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We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in
the action appears as the vacuum value of an open string field. The bound state appears as a composite

field in the free field theory.
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I. INTRODUCTION

Fundamental strings (as opposed to hadronic strings)
have been proposed as the solution to two problems—
unified theory and quantum gravity. The use of strings
as a solution to the former problem hinges on its use as a
solution to the latter: Since the compactifications of
string theories to four dimensions are so numerous (and
the compactification itself does not seem to be predict-
able), it is not clear that the predictability of string theory
for low energy physics is much greater than that of renor-
malizable, or low-energy phenomenological, four-
dimensional quantum field theory (of particles). The
greater predictability of string theory is expected from
the (hopefully not-too-much) higher-energy corrections
arising from the direct or indirect effects of gravity (in-
cluding the effects of supersymmetry, whose breaking is
best explained through the use of supergravity and the
super Higgs effect). In other words, the unification
powers of string theory, although originally thought to be
great because of the few models available in ten dimen-
sions before compactification, have been reduced to a
solution to the unification of gravity with (super)grand
unified theories.

Therefore string theory is basically a solution only to
the problem of quantum gravity, but it is the only known
solution. Ordinarily that might be sufficient (and perhaps
even desirable), but until the experimental situation im-
proves, it would be useful to have an alternative theory of
quantum gravity for purposes of comparison. The only
proposed mechanism free of ghosts (and the resultant
effectively nonrenormalizable ambiguities) is the appear-
ance of the graviton as a bound state in a renormalizable
field theory. One advantage this might have over string
theory is the correct prediction of the dimensionality of
spacetime: (super)string theory has critical dimension 10,
while renormalizable field theory (with a finite number of
fields and bounded potential) has critical (maximum) di-
mension 4. However, the only known theory in which
the graviton has been demonstrated to appear as a
bound-state pole in the S matrix is open-string theory [1].
Therefore the phenomenon of bound-state gravity in
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open-string theory warrants a closer study, with an eye
toward isolating those aspects that are essential to this
phenomenon but might not require string theory.

In this paper we point out two curious features of this
mechanism in open-string theory that may be crucial to
the understanding (if not the formulation) of bound-state
gravity in a more general setting: (1) In the following sec-
tion we discuss the nature of the vacuum value of the
open-string field. Originally this was introduced as an
analogy to gravity where, unlike most other field theories,
there is no kinetic (quadratic) term in the action until
after expanding about the flat metric. However, in classi-
cal open-string field theory (as opposed to classical
closed-string field theory) there is no gravity. We discuss
the origin of this phenomenon from the vacuum values of
massive spin-2 fields, the relation of their Stueckelberg
fields to the Skyrme model, and the relation of these mas-
sive fields to the massless graviton in the quantum theory.
(2) In Sec. III we study the generation of the graviton at
the quantum level. In open-string field theory the gravi-
ton appears in a one-loop diagram, rather than through
an infinite sum of (one-particle-irreducible) graphs as in
most other known theories with bound states (such as
QED and QCD). We point out that this implies that the
bound-state graviton actually appears in free open-string
field theory. We discuss the analogy to the theory of a
free, two-dimensional, massless spinor, which has a mass-
less scalar as a bound state. The bound-state graviton in
open-string field theory is thus a higher-dimensional
analogue of bosonization. In addition to this analogy be-
tween free theories, we also describe the analogy between
interacting open-string field theory and the Schwinger
model, which shows how these bound states manifest
themselves as new poles in the fundamental fields.

It is useful to analyze this phenomenon from the point
of view of an effective theory where a new, redundant
field is introduced for the bound state, and we therefore
discuss the gauge-invariant field theory of coupled open
and closed strings in Sec. IV. In the final section we give
a more general analysis of coupled systems at the free lev-
el, which allows us to discuss some examples of the mix-
ing that occurs between states of the open string and the
closed string: the Higgs mechanism for the massless fields
of the U(N) string, and the coupling of the graviton of
the closed string to the lowest-mass spin-2 field of the
open string.
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II. THE METRIC TENSOR AS AN OPEN-STRING FIELD

The action for open-string field theory [2] has been
rewritten as a single term cubic in the fields [3], which is
J

Y[X™0),C%a),Cla)]=(T)+V¥,
—5= 10« T= [Lviou+1vTway),
(9)=9,1I, QL=f0"/2da Q, Q=f0"da@,
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apparently independent of the flat-space metric. The
flat-space metric appears through the vacuum expecta-
tion value responsible for generating the kinetic term
from the current @ of the Becchi-Rouet-Stora-Tyutin
(BRST) operator Q:

Q=CcYx'™P,,+C"By,+C"'B,)+C49,,,X'"X'"+ n™P, P, +C" B, +C''B,) ,

where I is the identity element for the % product [the
Sp(2)-invariant vacuum, up to a BRST transformation]
and (P,,B,,B;) are the momenta conjugate to
(X™,C%C"). Strominger [4] has explained the appear-
ance of the flat-space metric in terms of the coupling of
the open string to a background closed string, in a desire
to enlarge the space described by the open-string field to
include independent open- and closed-string component
fields (or even to describe only closed-string fields). Note
that neither the flat space nor any other metric appears in
the definition of the Hilbert-space inner product (func-
tional integration measure) (¥, |¥,) = f WV¥,: The string
field theory formulation is one based on first quantiza-
tion, and thus uses the Zinn-Justin-Batalin- Vilkovisky
(ZYBV) formalism [5]. This means that nonvanishing
inner products exist only between fields and their ZJBV
antifields: e.g., a covariant vector 4,, has a contravariant
antifield A4*", so the corresponding inner product in-
volves only Kronecker deltas &},.

Here we give a different interpretation of Strominger’s
result: Writing the open-string field as

¥=1["do@+ - 11,

Q@=c\x'p, +C"B,+C''B,)
+C0( %gmnxrme
+1g™"P,P,+C"B,+C"B,),
<gmn(X)) =7]mn ’

we interpret the field g,,, as an open string field. In fact,
if we compare with the usual oscillator expansion of W, it
is clear that this field (minus its vacuum value) is a com-
bination of the usual open-string fields, (i.e., the linear-
ized metric is an infinite sum, with appropriate
coefficients, of the massive spin-2 fields that are mass
eigenstates in the free theory). Equivalently, it corre-
sponds to eliminating the vacuum expectation values of
all spin-2 tensors, except omne, by simple field
redefinitions: For any g,,, (including traces of higher-spin
fields) independent of g,,, that has (g,,, ) =k7,,,, replace
g with a new field 2,,, =&, — k&mn» 50 (&,,, ) =0. Thus,
if we start with many “metrics” (i.e., spin-2 fields with
nonvanishing vacuum values), we can always redefine

f

them so only one remains. (Similar remarks apply to
gauge parameters, such as those for general coordinate
transformations, where ‘“vacuum value” refers then to
the invariances of the vacuum, i.e., the global part of the
local transformation.)

The consistency with Strominger’s interpretation in
terms of closed string fields follows from the fact that in
the field theory of both open and closed strings the
closed-open two-point vertex that follows from quantum
corrections [6] implies a direct nonderivative two-point
coupling between these open-string fields and the corre-
sponding closed-string fields, like the nondiagonal mass-
term type of coupling that can occur between two spin-2
fields [7], as here for the open-string field g,, and its
closed-string analogue. We will discuss this further in
later sections. However, here we are considering a field
theory of open strings only. This is actually more con-
sistent with respect to an expansion in 4, since the rela-
tion of the closed-string self-coupling to the open-string
one is # dependent. Closed-string states still appear in
the theory, but only as bound states, so they are not de-
scribed by fundamental fields, but rather by composite
fields (just as, e.g., the hydrogen atom in QED). In this
interpretation, the open-string field g,,, introduced above
is the only metric tensor available in the theory (the only
spin-2 field which couples universally to the energy-
momentum tensor of the open string). When one-loop
corrections to its propagator are calculated, one finds a
new massless spin-2 pole that did not appear in the classi-
cal (tree-level) theory, i.e., the graviton.

At the linearized level it is already clear that the open-
string field theory has gauge invariances for massive
spin-2 fields that resemble those of massless spin 2 [8].
(In string field theory expansion in the ghost coordinates
gives Stueckelberg fields.) The interacting case requires
only a generalization of the Higgs mechanism to gravity.
This can be derived in the same way as for massive spin
1, by performing a gauge transformation on a gauge-
noninvariant action, consisting of the gauge-invariant,
massless, interacting action plus a mass term. The gauge
parameter then becomes a new field. In the spin-2 case
the appropriate gauge parameter is the transformed coor-
dinate. (This construction for massive spin 2 in string
theory was mentioned in [9]).) The gauge-invariant action
is the Einstein-Hilbert action, and the mass term is the
Fierz-Pauli term [10]
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Lgp=—1M*h2—h%>

(which is the same as the mass term obtained from linear-
ized gravity by dimensional reduction). The generaliza-
tion of the mass term to the interacting case is somewhat
ambiguous: In an expansion of the fields about their vacu-
um values, the constant term can always be canceled, the
linear term must vanish (no cosmological term), and the
quadratic term must fit the Fierz-Pauli term, but higher-
order terms are arbitrary. In the model we write to study
this sector of the string, we choose these terms to have as
few derivatives as possible (a type of low-energy limit).
Effectively, this means just defining

habEgmn(am Aa)(an A b)_nab
in Lgp and throwing a V' —g in the measure.
The unique result (in D dimensions) is then
S= [dPxV =g (R+ML,,) ,

_D(D-1) D-1
4 2

+Lg"Pg (3], A°)(3,14°)]
X [(a[P A C)(aq]A d)]"]acnbd ’

Ly g""(3,, A°)D, A%V

Gn Y =My » (A9 =x7.

This is exactly the Skyrme model [11] for the translation
group. It has not only general coordinate invariance, un-
der which A° transforms as scalars, but a separate,
“internal,” global Poincaré symmetry on A¢ [9]:
A°— A°\A,°+ A% (This is similar to a vierbein formalism
with curved and flat indices, but here the tangent-space
invariance is only global.) Unlike the analogue for mas-
sive Yang-Mills theory, the quartic term is necessary
here, and is required to be the Skyrme term to reproduce
the Fierz-Pauli term. Unfortunately, this action has ex-
J
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plicit flat-space metric factors 7,,, and it does not seem
possible to eliminate them. (They cannot be replaced
with other tensor fields since after the above field
redefinitions g,,, is the only tensor with nonvanishing
vacuum value. Similar remarks apply to eliminating the
vacuum values of the other vectors 4 — A'. In fact, all
flat indices can be removed from everything except A4 by
using A4 as a vierbein: e.g., A'°— A"""3,, A°) The
string action consists of a sum of such terms for different
masses M (from the field redefinitions §—g' and 4 — 4’
at different mass levels): The sum for the mass term is less
convergent than that for the R term, and the sum of the
coefficients might regularize to zero.

This suggests that the interpretation of the ¥ action as
background independent is singular. However, we can
still interpret g,, (or perhaps all the spin-2 fields, to
avoid singular field redefinitions) as a metric tensor, since
it transforms covariantly under general coordinate trans-
formations and has a nontrivial vacuum expectation
value. Furthermore, because of the Stueckelberg fields
supplied by string field theory, the action is general coor-
dinate invariant. The interpretation is then the follow-
ing. (1) A metric tensor(s) and general coordinate invari-
ance exist in the classical open-string field theory, but do
not describe the graviton because of the Stueckelberg
fields. (2) However, quantum contributions to the
effective action cause this metric to describe a massless
graviton (in addition to massive spin 2), with the depen-
dence on the above tangent-space flat metric disappearing
at low energy, near the graviton pole. Thus the metric
tensor and general coordinate invariance are classical
features of the theory, and it is only the massless pole
that is the quantum feature.

Another interesting feature of the vacuum value of the
open-string field is that it can be written as a pure Abeli-
an gauge transformation: In terms of the ghost-number
operator J, the BRST operator Q and left half of the
BRST operator Q; can be expressed as

#=C°By+C'B,=[4,01=0Q=[J,0]1=0, [J.,0]1=0, ,

T/2

szo”cz, Jo=[TTF—=(¥)=0(—J, D .

This is also true in ordinary gravity: In terms of the
Abelianized gauge transformation 6g,,, =9,,,A,), we have
(gmn )znmn =a(m%xn)‘

The origin of the bound-state massless graviton from
massive spin 2 also explains the origin of the bound-state
dilaton: The Stueckelberg formalism for massive spin 2
can be generalized from the above to include a scalar,
representing massive spin 2 in terms of massless spins
20 180, and all three of these fields appear automatically
in open-string field theory [8]. In the massless limit of
massive spin 2, the vector decouples but the scalar
remains [12]. It is the dilaton.

n)

III. THE GRAVITON IN FREE OPEN-STRING THEORY

The most unusual feature of closed-string bound-state
generation in open-string theory is that it occurs at one

f

loop, in contrast with more familiar bound-state mecha-
nisms, such as the hydrogen atom, where the bound
states, when represented by perturbation theory, are gen-
erated essentially by an infinite sum of ladder graphs, or
the preon (random lattice) formulation of the string (or
the QCD formulation of the hadronic string), where the
string is generated as an infinite sum of all the leading
graphs in the 1/N expansion. The reason is simple: The
closed string is actually a bound state of the free theory.
This follows from the fact that any (amputated) one-loop
propagator correction in an interacting theory is
equivalent to the propagator of a composite field in the
free theory: Consider any 3-point coupling x° (for simpli-
city we hide all derivatives, indices, etc.). The corre-
sponding one-loop Y-propagator correction is then (in
coordinate space) {0|J(x)J ()|0), where J ~8S /8y ~x*
is the “current” coupling to y. In evaluating this one-
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loop correction we use the free
Ag(x —y)=(0[x(x)x(»)|0):

(Ol (x)T ()|0) ~[Ag(x —p)]2 .

This is clearly the same as evaluating the propagator for
the composite field J in the free theory of the field y.

This bizarre mechanism is actually well known in two-
dimensional field theory. In the Schwinger model [two-
dimensional (2D) massless QED] [13], the photon propa-
gator gets a scalar pole from the electron loop; it absorbs
the scalar to become massive. The appearance of this
scalar is now well understood: It is bosonization [14].
The vector current of the electron is equivalent to the
gradient of a scalar field, even in the free theory of the
electron. The photon couples to this current. This one-
loop correction to the classical QED Lagrangian
(F= fabaa A b )

propagator

Ly=1F*+3idp+Pdy

can be expressed by introducing the bound-state field
through the additional terms (L =L, +#L,)

L,=3¢0¢+¢F

resulting from the bosonization of . We have intro-
duced ¢ as a redundant field to ¢: Introducing a separate
field for a bound state is always redundant (but not in-
correct, although coupling constants need to be modified
because of double counting). Integrating out ¢ classically
(tree graphs) produces a term —1FO7'F in the effective
action, the same as integrating out 1 at one loop.

We therefore have three two-dimensional field theories
that describe this bound-state phenomenon. (1) In the
theory of a free, massless fermion, L =vidy, a composite
field describing the scalar bound state is defined by the
usual bosonization formula ¢¥y,¥=¢,%,4. The con-
sistency of such a definition follows from just current
conservation (in any dimension), but the fact that the
propagator of the composite field ¢ has poles follows
from kinematics: Classical massless particles in D =2
travel at the speed of light to either the left or right. 7,
picks out the components of ¥ and ¢ for electron and
positron both traveling to the left or both to the right (as
follows from their equations of motion y .3 +¥=0). Two
massless particles starting at the same point and traveling
in the same direction are never separated, and therefore
act as a bound state. (2) In massless QED (L =L,), the
photon couples to this composite field, so at one loop the
bound state shows up in the propagator of the fundamen-
tal field 4,. (3) In the effective field theory described by
L=L,+1%L,, ¢ is a fundamental field rather than a com-
posite one, but the physics is identical to that described
by just Ly. If ¢ is eliminated by its equation of motion,

we get back the formulation in terms of just L, but in-
cluding the one-loop contribution that shows the pres-
ence of the bound state. Although the free fermion
theory is sufficient to describe the bound state, the in-
teracting theory of QED automatically points out the ex-
istence of the bound state by showing it in the one-loop
propagator of a fundamental field, and the effective field
theory helps to elucidate the mechanism by which this
happens.

A similar mechanism occurs for the string. An open-
string current is equivalent to a closed string, even in the
free theory of the open string. This current can be found
from the ¥ interaction of the interacting theory. As for
the Schwinger model, where the bound state can be de-
scribed as a composite (quadratic) field in the theory of a
free fermion (bosonization), the closed-string bound state
can be described as a composite (quadratic) field in the
theory of a free open string, and our discussion of the in-
teracting open-string field theory and (in the following
section) the interacting field theory of open and closed
strings is for pedagogical purposes (and because those
theories are interesting in their own right).

The Schwinger-model-string analogy is then given as
follows:

Schwinger model

Photon 4,

Electron ¢

Scalar bound state ¢
Current ¥y ,9
Bosonization

J')/a'/):eabab‘t’

String field theory

Open-string metric g,,,
Rest of open-string field ¥
Closed-string bound state @
Current V¥
Yv="'Go+ - - -

where Y is the open-closed 2-point vertex operator [6] (in
our notation, it takes an open-string field to a closed-
string field), and G takes care of the zero modes associat-
ed with global o translation invariance on the world
sheet:

G=b,8(AN), b= [doB,, AN={Q4,b,] .

Unlike the Schwinger model, Y contains no spacetime
derivatives, so we can locally invert the expression for the
current in terms of the closed-string field as

S=b,Yb¥*¥Y=II® , M=b,Yb,Y'G .

IT is essentially the product of two § functionals that pro-
jects out open-string states that can couple to closed
strings. The ghost insertions b, are gauge dependent, as
expected from the fact that ® has a gauge parameter A,
independent of ¥’s gauge parameter Ay. They are exact-
ly those that appear in the iteration of the lowest-order
propagator corrections expressed by the open-closed cou-
pling o'erw.

Ay=—20
v p2+M2W ’
boc! t t
Ay =AeGYAYY'GAy - - Y G~c'GNIT--- 1T .

P M}
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Thus @ is just a field redefinition of ® (at least for the
propagating components).

The analogy also relates to the interpretation of the
previous section: For the Schwinger model in terms of
fields 4, ¢, and ¢ (L,+#L,), it is ¢ that has the physical
bosonic polarization, which shows up in the 4 propaga-
tor only because of its coupling to ¢. On the other hand,
for the formulation in terms of just the fields 4 and
¥ (L), the electromagnetic field, which classically has no
physical polarizations (in D =2), has gained a physical
polarization at one loop. For the string in terms of ¥ and
®, it is P that describes the graviton; but in terms of just
the open-string field ¥, the metric tensor(s) g,,, in V¥ de-
scribes only massive spin 2 classically but develops a
(massless) graviton pole (as well as a dilaton pole) at one
loop.

IV. OPEN-CLOSED STRING FIELD THEORY

Unlike the Schwinger model, where the field ¢ that
generates the bound state has no self-interactions, the
self-interactions of the open string W generate closed-
string (bound-state) self-interactions at higher loops, so
our analysis in terms of an effective action of both open
and closed strings requires an analysis beyond one loop.
In string theory the order in # of a graph is related to the
Euler number: In field theory language, the contributions
to the effective action (appearing as e>’?) are of the form,
for arbitrary nonnegative m and n,

yr D) D(HD) T

plus terms of this form but higher order in #. As in ordi-
nary field theory, # and the coupling constant g appear in
S /# only in the combination #g2. There might also be a
tadpole term #A®, but not in the supersymmetric theory.
Again, the normal # counting, with #’s appearing only in
loops, is consistent only in the formulation where only ¥
appears as a fundamental field. The field theory of closed
strings was developed in [15]. Field theory of open and
closed strings has been discussed in [16], but in a form
where the existence of gauge invariance was unclear.

For our purposes it will be sufficient to consider adding
to the classical open-string Lagrangian

Lo=1v'0, v+ 1w'w*y
the effective closed-string terms (L =L, +#L, +#L,)
L,=10'GQa®+d'GYV+OW" 2 terms+ W'V, ¥,
L,=®° term+@?y" ! terms—i‘lCDTGVd,G(D .
We could replace ® with the field d=Go satisfying the

constraints b d=AN®= 0, which would s1m§oly absorb

all Gs, except for the replacement 1®'GQqP—

- 1(I> leq,(D This field is more useful for conformal
J

L=~12'GQE, GQ=0'G, 8=~QA, =0,
v 1o

o to o= Qy O 0o Y'e Vy
0=00+0,+Q,= 0 Qs 0 0
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field theory because its Hilbert space more closely corre-
sponds to the direct product of two open-string Hilbert
spaces. Its use is analogous to the use of chxrz/l\l
superfields in supersymmetry: The term — l<I> clQqe®
could then be expressed without the ¢! as mtegrated over
the “chiral” subspace, whereas all other terms, including
all quantum corrections, would be integrated over the full
space. However, we prefer to work with unconstrained
fields.

Like * and I, Y is a 8 functional, times ghost factors
that follow from including the ghost couphng to the
world-sheet curvature: If we write the ®'GYW term as a
double integral, with ®'G evaluated on closed-string
coordinates and ¥ evaluated on open-string coordinates
(again using C® and C' as the ghost coordinates), Y is a &
functional of the closed minus the open coordinates,
times a factor C%0), where o =0 is the interaction point
(where the world-sheet curvature is). This follows from
considering ghost zero modes: For physical fields, ¥ and
G® are independent of them; the open-string coordinate
integration integrates over one, while the closed in-
tegrates over two. This leaves three for Y: two for the &
functional, one for C%0). The counting is different for
bosonized ghost coordinates. In this form Y introduces
no spacetime derivatives, in contrast to the Schwinger
model The exact vertex ¥ that appears in the one-loop

/%ram as the effective action contribution

GA,GYV differs from Y by a conformal transfor-
mation that includes derivatives, which is just an inverti-
ble field redefinition.

Y essentially projects out the open-string states that
couple directly to the closed-string states (i.e., the group
theory singlets, such as the open-string metric g,,,), in
analogy to the way that y, in the Schwinger model pro-
jects out the chiral part of P® . Furthermore, whereas
in the Schwinger model integrating out the bound-state
field ¢ gives an identical result to a fermion loop with two
external lines, integrating out the closed-string field gives
at best only the part of the nonplanar one-loop graph
containing the physical closed-string poles. This is prob-
ably related to the fact that the bosonization expression
for ¢ in terms of ¥ is invertible, while the expression of ®
in terms of ¥ might not be invertible to express the
open-string field in terms of the closed string. Therefore,
we include terms ‘\I’ Vy¥ and ‘d) GV 4GP representing
the local parts of one-loop propagator corrections (corre-
sponding to contracting the lengths of the propagators in
terms of proper and/or world-sheet time), while the
®'GYY term incorporates the (physical) pole parts of
those corrections.

For studying the effective action we can concentrate on
the quadratic terms (dropping the #’s):

N
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¥, @, Q,, G, Y, Vy, Vg have ghost numbers —1, 0, 1,
—1,%, 1, 2, respectively, in terms of the ghost number
operator that is anti-Hermitian with respect to the
Hilbert-space metric; i.e., the integration measure is
defined to have vanishing ghost number.

Unlike the A¢ coupling of the Schwinger model, the
open-closed coupling is not gauge invariant under the in-
dependent gauge transformations A=(Ay,Aq) of the un-
coupled open and closed string field theories: The string
action = f L is actually the ZJBV operator, which in-
cludes not only the classical gauge-invariant action but
also the BRST (gauge) transformations. (In the quadratic
part of the action, this is simply the statement that Q is
both the kinetic operator and the generator of gauge
transformations.) Through their dependence on ¢, the
string fields contain both the usual fields and their ZJBV
antifields: In the expansion ¥=1v +c%_, ¥, contains
only fields while ¥_ contains only antifields. The usual
ZJBV antibrackets of fields and antifields then follows
from the string field antibrackets (v, w)=5 [17], in
terms of a § functional of all the coordinates, including
c®. The closed-string field behaves similarly, except
(d>T,d>)=618 has the factor ¢! because the c!-
independent part of ® drops out of the action.
[Equivalently, (<I>T,d>)=G8, where G is analogous to the
factor appearing in the definition of functional
differentiation of chiral superfields to maintain the con-
straints on the field.] Gauge invariance is then the usual
statement (S,S)=0. The term d>T'YG\I/(Q1 ) thus contrib-
utes a crossterm not only to the action, but also to the
gauge transformations. (We consider an effective action
calculated by background field gauge methods, so gauge
fixing does not break the gauge invariance of the effective
action.)

We now examine the gauge invariance condition Q2=0
perturbatively. (This can be considered an # expansion if
we redefine ¥V —#'/*¥, & %" 1/4®, followed by #i— #:
Then Q =Q,+#Q, +#°Q,.) Of the resulting relations

Q%={Q0,Q1}=Q%+[Q0,Q2}={Q1’Q2}=Q%=O

the first two expressions are known to vanish. The mid-
dle identity states that Q is BRST trivial. In the open-
string sector, this follows from the fact that it is BRST in-
variant but not in the (operator) BRST cohomology: Oth-
erwise Q%/0) would be a Poincaré invariant state in the
cohomology, but there are none of that ghost number.
Since on shell and translation invariant means massless,
the only on-shell zero-momentum scalars in the cohomol-
ogy are those of Yang-Mills theory: the Yang-Mills ghost
at zero momentum |0) (corresponding to the identity
operator) and its antifield CC'C”’|0) (corresponding to
the operator CC'C" with ghost number 3), whereas
Y'GY has ghost number 2. Thus, Y'GY=— {Qu,Vyl
for some Vy. In the closed-string sector YY', in geome-
trical terms, describes a closed string that breaks into an
open string and instantaneously reconnects into a closed
string. In other words, the cylindrical world sheet
describing the spacetime propagation of the closed string
has an infinitesimal hole. Because of the ghost insertions
C%0) in Y and Y' being multiplied at the point of that

hole resulting in the squaring of an anticommuting ¢
number, this diagram vanishes. We can thus set V4 =0.
(The same result holds if we use ¥=U4 YUy instead of
Y, since it differs only by a unitary transformation U:
9'=U,YY'U51=0.) The remaining identities then
become YVy=V3%=0, which we expect to follow also
from squaring of fermionic insertions. There are addi-
tional ¥y and V4 terms in nonorientable string theories
[such as the SO(32) superstring] [18].

At the free level, this calculation should be identical (in
an appropriate representation of the ghost coordinates) to
the calculation of closure of the Lorentz algebra in the
light-cone theory: At the quadratic level the BRST opera-
tor derived by covariantizing [19,20] the nontrivial light-
cone Lorentz generators [21] is generally identical to that
obtained by the usual BRST methods (in this case, with Y
and not ¥ as the open-closed vertex). It has been shown
[22] that the Lorentz algebra closes for open-closed bo-
sonic light-cone string field theory [23], although there
the cancellation of the Y'GY term was with a “anoma-
lous” term coming from a nonplanar loop diagram gen-
erated by the squaring of the ¥° term. However, the gen-
eration of the closed-string bound state from the nonpla-
nar graph in the light-cone string field theory (if it occurs
at all) is different than in both the usual covariant one
and the covariantized light-cone one. Still, it should be
possible to obtain the analogue of our result for the light
cone by adding a corresponding local term to the “classi-
cal” Lagrangian and subtracting the same term from the
one-loop corrections. In any case, we will assume the Vy
term is sufficient to solve the problem (as implied by our
open-string cohomology argument), which does not re-
quire consideration of loop diagrams to show the gauge
invariance of the free theory. In the following section
this assumption will be supported by examples from finite
subsets of the open- and closed-string fields. There we
will give a general analysis of quadratic Lagrangians ex-
hibiting nonderivative couplings between two different
sectors, of which open-closed string theory should be a
special case.

V. GENERAL ANALYSIS OF FIELD MIXING

Rather than delving into the technical details of this
quadratic coupling between fields of the open and closed
strings, we analyze this phenomenon in a more general
setting. We first consider the most general possible (rela-
tivistic) free Lagrangian (up to field redefinitions) for any
set of fields. This result is known from first-quantized
BRST methods [20]:

=1£'0e, Q=0,+iMM™+M?% ,
Qo=cp2+iM® e —TbM

where MY are the D-dimensional generators of
OSp(D, 1|2), an extension of the Lorentz group to include
ghosts. The index c labels one of the two ghost directions
and m labels the single reduced dimension used in the
generation of mass by dimensional reduction: p,, =M. (c
and b are c® and b, for the string.) We have explicitly
separated out the mass dependence, writing the general
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BRST operator Q in terms of the massless BRST opera-
tor Q. Irreducible  representations of  the
OSp(D —1,1]2) subgroup generated by M" for i,j*m
are representations of the massless version of this extend-
ed Lorentz group, consisting of a single gauge field and
its ghosts (and antifields, through dependence on ¢): Such
representations can absorb each other to become massive
representations of OSp(D, 1/2).

We next consider the most general way to break up
Q=0Q,+#Q, +#°Q, such that Q>=0 perturbatively in #.
Since Q has the most general form, Q, can differ only in
how the operators M and MY are represented. However,
MY for i,j#m [the OSp(D —1,1|2) subgroup] must be
represented in the same way to preserve the Lorentz sub-
group SO(D —1,1); thus their Q, terms are the same. In
the light-cone string theory, from which the covariant re-
sult can be derived, this is the statement that the genera-
tors of SO(D —2) are the naive free first-quantized opera-
tors, and get no quantum corrections, while the remain-
ing Lorentz generators include terms from the open-
closed coupling, as well as other interaction terms. Since
each representation of OSp(D,1]2) (and in particular
M ™) requires an appropriate set of fields, its representa-
tion in Q, can differ from that in Q only by mixing be-
tween OSp(D —1,1]2) representations of the same type.
However, it seems that the only way to break up an indi-
vidual OSp(D, 1]2) representation that is consistent with
satisfying Q?=0 perturbatively is the separation of its
fields into those with odd and even numbers of “m” in-
dices. We therefore restrict the massless representations
of Q (i.e., the subset of our original fields with zero eigen-
value of the operator M) to be only of the form of an
“even” or “odd” part of a representation of OSp(D,1|2),
so they can mix with the corresponding parts of the mas-
sive representations. This holds for the massless sectors
of the string: the vector and antisymmetric tensor are al-
ready the even parts of the corresponding massive repre-
sentations; the graviton and the dilaton together corre-
spond to the even part of massive spin 2. Furthermore,
for the string the separation into odd and even numbers
of m indices corresponds to separation into odd and even
numbers of oscillators: In Q,, MM ™ is cubic in oscilla-
tors while M? is quadratic; in Q,, the MM (c-
independent) term in the operator Y is odd in oscillators
while the M? term is even (as follows from the represen-
tation of the overlap integrals used in evaluating & func-
tionals as Gaussians).

The most general form of representation @ of the
IMM " term in any of the pieces Q,, Q,, Q, is then

Q=aA+a' AT, iMm=4+A"T,

where we have broken up the original M " in Q into the
piece A that takes the even part of an OSp(D, 1]2) repre-
sentation into the odd part, and the piece .)ll* that takes
odd into even. a is a matrix that mixes the different
copies of an even part and maps them to the different
copies of the corresponding odd part (and similarly for af
mapping odd to even). Thus, Qq4, Q,, and Q, are block
diagonal with respect to OSp(D,1]2): The fields for any
one block consist of all the copies of any particular
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OSp(D, 1]2) representation (but of different masses), plus
all the massless fields corresponding to the even or odd
part of that representation. Restricting our attention to
such a set of fields for a particular representation of
OSp(D, 1|2), we can divide the fields into even and odd as
£=(§,&45), where “e” labels the copies of the even part
and “€” labels the components of an even part, and simi-
larly for the odd stuff d& (but d has a different range than
e, and § different than €). Then the index notation for
the above equation is

@eee’s’ (Qeed'ﬁ’
(Qdée'e’ (Qdéd'ﬁ’

T i
0 aed")4 €d’ ]
ade“)q' &€’ 0

Solving Q2=0 perturbatively then completely determines
the Q’s in terms of the a’s (and requires that Q; have no
@ term):

Qo=0Q0 T QoFuec , Q=@ +pc, Qr,=pxc,
Qu=a,A+ajA",
_ t ol _ togt
Ho= Qoo T oy » K=& 1)T A (o) »
_ T t
w=aataja; .

Lastly, we break up our fields & into two sets ¢ and ¢,
which will be the analogue of the open- and closed-string
fields. This division of fields is chosen to preserve even
and odd pieces: For any representation of OSp(D,1/2),
any linear combination of the copies of the even part (in-
cluding those of different mass) may go into ¢, and any
linear combination of the odd; the independent combina-
tions go into ¢. In particular, we may break up an
OSp(D, 1|2) representation so some of its OSp(D —1, 1 [2)
representations are in ¥ and some are in ¢: i.e., the gauge
field and its even Stueckelberg fields are in one place, the
rest of its Stueckelberg fields in the other. Finally, we
choose an q, that is diagonal with respect to this ¥ /¢
breakup, and an a, that is off-diagonal. That makes Q,
and Q, diagonal, Q, off diagonal. We expect this
description to be equivalent to that just given for the
string, as we now demonstrate with two examples.

For our first example we consider the generation of
mass by dimensional reduction, and choose the above
perturbation expansion as simply an expansion in the
mass; i.e., we define our separation of fields into those
with odd and even numbers of m indices, so that a;=0
and a;=M:

=00, Q=iMM™, Q,=M?’c .
The Lagrangian is then
L=197(Qo+M¥)p+i¢g" MMy
+16%( 0o+ M%) .

For the special case of the antisymmetric tensor 4,
(where dimensional reduction gives also the vector 4,,,),
this agrees with results for the massless level of the U(N)
bosonic string [6], where the antisymmetric tensor from
the closed string mixes with the (singlet part of the) vec-
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tor from the open string [24] through a term B°4, , in-
volving A,,’s Nakanishi-Lautrup (NL) field B,,.

We next eliminate ¢ by its equation of motion, invert-
ing Q0+M 2¢ in the usual gauge to get the propagator
b/(p?+M?) [and using the identity (M“")*=—1M*] to
find the equivalent Lagrangian in terms of just y:

L=1y'0y,
—~ ~ b
—_ 2 2
0=0,+M*+1M p2+M2M“
=0, +M? c+%%M“ +0(M*)
p
=0,+0+ - .

Q,+ 0, is the result that would be obtained for Q if the
term %¢TM %c¢ were ignored (as in string theory, where
the analogous V4 term does not occur). Since
{00,01}=0, Q, represents a correction to the Lagrang-
ian consistent with global BRST invariance to that order
in M2 However, the complete J is necessary for total
BRST invariance, and the -;—QSTM Zc$ term is necessary in
L for gauge invariance. (Although in string theory the
analogous term is unnecessary, the corresponding term
for 4 is.) This model is unlike the full string in that Q,
for the string (') includes ¢ (c°) terms, which contribute
to the propagator as defined by L=L,+L,+L, in the
b,=0 gauge. c terms in Q contribute terms to the
gauge-invariant action containing just physical fields,
while other terms in Q contribute terms containing NL
auxiliary fields. However, in the calculation of [6] for the
massless sector of the U(N) bosonic string, the portion of
Y actually used was exactly the M ™ used here, and the
only part of Q, obtained by explicit calculation was ex-
actly the bM“/p? obtained here, while the ¢ term (analo-
gous to V) was inferred to also follow from TTGAq,GT
by BRST invariance of Q.

We now discuss an example that exhibits direct cou-
pling between physical fields of the same spin, but
different masses (as opposed to the previous example,
which illustrated coupling between particles of the same
mass, but coupled a physical field to an NL field). In the
more interesting cases one particle is massless, so we will
assume that restriction here for convenience. In the spe-
cial case of spin 2, this is analogous to the coupling be-

B
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tween the massive fields of the open string and the gravi-
ton (and dilaton) of the closed string, on which we fo-
cused in Sec. II. As for the case of spin 1 (‘“vector meson
dominance”), such actions are obtained simply by (1)
writing the kinetic terms for two particles of the same
spin, but different masses, (2) coupling both (gauge co-
variantly) to two ‘“matter” sectors, with different cou-
plings for the different sectors, and (3) making field
redefinitions that diagonalize the couplings to the two
different matter sectors, which makes the gauge fields’
mass terms off diagonal. For example, for the spin-1
case, we start with the usual free Lagrangians for a mass-
less photon A’ and massive rho-meson p’, couple 4'+p’
to strongly interacting matter and 4'—p’ to weakly in-
teracting matter, and then redefine p=A4'+p’ and
A=A4'—p' as our new fields, so the mass term
p'?~(p— A)? has cross terms. (In the spin-2 case, the
graviton’s coupling is non-Abelian, so we have to be more
careful with interactions [7], but we will again restrict
ourselves here to just the quadratic part of the Lagrang-
ian.)

We begin by dividing up the fields of the massive states
into ¢', with even numbers of m indices, and Y, with odd.
In the case of spin 2, ¥’ is a vector while  is a scalar; for
spin 2, ¢’ is a tensor plus a scalar, while Y is a vector. We
next write the Lagrangian

L=y (Qy+m2ey + Lx"(Qp+m)x
+mXT‘A¢,+%¢,TQ\O¢’

=1£'0'¢
v Op+m? mAT 0
E=1lx1, 0= mA Q0+m2c o\,
¢ 0 o 0

where m is the value of the mass for the massive states.
To mix the massless ¢’ with 9’ in a way that preserves the
matrix structure, we must choose it to be the same repre-
sentation of OSp(D —1,1|2). Thus, for spin 2 ¢’ must in-
clude the dilaton as well as the graviton. (Of course, it is
still possible to produce such couplings between massive
and massless spin 2 without a dilaton [7], but the dilaton
is necessary for Q?=0 to be satisfied order-by-order in
the perturbation expansion 0=Q,+Q,+0,.)
We then “undiagonalize” by

=1 i1
V=501, ¢#=m—8)=L=1£0¢, 0=0,+0,+0;,

A 1
Qo t+im2e 7_2—m.>4* 0 0 0 1m2e 0 o .
1 A
Qo= | T5mA Qotimc 0 |, Q=] 0 0 smAl, @=[0 im¥ o0
A 1 2
0 0 Qo Im?c Lm.>4.T 0 0 0 ame

V2
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(We could have obtained a mass other than (1/V2)m by
using a different undiagonalization and a correspondingly
modified splitting of Q into Q, @, and Q,.) Q, gives the
standard Lagrangian for the decoupled fields [with
masses (1/V2)m and 0] in BRST form [20]. Now Q,
contains not only the MM " term of the previous exam-
ple, but also a c¢ term that gives the desired direct cou-
pling between physical fields. Examination of the explicit
Y of [6] shows that these are exactly the terms it contains
that couple the first massive level of the open string to the
fields of the closed string describing the graviton and di-
laton: To the gauge-invariant action the MM" term
contributes B?4, (in terms of the NL field B, of the
graviton and linearized Stueckelberg field A4, of massive
spin 2) and B¢ (in terms of the NL field B of 4, and the
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dilaton @), while the ¢ term contributes 4k, (in terms
of the linearized graviton h,, and linearized massive spin
2 h,,) and @@ (in terms of the other Stueckelberg field @
of massive spin 2). (Q, gives further diagonal mass terms
A2, h%, and ¢?.) We can also recognize this as a special
case of the general mixing described above (which gives a
more direct derivation of _the result), given by
a,=(1/v2)m(1,0), a;=(1/V2)m(0,1).
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