms is easy to interpret.

2. Computation of a three-loop diagram with the
coth method

The notation is that of Sec. 1 of the Appendix. The
three-loop diagram drawn on Fig. 6(a) is computed, the
orientation of the momenta is defined in Fig. 6(c). The
energies of the loop momenta are called k,r, s instead of
ko, 70, S0. The summation to be performed is

! :,E;(s—b)(r—s—f)(s—k—a)(r—c)(k_r_d)(k_g)- (A10)
The result of the summation over s is
e ! Ctb Cta Ctf
I _§(T—C)(k—r—d)(k—g) [(T—b——f)(b—k—a) k+a-b)(r—k—a-—f) + (T—f—b)('l‘—f—k—a)].
(A11)

The last term in each denominator factor identifies the associated internal line. The summation over r is performed

and the result is

el [y e e R e ooy ey R oy = ey ]
+(k—dft:)i(k—g)[(k—az—b—cjfl;(b—k—a) * (k+a—b)(it—ad—a—f) * (k—d~f—c;)t));~d—a—f)J
e = e L ey
e iR N (a12)

The last term in each denominator factor identifies the
associated internal line, and each term of (A12) is asso-
ciated to a k loop. The summation over k is then per-
formed, and the terms are grouped that are residue of the
same pole. Then the result is written in a symetric way.

f

It is described in Sec. 1 of the Appendix, and parts of it
are written in (A4) and (A5) [Note that the orientations
of momenta in Fig. 6(c) differ from those of Fig. 2(a) and
Eq. (A2)].
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