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Kac and net determinants for fractional superconformal algebras
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We derive the Kac and new determinant formulas for an arbitrary (integer) level K fractional
superconformal algebra using the BRST cohomology techniques developed in conformal 6eld theory.
In particular, we reproduce the Kac determinants for the Virasoro (K = 1) and superconformal
(K = 2) algebras. For K ) 3 there always exist modules where the Kac determinant factorizes
into a product of more fundamental new determinants. Using our results for general K, we sketch
the nonunitarity proof for the SU(2) minimal series; as expected, the only unitary models are those
already known from the coset construction. We apply the Kac determinant formulas for the spin-
4/3 parafermion current algebra (i.e. , the K = 4 fractional superconformal algebra) to the recently
constructed three-dimensional 6at Minkowski space-time representation of the spin-4/3 fractional
superstring.

PACS number(s): 11.25.Hf

I. INTRODUCTION

The Kac determinant [1] for the Virasoro algebra is
a very useful tool for analyzing the minimal unitary se-
ries in conformal field theory (CFT) [2] and for under-
standing the no-ghost theorem in bosonic string theory
[3]. So far, the Kac determinants have been known only
for the Virasoro and superconformal algebras [4]. These
algebras are special cases of the so-called fractional su-

perconformal algebras (FSCA's) [5,6 labeled by the level
K of the SU(2)lt current algebra [7]. (The level K = 1

and 2 FSCA's are precisely the Virasoro and supercon-
formal algebras. ) In this paper we derive the Kac and
new determinant formulas for an arbitrary (integer) level
K FSCA.

In Sec. II we classify the modules of the level K FSCA
and present the Kac determinart formulas for each mod-
ule. For K & 3 there always exist modules where the
Kac determinant factorizes into a product of more fun-
damental new determinants. For these modules we also
present the new determinant formulas. We recover the
well-known Kac determinant formulas for the Virasoro
and superconformal algebras, and elaborate on the case
of the spin-4/3 parafermion current algebra (i.e. , the
K = 4 FSCA) of Zamolodchikov and Fateev [8]. This
algebra has three modules {the so-called S, D, and R
modules) as opposed to the superconformal algebra that
has only two modules (i.e. , the Neveu-Schwarz and Ra-
mond modules). We discuss in detail the Kac determi-
nant formulas for the S and D modules and the Kac and
new determinant formulas for the B module. We also
give a few low-lying levels to clarify notations.

In Sec. III we derive the Kac and new determinant for-
mulas using a generalization [9,10] of the Becchi-Rouet-

Stora-Tyutin (BRST) operator of Felder [11]. We also
derive the relation between the Kac and new determi-
nants. The zeros of the Kac determinants are given in
Refs. [5,9,10]. To derive the Kac and new determinant
formulas, we need to fix the orders of these zeros, as well

as the zero mode contribution. For level K ) 3 FSCA's,
the orders of some zeros of the Kac and new determinants
for a given module come &om the string functions that
give the counting of states in a different module. This
is never the case for the Virasoro and superconformal
algebras.

Next, we turn to the applications of the Kac determi-
nant formulas. In Sec. IV, using our results for gen-
eral K, we deduce the values of the central charge c
and conformal dimension 6 for which FSCA's can have
unitary representations. In particular, we sketch the
nonunitarity proof for the SU(2) minimal series and ar-

gue that the only unitary models are precisely the known

SU(2)rtSU(2)L, /SU(2)It+I, coset models [12].
Recent evidence supports the existence of the so-called

fractional superstrings (FSS's) [13]. A particular repre-
sentation (with c = 5) of the spin-4/3 FSS's has bosons
and fermions living in three-dimensional flat Minkowski
space-time [14]. In Sec. V we discuss the no-ghost theo-
rem for the space-time bosonic sector of this theory, using
the Kac determinant formulas for the K = 4 FSCA.

We also use the Kac determinant formulas for the K =
4 FSCA to examine the physical null state structure of
the critical spin-4/3 FSS (c = 10) and find extra sets of
zero-norm physical states; this property is expected of
any consistent string theory.

II. KAC AND NET DETERMINANTS

'Electronic address: zurabtristan. tn. cornell. edu.
In this section we present the Kac and new determi-

nant formulas for an arbitrary level K fractional super-

0556-2821/94/49(8)/4122(17)/$06. 00 49 4122 1994 The American Physical Society



49 KAC AND NEW DETERMINANTS FOR FRACTIONAL. . . 4123

conformal algebra (FSCA). We recover the well-known

Kac determinants for the Virasoro (K = 1) and super-
conformal (K = 2) algebras, and elaborate on the case of
the spin-4/3 parafermion current algebra (i.e., the K = 4
FSCA) of Zamolodchikov and Fateev [8]. We derive the
Kac and new determinant formulas in the next section.

yK iKG= J ~4 = eBp+ g.K+4 (2.10)

Note 4~ = (4.)t are also primary.
Next we consider the so-called fractional supercurrent

[whose conformal dimension is b = (K + 4)/(K + 2)]

A. Preliminaries

By definition the Kac determinants for a given algebra
are representation independent. The simplest represen-
tation of the level K FSCA (convenient for derivation
of the Kac and new determinants) is a noninteracting
system of the Zlc parafermion (PF) [15] and a free bo-
son. The SU(2)~/U(1) coset model is a realization of the
Z~ PF theory. The chiral SU(2)lc Wess-Zumino-Witten
(WZW) theory [7] has the central charge

3K
K+2 (2 1)

(2.3)

Here y is the free U(1) boson normalized so that
(p(z)p(u))) = —2 ln(z —w). P (z) are the Virasoro
primary fields in the ZK PF theory with conformal di-
mensions

and consists of holomorphic Virasoro primary fields
I'~ (z) of conformal dimensions ~&~~+zll. The indices

j, m 6 Z/2 label SU(2) representations, where

0& j&K/2 and ~m~ & j with j —meZ. (22)

When we factor a U(1) subgroup out of SU(2)lc, we cor-
respondingly factor the primary fields as

Here J z are the conformal dimension 1 creation modes
of the J (z) currents; e—:Poi is the so-called PF energy
operator and g is its first PF descendent. The closed
algebra generated by the currents T(z) and G(z) is the
level K FSCA. [Since e does not exist for K = 1, G(z) is
absent in this case and we recover the Virasoro algebra. ]
The central charge of this algebra is co. If we turn on the
background charge of the y boson, the algebra, generated
by the appropriately modified T(z) and G(z) currents,
remains closed. We note that there exist other FSCA's
with additional fractional supercurrents [6].

The following operator product expansions (OPE's)
define the level K FSCA with arbitrary central charge
c:

(c/2) 2T(u)) BT(u))
T(z)T(u)) =

( )4+ ( )2+ ( )
+

1
T(z)G(ii)) =

z G(io) + BG(u)) +

(2.11)
c

G(z)G(w) = (z —w) —+ 2(z —w) T(w) + . )
+A(c) (z —u))

x (G(u)) + 2 (z —u))(9G(u)) + ) .

The associativity condition for this algebra fixes the
structure constant A (c):

LV = — for ~m~(j.j(j+ 1) m'

+ 2
(2.4)

2c2

3 K+4 z (2.i2)

The SU(2)x algebra has an automorphism

K/2 —j= &~+I@/z (2.5)

With these identifications, we can consistently extend P
to ]m] ) j.

The fusion rules of the PF fields follow from those of
the SU(2)~ theory:

Here ciii is the SU(2)x structure constant for the OPE
of two chiral spin-1 primary fields to give a chiral spin-1
field and [6]

cl = 24/K + co (2.i3)

As mentioned earlier, for K = 1 the G current is ab-
sent. For K = 2, ciii ——0, A(c) = 0, and G is the usual
supercurrent. It is a Hermitian current of conformal di-
mension 3/2. For K & 3, ciii is nonvanishing and

(2.6) Gt = oG, (2.14)

where r = ming, +g2, K —gi —g2).
The SU(2)~ currents are given by

where

~fc& cg )

otherwise . (2.15)

J = v Kg+i exp(+imp/~K),

J = —~K(9',

where @i have conformal dimension (K —].)/K.
The SU(2)lc primary fields read

C~(z) = gH(z) exp[i j&p(z)/v K] .

(2.7)

(2.8)

(2.9)

For definiteness we will take the branch of Eq. (2.12)
that is positive for c & cy.

The vertex operators y~ (0), labeled by the SU(2)a-
quantum numbers j and m, create states in modules of
the level K FSCA: ~y~ ) = y~ (0)]0). The fields pri-

mary with respect to G(z) and T(z) have the form g (z)

[g .(z) = (y~)t are also primary]. G(z) has j = 1 and
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m = 0 and in terms of modings acts on ly~ ) in the same manner as e acts on the PF fields P:
G( ) j (0) ) [

n+2j/(K+2) —1G + vs —2/(K+2) —1G

+z" "+"/' +"G- +2, /(x+2) —i]X' (o), (2.16)

Lp]I) =II&) I-l~) =G„lh) =0, n, r) 0. (2.17)

Here r is in general a rational number.
The module [y.] built f'rom the highest weight state

ly~) is spanned by the states

1 I P GP1 GP9
l

2)
AJi ri rq (2.i8)

where the resulting states have spins j + 1, j, and j —1,
respectively. [The terms not allowed by the fusion rules
(2.6) are absent. ] The positive modes of the T and G
currents annihilate the highest weight states created by
the primary fields:

where the ordering is the same as for the states

a'„. a'„e'„, ~', $(0)l0), n, )0, r), &0.
(2.i9)

Here a „,. represent creation modes of the y boson, while

„, stand for modes of the ZK PF energy operator. Note
that A; can be any non-negative integers, while pk can
take only two values: zero and unity.

The naive counting of states ly~ ) of the form (2.18) is
identical to the counting of states (2.19) with the same
quantum numbers j and m and is given by the level K
string functions C2 [16]:

g2 OO

( 1)r+a a(a+1)j2+r{r+1)//2+ar(K+1} a(j —m)+r{j +m} K+1—2j+a fK+1—j+m]+rIK+1 —j—mj
~m —

3 y. ~ j (2.20
ria=p

Here g is the Dedekind g function:

~(q) = q"" (1 —q") (2.21)

and

4(K+ 2)
(2.22)

For later convenience we define the level of a state
(2.18) as

N =Np+d~, (2.23)

w here A~ is given by (2.4) and

p q

Np ——) A, n, + ) pt, rI, (2.24)

C2 (q) =) C' (q) =q - ) P (N)q . (2.25)

is (generically a rational number) the level of the state
above the highest weight state lyj). The number of its
descendents (i.e., the number of states in the module [y .])2
at level N is given by Pj (N), the latter being a coeflicient
in the power expansion

Ii/4) are the same. Hence the modules [y ] and [pic/z ]

are structurally identical.
We end this subsection with the following remark. An

important feature of level K & 3 FSCA's is the appear-
ance of cuts in the GG OPE (2.11). Since there are two
different cuts on the right-hand side, upon continuation
of a correlation function involving G(z)G(ip) OPE along
a contour interchanging z and m in the complex plane,
it is inconsistent for the correlator to pick up a simple
phase; that is, the current t is non-Abelianly braided.
There is only one FSCA, namely, the spin-4/3 (K = 4)
parafermion current algebra, where it is possible to split
the &actional supercurrent so that the split currents are
Abelianly braided. This makes for important techni-
cal simplifications. For example, it enables one to write
down the generalized commutation relations between the
modes of the split currents and to explicitly calculate the
Kac and new determinants. For other FSCA's the gener-
alized commutation relations have not yet been written
down because of technical diKculties arising from their
non-Abelian braiding properties. Hence, the spin-4/3
parafermion current algebra provides an important check
on the Kac and new determinant formulas presented in
the next subsection, and we consider it in detail in Sec.
II C.

B. Kac and new determinant formulas

The sum over j includes its values allowed by the fusion
rules (2.6) up to identifications (2.5), i.e. , each indepen-
dent string function appears once and only once.

We note that the G current modings when acting on
the highest weight states ly ) and ly~/2, ) (0 ( j

As mentioned earlier, so far the Kac determinant for-

mulas have been known only for the Virasoro and super-
conformal algebras. These Kac determinants are polyno-
mials in the highest weight h. One expects the determi-
nants of inner products of states in modules of FCSA's
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also be polynomials in h. This is the case for some mod-
ules, but not for all.

There are three different types of modules in the Fock
space of the level K FSCA.

(i) In the module [goo], built from the highest weight
state ~goo), the counting of states is given by Co defined
in {2.25). The fractional supercurrent zero mode Go does
not act on ~yo) and the determinant of inner products of
states at any level is a polynomial in h.

(ii) For 0 & j g K/4 the highest weight state ]g~) is an
eigenstate of Go. The counting of states in the module

[)t ] is given by C2~. The determinant of inner products of
states at any level is a polynomial in the Go eigenvalue,
but is not a polynomial in h. However, as mentioned

earlier, the modules [g~] and [y&/2 .] (0 & j & K/4) are
structurally identical. This allows us to construct the
highest weight state ]h) (as a linear combination of ~y )
and ]y&/z .)) that is no longer an eigenstate of Go. The
determinant of inner products of states in the module

[g~ g~ 2
.] built from ~h) is a polynomial in h. The

number of states is given by C2~ + Clj-, 2~(= 2C2~).
(iii) If K is even, there is the third type of modules,

namely, the [y~/4] module. Go is not necessarily diagonal

with respect to the highest weight state ]y~/4). However,

the determinant of inner products of states is always a
polynomial in h. The counting of states is given by C~/2.

Now we define det[M(~)(N)] as the determinant of in-
ner products of states (2.18) at level ¹ It is a gener-
alization of the Kac determinants for the Virasoro and
suPerconformal algebras. For the modules [goo], [y&//4],

and [g 8 y&/2 .] (0 & j & K/4) the determinant is

a polynomial in h, and we will refer to it as the Kac
determinant. For the module [y ] (0 & j f K/4) the
determinant is a polynomial in the Go eigenvalue, but
is not a polynomial in h. We will refer to these deter-
minants as the new determinants. The Kac determinant
for the module [y~ y&//2 .] factorizes into a product of

the new determinants for the [g] and [y&//z .] modules.

First we present (up to positive normalization con-
stants independent of the highest weight h and the cen-
tral charge c) the Kac and new determinant formulas for
the modules described above. Then we give explicit for-
mulas for the zeros of the Kac and new determinants.
Finally, we comment on some features of the determi-
nants for FSCA's.

Q(0) = ) Po(No —n ), (2.27)

where n E N, n ( No.

2. The module I'g~I J, IC is e4jen

(a) Go is diagonal with respect to the highest weight
state ~h;g+):

Go[h;g+) = g+~h;g+) . (2.28)

With the appropriate normalization of Go, the eigenval-
ues g+ are given by

g+ = kgh —c/24. (2.29)

(2.30)

where N = No + K/8(K+ 2), s —r = K/2 mod K and
rs/K & N; 2E = (s+ r) mod K and

Q(K/4) = P~/4(N)/2+ ) P~/4(N —n ) . (2.31)

Here n2 &
¹

(b) Go is not diagonal with respect to the highest
weight state ]h).

The Kac determinant reads

det[~(K/4)(N)] iiQ(K/4)(h c/24)Psj4(N)/2

x (h —h )
'( "'/ ) (2.32)

r, e

where r, s, E, and N are the same as in Eq. (2.30).

8. The module (gj, 0 & j g X'/4

{a) The highest weight state [y } = ]h; g~) is an eigen-
state of Go..

Go]h; g') = g~ ~h; g~) . (2.33)

With the appropriate normalization of Go, the eigenvalue
g& is given by

The Kac determinants for the modules built from
~h;g+) read

det[~(K/4) {N)] c„Q(K/4) (h h )P4(N 4'4/K—)
~ h 4 h

The module (yssJ

The Kac determinant reads

det[JH(o)(N )) = A~(o) [a(h —h„,)] '( ' "'/
~I ~ ~ ~

1'q8

(2.26)

g' = aI Ijc, —c + sgn( j —Z j4) I/a —a', ,

where

]K —4j]
v/24(K+ 4)

and we define, for arbitrary j,

(2.34)

(2.35)

where r, s E N, s —r = 0 mod K and rs/K & No,
2I = (s + r) mod K and

c —co, c (K —4j)
24 ~ 24 8K(K + 2)

(2.36)
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The new determinant reads

det[M (N)] = n~ I) [n(gI —g„,)

X( I )]I'I(X 78/—K)

(2.37)

where N = No + 6., s —r = 2j mod K and rs/K ( N;
2E = (s+ r) mod K and

(2.38)

(b) The module [yI y& z
.], 0 (j ( K/4.

The highest weight state ~h) is a linear combination

of ~g) and ~y&&z .) such that Go is not diagonal with

respect to ~h).
The Kac determinant reads

det[M, ' (N)] = [Ii.(h —ho)]

x [(h —h )(Ii h )]
Pc(N »/K)—

7'I8

(2.39)

where r, s, E are the same as in (2.37).
The Kac determinant (2.39) factorizes as

det[M ' (N)] = [n(h —h')] I(

x det[M ')(N)]det[M( ~' ')(N)] .

(2.40)

The zeros of the Kac determinants (2.26), (2.30),
(2.32), and (2.39) read [5]

C —Cp 2 1
h„, = + 6'. + —(r+ s)ac(I —c

24 ~ 96

The sum over j includes its values allowed by the fusion
rules (2.6) up to identifications (2.5), i.e., each indepen-
dent string function appears once and only once.

We conclude this subsection with the following re-
marks.

(a) We define the Kac and new determinants for a lin-

early independent set of states where the total number
of the T and G modes is minimal. If this number is not
minimal, the determinant will be different by an overall
factor (that can be either positive or negative) indepen-
dent of 6, but in general dependent on c.

(b) For the Virasoro algebra the G current is absent,
while for the superconformal algebra it is always Hermi-
tian. Therefore, for the K = 1, 2 cases n = 1 in all of
the above formulas. For level E & 3 FSCA's, e Hips

sign as the central charge exceeds ci defined in (2.13).
Hence in the Kac and new determinants there appears
the factor of n to the power (defined mod 2) determined
by the total number of the G current modes in a linearly
independent set of states with minimal counting.

(c) For level K & 3 FSCA's, the orders of some zeros
of the Kac and new determinants for a given module
come from the string functions that give the counting of
states in a di6'erent module. This is never the case for
the Virasoro and superconformal algebras.

The examples in the next subsection illuminate these
issues.

C. Examples

Now we consider some concrete cases in order to clarify
our conventions and notations. %e give the Kac and new
determinant formulas up to normalization constants in-

dependent of the highest weight h and the central charge

1. The Viraeoro algebra (K = 1)

We have only one module [goo] and the counting of
states is given by the string function

+(r —s)V'ci —c = hIo+ b. . . (2.41) Co = C,' = 1/rt(q) = q
'~' (1 —q")

n=1
(2.46)

where

1
b„, = (r+ s)i/cII —c+ (r —s)i/ci —c . (2.42)

96

The zeros of the new determinants (2.37) are given by

g~ ~ = a QCI —c + sgn(g —K/4) b~ ~ (2.43)

(g' —g...)(g ~' ' —g. ,) = —(h —h, , ) .

Their orders P (N) are given by

&2-(q) =).&2 (q) =q '""):P-(N)q"

(2.44)

(2.45)

Here 2j = (s —r) mod K. The relation between the zeros
of the Kac and corresponding new determinants reads

Equation (2.26) (with n—:1) reduces to the well-known

Kac determinant formula for the Virasoro algebra [1].

2. The eIIpercorIfornaal algebra (EC = 2)

(a) The Neveu-Schwarz module, or the [gII] module.
According to Eq. (2.25) the counting of states is given

by

1 + n-1/2
~p + C2 —1/16p—: p p=Q

~ 4 E 1 —cfn=l
(2.47)

Fq. (2.26) (again with n—:1) now reduces to the Kac
determinant formula for the Neveu-Schwarz module.

(b) The Ramond module, or the [y I ] module. This

is the simplest [y~I4] module. The counting is given by

the string function
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gl —1/16 1/16 + ~
1 —q

(2.4s)
where

The level of a state in this module according to Eq. (2.23)
is defined as N = No+ 1/16, where No is the level of the
state above the highest weight state. Equation (2.32)
is then the Kac determinant formula for the Ramond
module [4].

To illuminate the Kac determinant formula (2.30) for

the [y&//z] module, we consider the Ramond module built

from an eigenstate lh; g+) of the supercurrent zero mode
Go. Because of the zero mode relation

A+ = o.A = A = +1
) 0!= —1

ifc&8,
otherwise .

(2.55)

(G+)t = nG+ . (2.56)

The G+ currents have the following Hermiticity prop-
erties:

we have

Go = Lp —c/24,

g+ = kQh —c/24 .

(2.49)

(2.50)

The algebra (2.54) obeys a Zs symmetry. The G+(z)
and T(z) currents have Zs charges q = kl and zero,
respectively. The Zs charge q is defined mod 3.

The modes of the currents

A linearly independent set of states at level 17/16 =
1 + 1/16 reads T(z) = ) z " L„, G+(z) = ) z " / G,+ (2.57)

l&i) = L-ilh &+) l&z) = G-ilh ~+) . (2.51)

The Kac determinants of these states can be computed
using the superconformal mode algebra:

satisfy the commutation relations

det(M~~&) = 4(h —hi z)(h —hz i), (2.52) [L,L„] = (m —n)L +„+—(m —m)8
12

where hi z and hz i are given by Eq. (2.41) at K = 2 and

j = 1/2. Note that at this level the Kac determinant is a
polynomial in h. This holds at all levels for all the [g&/z]
modules.

I,Gx =
(
——r

i
G+~„. (2.5s)

8. The epin g/8 paraf-ection current algebre (X=4)'

G+(z) + G-(z)
i[G (z) —G+(z)]

if c&8,
otherwise . (2.53)

The chiral fractional supercurrent G(z), whose confor-
mal dimension is 4/3, can be split into two pieces:

The modings of the currents G+(z) and the general-
ized commutation relations (GCR's) for them depend on
a representation of the algebra. First we consider the rep-
resentations that correspond to the integer spin j mod-
ules. The Fock space falls into sectors 'Rq labeled by
their Z3 charge. The currents G+ act on the Fock space
sectors according to the rules

The currents G+ (z) are Abelianly braided (i.e.,
parafermionic), and with the T(z) current form the closed
spin-4/3 parafermion current algebra of Zamolodchikov
and Fateev [8]:

G+(z)G+(i()) =

1x (G+(w) + —(z —w)()G+(w) +. ),

G (z)G (m) =+ — = 1 3c 2

(z —io)s/s 8
—+ (z —w) T(w) +. . .),

(2.54)
(4/3)G+(i()) BG+(io)

Z —QP Z —QJ

(c/2) 2T(io) BT(io)
z —m4 z —m2 z —m

G: 'Rq -+ 'Rqyi . (2.59)

With these actions, the mode expansions of the G+ cur-
rents are de6ned as

G+( )~.(0) = ). "+"G+, . (, ,)/. ~.(0) (2.6o)

where yq is an arbitrary state in 'Rq. These mode expan-
sions can be inverted to give

ps&e( ) = f, , '""'~'(x)X.(o) ( ' )

Here, p is a contour encircling the origin once, where

yq(0) is inserted.
The G„modes satisfy the GCR's
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g- (r') G+
e=o

= A+G+,2+2q +3
(2.62)

e=o

when acting on a state with the Z3 charge q. Here ce
are the binomial coeKcients

Kac and new determinants it sufBces to consider only
the states gR(0) that are Zs singlets. The modings of
the G+ currents then are given by the OPE's

(1 ) )-(l
e=o

(2.64)
G (z)yR(0) = 2 3 ) z"~ ~ G+ &2yR(0),

According to the Hermiticity assignments (2.56) and
the mode expansions (2.60), the Hermiticity properties
of the GP modes are (G+) t = o.G

The highest weight states ~h; q) with the Zs charge q
satisfy the conditions

Lpih;q) = hih;q), L„ih;q) = 0,

n C Z, (2.66)

where the overall normalization is chosen for later conve-
nience. These mode expansions can be inverted to give

G
( )] ~h'q): 0 n ) 0

(2.65) G.; ~ (0) =2 ', '"""G'( )X (o) (267)
~2%i

Next we consider the representations of the algebra
corresponding to the half odd integer spin j modules.
The fields z4)3G+(z)yR(0) (where yR is an arbitrary
state in the Fock space) are double-valued analytic func-
tions, i.e. , the fields yR(z) create square root cuts in
the complex plane. For the purpose of calculating the

Here, p is a contour encircling the origin twice, where

yR(0) is inserted.
The modes G+&2 are related to each other via G+&2 ——

(
—1)"nG due to the single-bypass relations discussednj2

in Ref. [8]. Defining G„~2 = G &2, we find that the modes

G„y2 satisfy the GCR

) D, , G.-cG +c + G iG.+c
(e)
(-,' --,') 2 2

e=o

3c (n' 5= —
(
—~)"' G'-+~I( —~)" +(—~)"I i"-+—

I

———I~-+-) (268)
8 g8 48r

where D( &)
are the binomial coefBcients(a,P)

(1 —z) (1+x)~ = ) D(~ lPlz
e=o

(2.69)

Lp~h)R = h~h)R ~ Ln~h)R = 0, Gny2~h)R = 0,

According to the Hermiticity assignments (2.56) and
the mode expansions (2.66), the Hermiticity properties
of the Gn~2 modes are (G„ys) = (—1)"G

The highest weight states satisfy the conditions

GO+ G4 ) 3n

n'(q) („r
i)i2 ( ) - sn'+n r'
1/3 (G2 q ) 3n +2n

n'(q) l,„
(2.71)

n & 0. (2.70)
4 0

3~4 ) - Sn'+sn
n'(q) („:,

Now we turn to the description of the spin-4/3
parafermion current algebra modules where the counting
of states is given by the K = 4 string functions [16,17]:

&i + &i = &3 + &3 = 1/&(q') .

According to Eq. (2.25) we define
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Cp :—CP+ C2 + C4 q
1 12 ) pp(N)qN q 1/12(1 + ql/3 + )

CP + C2 + C4 —1/12 ) P (N) N —1/12( 1/12 + 2 3/4 +
Cl + C3 —1/12 ) P (N) N —1/12( 1/16 + 9/16 + )

C3 = C3+C3 = q
' ' ) P3/2(N)q = Ci

(2.72)

We also define the following combination of the string
functions:

I

creation operators. The Kac determinant can be calcu-
lated using (2.58) and (2.63):

—1/12 ) P(N) N (2.73) det(Wsi/3) = n(h —h, ,) . (2.78)

where r, s C N, 6 —r = 0 mod 4, rs/4 & N, and

Q(S) = ) Pp(N —n ) . (2.75)

Here n C N and n & N. The zeros h„, of the Kac
determinant (2.74) are given by Eq. (2.41):

c —2 1 -2
h„, = + —(r + s) /2 —c + (r —6)v 8 —c

24 96-
(2.76)

Note that the order of the zeros P(N —rs/4) comes
from the sum Cp + C2 defined in Eq. (2.73), not just
&om Cp.

We present a few low-lying levels explicitly to clarify
the notation. There is Pp(1/3) = 1 state in the Sl
submodule at level 1/3:

I&) = G-, lh;0) (2.77)

(a) The S module, or the [yp] module. This module
is built from the highest weight state lh;0). We define
the level of a state as N = Np, where Np is the level of
the state above lh;0). Equation (2.60) gives N 6 Z or
N g Z+ 1/3. The S module falls into three submodules,
SlP) and Sl+), labeled according to the Z3 charge of the
states. The St ) submodule contains the states (with
quantum numbers j = 0, 2 and m = 0) at integer levels,
while the Sl+) submodules consist of the states (j = 1
and m = 0) at levels N C Z+ 1/3. The number of states
at level N in each submodule is given by Pp(N) defined
in (2.72).

For the S module we define the Kac determinant at
integer levels as that of the Slo) submodule, and at lev-
els N C Z + 1/3 as that of the S~ ) submodule. The
Kac determinants for the Sl+) and Sl ) submodules are
identical. We choose the normalization (h; Olh; 0) = 1.

The Kac determinant formula for the S module is given
by

det(~N) aP(s) [a(h hs )]P(N—"./4) (2 74)
h ~

r, s

At level 1 there are Pp(1) = 2 states in the SlP) submod-
ule:

141) = L-ilh;o), 142) = G:.G' Ih o) . (2.79)

The Kac determinant can be obtained using the commu-
tation relations (2.58) and GCR's (2.62) and (2.63):

det(M1) = 3(h —hi, i) (h —h2 2) . (2.80)

and the Kac determinant is given by

det(JH4/3) = 3(h —hi 1) (h —h22)(h —hi 3)(h —hs 1) .

(2.82)

(b) The D module, or the [yi] module. This module

(of the [y&/4] type) is built from the highest weight state

lh; —1). We define the level of a state as N = Np + 1/12,
where Np is the level of the state above lh; —1). Equation
(2.60) gives N 6 Z+1/12 or N E Z+3/4. The D module
falls into three submodules: D~ ~ and D~+~. The D~+~

submodules consist of the states (j = 1 and m = 1) at
levels N C Z + 1/12, while the Dl ) submodule contains
the states (j = 0, 2 and m = 1) at levels N p Z + 3/4.
The number of states at level N in each submodule is
given by Pi(N) defined in (2.72).

For the D module we define the Kac determinant at
levels N 6 Z + 1/12 as that of the D~ ) submodule, and
at levels N E Z+3/4 as that of the DlP) submodule. The
Kac determinants for the D~+~ and D~ ~ submodules are
identical for N ) 1/12. We choose the normalization

(h; —llh; —1) = 1, Gp lh; —1) = gh —c/241h;+1).
The Kac determinant formula for the D module is

given by

det(M ) = a~ (h —c/24)

At the next level N = 4/3 there are Pp(4/3) = 3 states:

141) = L-iG ilh~0),

(2.81)

142) = G', G'. Ih;o), 143) = G:.Ih;o),

All the other states at this level are linearly dependent
on (2.77). For instance, using the GCR (2.62) we have
Gp G+, lh;0) = (A+/2)G, lh;0), and we choose the

S S
state (2.77), since it has the minimal number of the G

(h hD )P(N rs/4)—
~ ~

where 6 —r = 2 mod 4, rs/4 & N ) 1/12, and

(2.83)
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Q(D) = P1(N)/2+ ) P1(N —n ) .

Here n ( N. The zeros 6„, are given by

c 1
h„, = —+ —(r + s)1/2 —c+ (r —s)1/8 —c

24 96

(2.84)

-2

integer levels j = 3/2 and m = 1/2, or j = 1/2 and
m = 3/2. ) The number of states at level N is given by
Pri2(N) + Psi2(N) = 2P1i2(N) defined 1n (2.72). We
choose the norxnalization R(hlh)R = l.

The Kac determinant formula for the A module is given
by

(2.85)

For example, at level 3/4 = 2/3 + 1/12 there are
P1(3/4) = 2 states in the Dion submodule:

I& ) = G'. Ih -1) i&2) = G:.G. Ih; -1), (2 86)

det(M1v) = [a(h+ 1/48 —c/24)] 'i'l

x [(h hR )(h hR )]Page(N ra/—4)
~ ~

P)B

where s —r = 1 mod 4. The zeros 6„, read

(2.95)

and

det(M~«) = ~(h —c/24)(h —h1,3)(h —h3, 1) . (2.87)

At level 13 12 = 1+ 1/12 there are P1 (13/12) = 2 states
in the D( submodule:

Ip, ) = I. , lh; —1), I$2) = G+,G, lh; —1), (2.88)

and the Kac determinant reads

det(M13i12) =
3 (h —c/24) (h —h1 3) (h h3 1)

I$1) = Ih)R, I$2) = Golh)R (2.97)

and the Kac determinant can be calculated using Eq.
(2.58) and GCR (2.68):

c 1 1 -2
+ (r + s)/2 —c+ (r —s)+8 —c

24 48 96 .

(2.96)

We give a few low-lying states in the B module. At
level 1/16 there are 2P1i2(1/16) =2 states,

(2.89) det(M, mrs)
= a(h+ 1/48 —c/24) . (2.98)

We also give the first nontrivial level in the D module
built &om the highest weight states that are the eigen-
states of the fractional supercurrent zero mode Go.

At level 9/16 = 1/2 + 1/16 there are 2P1i2(9/16) = 2

states

Golh;g+) = g+lh;g ) .

With our normalization of Go in Eq. (2.29),

(2.90)
I41) = G 1lh)R ~ I4'2) = G &Golh)R .

The Kac determinant at this level is given by

(2.99)

G++ Go
i(G, —Go+)

ifc(8,
otherwise . (2.91)

det(M i ) = —n(h+ 1/48 —c/24)

x (h —h1 2) (h —h2 1) . (2.100)

The eigenstates of Go read At level 17/16 = 1+ 1/16 we have 2P1i2(17/16) = 4
states:

~(lh; -1) + Ih;+1))
Ih;g+) =

~(lh -1) +&lh +1))
if c(8,
otherwise .

(2.92)

I41) I'—1lh)R ~ I42) = I' —1Golh)R

I$3) G—1 lh)R, i&4) = G—1Golh)R

and the Kac determinant

(2.101)

(2.102)

1&1 ) = G' lh g+) 1&2) = G: Go lh g ) (2-93)

They correspond to the eigenvalues g+ = kgh —c/24.
At level 3/4 we have the states det(M17&1s) =

31 (h+ 1/48 —c/24) (h —h1, 2)

x(h h2 1)(h h1 4)(h h4, 1)

(2.103)

The corresponding Kac determinants read

det(M3«) = a(h —h13)(h h31) . (2.94)

(c) The R module, or the [y1I2 y I2] module. This
module is built from the highest weight state lh)R that
is not an eigenstate of the Go operator. We define the
level of a state in this module as N = No + 1/16, where
No is the level of the state above lh)R. Equation (2.66)
gives N C Z/2 + 1/16. (At integer levels j = 1/2 and
m = 1/2, or j = 3/2 and m = 3/2, while at half odd

Golh;g+) = g+lh;g+) .

With our normalization of Go in Eq. (2.34),

(2.104)

if c(8,
otherwise . (2.105)

(d) The Ql+l modules, or the [y3I2] and [gIIz] mod-

P1i2(N) gives the number of states at level N in

the R(+) modules built from the highest weight states
lh g'):
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The eigenvalues g+ are given by

g+ = 6 gh + 1/48 —c/24 .
8 6

(2.106)

The corresponding new determinant formulas read

det(/HN )

Q(R)
'

[ (
+

) (
+

)]Pygmy(N
vs/—4)

(2.107)

where r, s are the same as in (2.95) and

Q(R) = ) P,(2(N —n2) . (2.108)

Here n2 & N.
The zeros of the determinants are given by

gv, e = v'8 —c

8~6
1+ sgn(j —1) (r + s) v 2 —c+ (r —s)/8 —c,

~96
(2.109)

where 2j = (s —r) mod 4.
As an example, we consider the Rl+l-modules at the

lowest nontrivial level N = 9/16. There is one state in
each module:

A. BRST operators

We consider the representation of the level K FSCA
constructed by turning on the background charge of the

y boson in the SU(2)~ WZW model discussed in Sec.
II. After the background charge is turned on, the energy-
momentum tensor of the y boson reads

T+ = —4(&p) + 2ap8 (p ~ (3.1)

the BRST operator [9,10] in a particular representation
of FSCA's via a noninteracting theory of the Z~ PF and
a single boson with the background charge. Since by def-
inition the Kac and new determinants for a given algebra
are representation independent, our derivation is valid for
all the representations of FSCA's with modules classified
in Sec. II.

In Sec. III A we deduce the highest weights of the pri-
mary fields for which there are null states in the modules.
The Kac and new determinants vanish for these values
of h. In Sec. IIIB we derive the conformal dimensions
of the null states. The difFerence between these confor-
mal dimensions and the highest weights of the primary
fields gives the lowest levels at which the null states ap-
pear in the corresponding modules. There we also derive
the multiplicities of the null states at higher levels. This
fixes the orders of the zeros of the Kac and new deter-
minants. In Sec. III C we point out the relation between
the Kac and new determinants, and via this relation de-
rive the contributions in the Kac determinants due to the
&actional supercurrent zero mode.

(2.110) The total energy-momentum tensor of the theory is given
by

The new determinants can be calculated using Eq. (2.58)
and the GCR (2.68) T = T~+TpF, (3.2)

det(Ms&&s) = sa(g —g] 2)(g —g2 &) .
~(+) 4 (2.111)

where TpF is the energy-momentum tensor of the Za. PF.
The total central charge is

The Kac determinant (2.100) is related to the new de-
terminants (2.111) via

C: Co 240' p & Co
2 (3.3)

det(Mg]~s) = a(h+ 1/48

—c/24) det(JH&&zz) det(Mg&zs ) .

(2.112)

This factorization generalizes to all levels.
Some of the examples of the Kac and new determi-

nants presented in this section will be useful later for the
discussion of the null state structure of the critical K = 4
&actional superstring theory. The Kac spectrum of high-
est weights h„, for the K = 4 case was first given in Ref.
[8]

III. DERIVATION OF KAC AND NEW
DETERMINANT FORMULAS

In this section we derive the Kac and new determinant
formulas for an arbitrary (integer) level K FSCA using

Once we turn on the background charge, the SU(2) Jc
symmetry is broken. However, the off-diagonal currents
J+(z) [see Eq. (2.7)] can be modified so that they remain
the spin-1 screening currents:

where

8+(z) = @,(z) exp[ia~y(z)], (3.4)

1
A~ = 0!0+ 0!0+— (3.5)

S (z)G(m) - + reg,W(m) (3.6)

where the single pole term is absent [W(tu) is some op-

The only remaining symmetry that survives the presence
of the background charge is the fractional superconforrnal
symmetry. The fractional supercurrent G commutes with
the screening charges S~+~, i.e.,
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erator] and G is given by (3.9)

(3.7)

Prom the requirement that the primary fields of Eq.
(2.9) remain primary with respect to G(z) and T(z),
we find the following expression for the possible primary
fields:

If we take np to zero we will recover Eq. (2.10).
The currents T(z) and G(z), defined in (3.2) and (3.7),

generate the level K FSCA (2.11) for the values of the
central charge c ( cp [6].

Now we consider the BRST operators [9,10)

XI „„,(z) = p', (z) exp[ip„„&(z)], (3.10)

where P„„=2 (1 —n) n+ + 2 (1 — n') n and n, n'

are integers satisfying the condition

2j = (n' —n) mod K . (3.11)

Q(+)
p (3.8)

where the z~ integration contour is inside of the z; contour
for j ) i, and all contours start and end at z1. Since the
screening currents, S+(z), are dimension-one operators
and their OPE with G(z) is given by (3.6), we conclude

that Q( commute with T(z) and G(z):

This condition follows &om the requirement that the

BRST operators Q~ be well defined on the Fock space.(+)

(There is no conceptual difference between Q~(+l and

Q„, so from now on we concentrate only on Q~ .)(—) (+)

The operation Q„+ ~P
. exp[iP„„y(0)]) is well defined

if and only if the outer z1 contour closes. By the stan-
dard method we have

1p ~ ~

i=1
exp[io. +y(z, )] exp[iP„,„y(0)]

(z,
i&k

p
x 2A 2&+ Pn ~ I

ZI ) + Z
(

: exp ia+ ) y(z, ) + iP„„(p(0) (3.12)

p

(z, — zg) ~ z, P'+ (0) + (3.13)

[The latter equation follows from the fusion rules (2.6)
and the conformal dimensions of the PF fields given in
(2.4).] Then we make the change of variables z, ~ zi .

u, for i = 2, 3, ..., p and demand the exponent of z1 be an
integer (so that the zi contour closes). This gives p = n
and the above condition (3.11).

The conformal weight of the field g, is given by$)A )fL

BRST mapping of the primary states onto the null states.
The following diagram illustrates the BRST mapping:

(&) c —co 1+ —(n+ n') gcp —c
24 96 T) —8

e
X—g, y, —8

+(n —n')gc, —c

(3.14)

In the next subsection we show that for n = r & 0 and
n' = 8 ) 0 there are null states in the modules built from
the highest weight states ~y. ,). Therefore, Eq. (3.14)
gives the values of the highest weight h at which the Kac
and new determinants vanish. Thus, for n = r & 0 and
n' = s ) 0 Eq. (3.14) gives (2.41).

B. Conformal weights and multiplicities of null states

To deduce the conformal weights and multiplicities of
the null states appearing in the modules, we consider the

~—g) —T' —8
2~—E,r, —8

The vertical axis measures the conformal dimension
of the states: The vertical arrows indicate the action
of the T and G current modes. The T current hasI = 0 quantum numbers, while G has j
and m = 0. Hence in the vertical direction only the

spin j changes. The BRST operator Q„+ has j = 0
and m = r. Therefore, in the horizontal direction only
the magnetic quantum number m varies. In particular,
the action of Q„+ on a field increases its m quantum
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e —n(+)~—j,—r, —s ~r ~—Z,r, —s ' (3.i5)

Here —j = ( E+ r—) mod K = —~'2" mod (K/2) in
agreement with the condition 2j = (s —r) mod K fol-

lowing from (3.11). Since the operator Q commutes
with T and G, the positive modes of T and G annihi-
late ys „„because they annihilate the primary state

This, in particular, means that y - „,is a
primary and descendent at once, hence it is null. The di-

mension of this null state is the same as that of y~
& „

and equals 6„(&)

The modules [y~ „,] and [y~ „,] [2j = (s-
r) mod K], built from the highest weight states y~

and y~ „„aredual. The duality means that each state
in [P „,] has a dual state in [g „,] and structurally
these modules are identical. In particular, the highest
weight state y~ „,is dual to y~ „,in the sense that

the two-point correlation function (y~ „,lg „,) = 1:
The highest weights of the states g~ . „,and g „,are

equal. Thus, the null state y~ „,appearing in the

module [g „,] is dual to the null state X~ „,of the

module [g „,]. These null states have the same confor-

mal dimensions. The level of the state y~ „,above the

highest weight state g~ „„i.e., the lowest level in the

module [g „,] at which this null state appears with mul-

tiplicity one, is given by

(3.i6)

number by r up to periodicity (2.5). In the diagram,

X,„, :0 (0) exp[i~, 'V'(0)][0).
Consider the highest weight state y & „,with r, s )

0. According to Eq. (3.11) 2E = (s + r) mod K.
The BRST operator Q„maps this state onto the state

, that is a descendent of the highest weight state
2

X—g —f

dents of y &„, with spin j' at the level N is given
)

by P~&(N) [= P&~ (N)], where P~ (N) are defined in Eq.
(2.25). Because of duality, the counting of descendents

of the null state ys „,in the module [y~ „,] is the same

as the counting of descendents of the null state y
in the module [g . „,]. The orders of the zeros of the
Kac and new determinants are precisely given by this
counting.

Note that only the highest weight states in the BRST
cohomology are the true highest weight states [10,11]. In
this sense, only the states y~ „,and g . „,with r, s )
0 are the highest weight states, whereas the state y~

& „
\

is not. The highest weight states y~ „,and y~ „,are

dual to each other, that is, if y „, is a bra vector in

the Fock space, then y~ „,is its corresponding ket
vector. The y momenta of these states add up to 2ap
to make up for the presence of the background charge so
that their two-point correlation function is nonvanishing.

Now we turn to the Kac determinant formulas deriv-
ing whose explicit form is our primary goal here. We are
ready to write down the Kac determinant formula (up to
a positive normalization constant independent of h and
c) for the module [goo] of an arbitrary level K FSCA.
Since the &actional supercurrent zero mode Go does not
act on the highest weight state in this inodule, the de-
terminant of inner products of states is a polynomial in
h at the lowest nontrivial level. Then by induction it is
a polynomial at all the higher levels. This immediately
follows from the counting of the null states derived using
the BRST operator. Thus, we arrive at (2.26).

In other modules, however, the zero mode Go acts on
the highest weight states. As pointed out in Sec. II, the
determinants of inner products of states are polynomials
in h only for some modules, but not for all. In the next
subsection we resolve this issue and derive the contribu-
tion of the zero mode Go into the Kac determinant via
the relation between the Kac and more fundamental new
determinants.

The modi6ed level of this state, that we de6ned in Eq.
(2.23), is then

TS
N~, s = —+ (3.i7)

The descendents of the null state y - „„which
is primary, are null states as well. However, those are
not primary. There is a one-to-one correspondence be-
tween the descendents of the primary state y &„,and

'l 1

the descendents of the null state y - „,manifested
in the BRST mapping. Thus, the number of the de-
scendents of y~ - „,with spin j' at some level N
in the module [y~ . „,] is the same as the number
of the descendents of y & „,with the same spin j'
at the level No ——N —N„, above the highest weight
state y & „,in the module [y~ & „,]. The modified

level, defined in Eq. {2.23), corresponding to No is then
N = No + bl ——N —rs/K The number .of descen-

C. Zero mode contribution

In this subsection we derive the zero mode contribu-
tion. This will complete our derivation of the Kac deter-

minant formulas for the [y~&4] and [g y~&z .] modules

(0 & j & K/4) and the new determinant formulas for the

[y'] modules (0 & j g K/4).
Consider the module [y.], 0 & j g K/4. The form of

the zero mode algebra is fixed by the OPE's {2.11) and
the structure constant A(c) (2.12),

Go —2a'v'ci —«o —(Lo —&') lX,') = o, (3 18)

where we choose the normalization JV of the Go operator

G{.)&,'{0)= u. -~ +'~~~ +'~G, &~{0)+, (3.19)

so that in (3.18) there are only two parameters a~ and
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h~. The Go mode is diagonal with respect to the highest
weight state lx,'),

h,,"= XK/' = ./24 . (3.3o)

Golx,') = g'lx,'),
and Eq. (3.18) becomes

(3.20)

Thus, in the module [XK/ ],

g+ = +)/'h, —c/24 . (3.31)

(g')' —2a'g'gc, —c —(6 —h,') = O, (3.21)
The determinants of inner products of states, correspond-
ing to the eigenvalues g+, read

where h is the highest weight of lx ).
To Gx the quantities a~ and h~, we consider the eigen-

values g„, of the Go operator corresponding to the high-

est weight states lx) „,) created by the vertex operators
(3.10) in the representation (3.7) of FSCA via the ZK
PF and a single boson with background charge. We have

Golx', ...) = g...lx', „,.) . (3.22)

We determine the form of g„, from the explicit repre-
sentation of the G(z) current via (3.7) and the primary
fields X) „,via (3.10):

det [M (N) ]

Q(K/4)
[(

6 (1)
) (

6 (2) )]Pe

(iV re/K)—
h 4

(3.32)

where r, s, E, N, and Q(K/4) are the same as in Eq.
(2.3o).

Note that (g+ —g(',.))(g+ —g(',.)) = (g+)' —(g(',.))' =
h —h,„,. This means that the determinants

g~ e = )Ly ci —c + vb„e (3.23)
det[JH(y)/ (N)] = cx~( / ) (h —h )

'
~ 1 4 h

F)8

The quantities (3.23) must satisfy Eq. (3.21) with

6 = A„„where 6„,, is the conformal dimension of the

primary field X) „, and is given by Eq. (3.14). This

condition completely determines a~ and h~:

and

K —4jl
~24(K+ 4)

(3.25)

Here we introduced c-independent quantities u and v,
and

1
b, , = (r + s) /co —c + (r —s) Qci —c . (3.24)
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(3.33)

are the Kac determinants since they are polynomials in
the highest weight h. If Go is not diagonal with respect to
the highest weight state, there is the additional zero mode
contribution in the Kac determinant. This contribution
is given by (h —c/24) «&4( )/ . Thus, we arrive at Eq.
(2.32).

The new determinant for the module [X).] (0 & j g
K/4) is a polynomial in the Go eigenvalue g) and is given

by Eq. (2.37).
Consider the [X) (Et XK/2 .] module (0 & j & K/4)

built from the highest weight state

(3.34)c,, c (j+ 1)(K+ 2 —2j)
24 3(K+ 4)2

(3.26) where pb g 0 and

Once we have derived a~ and h, &, we can solve Eq.
(3.21):

g' = a'gc, —c+ sgn(j —K/4) Ii —ho, (3.28)

For the [X).] module, 0 & j P K/4, we have v = sgn(j—

K/4) and we arrive at Eq. (2.43). For the [XK/4] module

v = +1 for each pair r, s:

(3.27)

(6; g' lb; g' ) = b, , (3.35)

14*) = v'lI g') (3.36)

The new determinant reads

det[M(')(N)] = det((P;lP), )) = «t((b;g'l&e) lh;g'))

We label the operators creating the states at level X
by V. , i = 1, ... , P~(N), where Pz(N) is the number of
states at this level. Thus, the states in the [x ] module
have the form

where

h~ = c —co c (K —4j)2
Q2

24 ) 24 8K(K + 2)
(3.29)

Note that if j = K/4, the coefficient a) vanishes and

Z,g = VtVg . (3.37)

The Kac determinant for the [X XK/2 .] module is

given by the [2P~.(N)] x [2P)(N)] matrix
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(;) {h]Z;1,]h) (h]Z;g Gp]h)

= [[pb[ n(g —g ) ] ' det[M ~ (N)] det[M ~l(N)]
= [2]pb] a(h —hp)] '~ ~ det[M~~~(N)] det[M~ ~ ~~(N)] . (3.38)

This completes the derivation of the Kac and new deter-
minant formulas.

Note, that if h = h~p, the state Gp]h) becomes null and
the Kac determinant vanishes, whereas the new determi-
nants are nonzero.

IV. MINIMAL UNITARY SERIES IN FSCA

In this section we deduce the values of c and h for
which FSCA's can have unitary representations. Sta-
tistical mechanical systems near the second-order phase
transition are always expected to be described by an ef-
fective unitary field theory with a local order parameter.
For the remainder in this section we will thus confine our
attention to unitary theories. We analyze unitary repre-
sentations of FSCA's using the Kac determinants (2.26),
(2.32), and (2.39). If for a given module the Kac deter-
minant is negative at any level, it means that there are
negative-norm states at that level and the representa-
tion is not unitary. If the determinant is greater than or
equal zero, further investigation is needed to determine
whether or not the representation is unitary. We sketch
the nonunitarity proof for FSCA's. Our proof is closely
parallel to that for the Virasoro and superconformal min-
imal series [2,4].

We consider an arbitrary level K FSCA. In the region
cp & c & cq, all h„, with r g a have nonvanishing imagi-
nary parts, while all h„„(0. For c = cq all zeros of the
Kac determinant are real and satisfy the inequality

h„, & j{j+ 1)(K—+ 4)/K(K+ 2) & 0,

2j = (a —r) mod K . (4.1)

This means that in the region cp & c & cq, h ) 0 the
Kac determinant is nonvanishing and that all of the Kac
matrix eigenvalues are positive. Indeed, as h m oo, the
matrix becomes dominated by its diagonal elements that
are strictly positive. On the boundary c = cp we have

h„, = h, „={r—a) /4K+ b,' . (4.2)

Therefore, for e = co and 6 & 0 the Kac determinant
vanishes at the points h = n /4K+ 6, . , n E N, but does
not become negative. Thus, the Kac determinant poses
no obstacle in principle to having unitary representations
of FSCA in the region co & c & c~, h & 0. The only
unitary representation with h = 0 is the trivial one with
c = 0, while there are no unitary representations with
h&0.

When c ) cq (2.11) shows that the G current is anti-
Hermitian and the structure constant A(c) is imaginary.
Therefore, all FSCA's with c & c~ are necessarily nonuni-
tary unless cqqq, defined in Sec. III, vanishes. When

p = 3, 4, . . . (4.3)

(p = 2 is the trivial theory with c = 0). For each p the
allowed values of h are given by

[(p+ K)r —pa]' —K2

4Kp(p+ K)
(4 4)

where 1 & r & p, 1 & a & p+ K.
Thus, we see that the necessary conditions for unitary

highest weight representations of the level K FSCA are
either (for K = 1, 2 there is no upper bound on the cen-
tral charge)

3K 3(K+ 4)'
K+ 2 K(K+ 2)

' (4.5)

or (4.3) and (4.4). That the latter two conditions
are also sufficient, i.e., that there indeed exist unitary
representations of FSCA's for these discrete values of
c and h, was shown in Ref. [10] via the Goddard-
Kent-Olive (GEO) coact space construction [12]. The
fractional superconformal unitary minimal model with
the central charge c„, p & 3, can be realized by the
SU(2)lrSU(2)~ 2/SU(2)a. ~~ 2 coset model. An ex-
ample of a statistical mechanical system with K = 4
&actional supersymmetry is the tricritical 3-state Potts
model.

V. NO-GHOST THEOREM AND NULL STATE
STRUCTURE

OF FRACTIONAL SUPERSTRING

A. No-ghost theorem for subcritical K = 4 FSS

In this subsection we discuss the no-ghost theorem for
the space-time bosonic sector of the subcritical spin-4/3
fractional superstring (FSS). We generalize the Brower-
Thorn proof of the no-ghost theorem for the bosonic
string [3] using the Kac determinant formulas for the

K = 1 or 2 this is exactly the case and there are no
analogs of nonunitarity proof for c & 25 representations
of the Virasoro algebra and c ) 27/2 representations of
the superconformal algebra.

In the region 0 ( e ( co, h & 0 the Kac determinant
is definitely negative at some level except for the points
{c,h) lying on the vanishing curves h = h„,(c) where the
determinant becomes zero. Even on these curves, how-

ever, all points, but the ones where they intersect, have
ghosts. This discrete set of intersection points, where
unitary representations of the FSCA are not excluded,
occur at the following values of the central charge:

6K 3K ( 2(K4-2)i
p(p+ K) K+ 2 & p(p+ K) &

'
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K = 4 FSCA presented in Sec. II. Our discussion, based
on a reasonable assumption, closely parallels that of Ref.
[3], so we shall be brief.

The physical state conditions for the space-time
bosonic sector of the spin-4/3 FSS read

where

L„lphys;q) = G+
~i &&slphys;q) = 0,

Lolphys; q) = v lphys; q), n & 0,
(5 1)

p 8

v(p, s) =) Ai, +) pg. (5.6)

where v~ is the intercept of the physical states lphys; q)
with the Z3 charge q. Since

The Fock space E that consists of the states (5.3) can
be decomposed into the subspace R of the primary states
lh; q), defined as

phys;+1) = Go Iphys; —1), (5.2) I olh; q) = hlh; q), L„lh; q) = G„+
( )islh; q) = 0,

we have v+y = v

Our primary interest in this section is the c = 5 rep-
resentation of the spin-4/3 FSS realized by three free
bosons and the SO(2, 1)z WZW theory [14]. This rep-
resentation has three-dimensional Hat Minkowski space-
time as its target space, i.e. , SO(2, 1) global Lorentz sym-

metry, allowing for the particle interpretation of its scat-
tering amplitudes. The tree level scattering of the physi-
cal states does not couple them to the spurious states. In
this section we argue that the bosonic physical spectrum
of this theory is &ee of negative norm states. This, in
particular, would mean that the tree level scattering is
unitary.

The Fock space of this string theory consists of the
states

l(~) (~) ~)

{5.3)

No = ) An+) piro', (5.4)

above the state ly). The metric tensor of these states is
given by

where the ordering is the same as in (2.19). Here no „,
i = 1, . . . , p, are the timelike (p, = 0) creation operators
of the world-sheet boson X"(z), p = 0, 1, 2, while e

k = 1, ..., s, are the timelike creation operators of the
spin-1/3 world-sheet field e"(z). The state ly) is created
from the state exp[ik X(0)]l0) with the momentum k" by
the spacelike creation operators of the fields X'(z) and
e'(z), i = 1, 2. Even though the spacelike components of
e"(z) couple to the timelike component, lg) is assumed
to be a positive norm state since SO(3)z is &ee of ghosts
and the spacelike components do not change when we

rotate SO(3)z to SO(2, 1)2 (the bosonic spacelike creation
operators certainly do not spoil unitarity). The timelike
operators a and e „create negative norm states, i.e.,
ghosts, in the Fock space of the FSS. The goal of the no-
ghost theorem is to prove that there are no ghosts among
the physical states that satisfy the above physical state
conditions.

The states (5.3) are at the level

n&0, (57)

and the subspace of spurious states 8, de6ned as the
orthogonal complement of 'R in T. Thus, T = 'R 8.
The subspace 8 is spanned by the states

L"„," I."„{G'„,)" . . (G'„)'lh; ) (5 8)

[where the ordering is the same as in (5.3) and at least one
of the numbers A, or pi, is nonzero] provided that their
Kac determinant is nonvanishing (the latter condition
ensures that these states are linearly independent). The
physical states then are the states with h = vq = Np+6&,
where b,„is the Lo eigenvalue of ly; q).

Consider the physical states with the intercept vq and
the subspace Sq of the spurious state space 8 that con-
sists of the states with the Lp eigenvalue vq and the Z3
charge q. According to the Kac determinant formulas for
the K = 4 FSCA, as 6 ~ —oo, the metric tensor of the
states in 8~ at level No coincides with (5.5). If we now

require the condition

det(Miv) g 0 for all h ( v~ —No (5.9)

be satisfied at any level Np & 0, then the counting of
states in 8~ at level No, given by (5.4), is the same as the
counting of states (5.3) with the Lo eigenvalue v~. More-
over, the metric of spurious states in Sq coincides with

(5.5) at any level since the Kac determinant is a polyno-
mial in h and the condition (5.9) is satisfied. This, in par
ticular, means that the number of negative norm states
in the Fock space with the Lp eigenvalue vq is the same
as the number of negative norm states in Sq. The latter
subspace by de6nition consists only of spurious states,
therefore, there are no ghosts among the above physical
states. In addition to the above condition we should also
check the level zero for the absence of ghosts because the

Gp zero modes may create negative-norm physical states.
Note that the above analysis can be applied to any rep-
resentation of the spin-4/3 FSS with only one timelike
direction. Equation (5.9) is then a sufficient condition
for the absence of ghosts in the physical spectrum.

The Z3 charge q is a quantum number conserved in the
tree level scattering processes. We refer to the physical
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states with q = +1 as the V sector, and the physical
states with q = 0 as the T sector. The lowest-lying V-
sector state is a massless vector particle, whereas its T-
sector counterpart is a tachyon.

The states that are both spurious and physical are the
so-called null states, i.e., they have zero norm. The null
states in the V sector come from the S~+~ and D~+~ sub-
modules; the null states in the T sector are those in the
S~ ~ and D~ ~ submodules.

Now we turn to the ghost structure in the V sector. If
c & 8 the only real zeros of the Kac determinant relevant
to the V sector appear in the S~+~ submodules and are
given by

tent string theories. Nonetheless, the Kac determinant
formulas for FSCA's allow us to examine the null state
structure of plausible critical FSS with an arbitrary level
K world-sheet fractional supersymmetry. In particular,
we recover the well-known results for the bosonic (K = 1)
and superstring (K = 2) theories. We analyze the null
state structure of the spin-4/3 (i.e. , K = 4) FSS at the
critical central charge and find extra sets of zero-norm
physical states.

First we review the discussion of Ref. [9]. The zeros of
the Kac determinants for the level K FSCA are given by

C —Cp 1+ —(r + s)pcs —c+ (r —s)gci —c
24 96

c —2 2 1 2

h„„= (1 —r)& ———,
24 4 4

(5.10) (5.15)

where r is an odd integer. On the other hand, No &¹'"= r /4 + 1/12 and v~i —No & v~i —1/12 —r /4.
Therefore, taking into account the inequality (5.10) we
conclude that in the V sector the condition (5.9) is al-
ways satisfied for intercepts vyi & 1/3 in representations
with c & 8. However, in this sector the zero modes may
spoil unitarity. From (5.2) we find that if ~phys; —1) is
a positive-norm physical state, then ~phys;+1) has the
norm

(phys; +1[phys; +1) = (v —c/24) (phys; —1~phys; —1),
(5.ii)

that is non-negative if and only if v & c/24. Thus, we
have the absence of ghosts in the V sector for the follow-

ing range of v = v~i and c:

Here r, s F N; cs ——3K(K + 2) and ci ——24/K + co',

b~ = j(K —2j)/K(K+ 2), where 2j = (s —r) mod K.
Tjie Kac determinant for the modules with j g 0 also
vanishes at h~~ = (c —co)/24+ A~ (see Sec. III).

The zero h = h„, (i.e., the null state) first appears at
the level

(5.i6)

v = h„, +Np". (5.17)

Regardless of the central charge, there always is a null
state at level Nz' above the highest weight state [hi i) =
~0). For K ) 1 the intercept of this state is

where 2E = (s + r) mod K. The intercept of a physical
null state is given by

V sector: c/24 & v & 1/3, c & 8 . (5.12)
(5.i8)

T —sector: v & (10 —c)/8, c & 8 . (5.13)

For c & 8 the condition (5.9) is automatically satis-
fied in the B sector, because none of the zeros of the
Kac determinant are real in this region. The zero mode
contribution restricts the intercept to be greater than
c/24 —1/48. Thus, we have the absence of ghosts in the
B sector for the following values of v~ and c:

R —sector: v~ ) c/24 —1/48, c & 8 . (5.i4)

B. Null state structure of critical FSS

Any consistent string theory is expected to have extra
sets of physical null states at the critical central charge.
It is yet unclear if fractional superstrings exist as eonsis-

The case v = 1/3 and/or c = 8 was included by continu-
ity.

Next we consider the T sector. If c ( 8, the only real
zeros of the Kac determinant relevant to the T sector
appear in the S~ l submodule and are given by (5.10)
with r being an even integer. We have the absence of
ghosts in the T sector for the following values of v—:vo
and c:

1,K+1v = h1 ~+1+Np (5.19)

This set of constraints has a solution only at the critical
central charge [9]

6K 24
Ccritical = C1 + CP — +K+2 (5.20)

For the bosonic string theory c„;tie ~
——26, v = 1.

For the space-time bosonic sector of the superstring the-
ory we also obtain the well-known result: c„;tie ~

——15,
v = 1/2. In the fermionic, or Ramond sector of the su-
perstring theory there also are two sets of physical null
states. The first appears at level zero due to the van-
ishing of the Kac determinant at h = c/24. This gives
the Ramond sector intercept v~ = c/24 = 5/8. The sec-
ond set with the same intercept v~ appears at the level

for K = 1 we have v = 1. This physical null state belongs
to the sector of the FSS theory that contains the massless
vector particle (in open FSS) or the graviton (in closed
FSS).

The second set of physical null states that belong to
the same sector is built from the highest weight state
~hi a+i). Their intercept must be the same as that of
Eq. (5.18). On the other hand, according to Eq. (5.17)
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No' ——1 above the highest weight state ~hi z ———3/8)
(c = iS).

Equation (5.20) gives c„;&,, i = 10 for the K = 4 FSS.
According to Eq. (5.18) the intercept of the V-sector
physical states is v = 1/3.

In the T sector at c = 10 there also are two sets of phys-
ical null states with the intercept v = 1/3. The first one

occurs at level No' ——2/3 in the D( ) submodule built
from the highest weight state ~hi 3 — 1/3). However,

the second set appears at a rather high level No' ——3
in the S~ ~ submodule. It is unclear if this will pose a
problem for unitarity. The no-ghost theorem for-the crit-
ical K = 4 FSS is needed to answer this question. In
any case, it is likely that the T sector (that contains the
tachyonic ground state) should be projected out in any
consistent string model.

There is another possibility if the T and V sectors can
have different intercepts. There are two sets of physical
null states in the T sector at c = 10 and e = 0. The
first set appears at level No' ——1 in the S~ ~ submod-
ule built from the highest weight state ~hz z ———1), and
the other one occurs at level No' = 5/3 in the D( ) sub-
module built from the highest weight state ]br 7 = —5/3).
The ground state in this case is no longer tachyonic, but
massless.

Extra sets of physical null states also occur in the R
sector at c = 10 and the intercept v = 3/8. The first

set appears at level No' = 1/2 above the highest weight
state ]hi 2 ———1/8), and the other one occurs at level

No' = 1 above the highest weight state ]hi 4 ———5/8).
The above analysis of the physical null state structure

of the K = 4 FSS indicates that at least the V and R

sectors can be expected to be &ee of ghosts at the critical
central charge.

VI. CONCLUSIONS

In this paper we presented and derived the Kac and
new determinant formulas for an arbitrary integer level K
fractional superconformal algebra. Thus, although com-
plicated, the FSCA's can be studied using tools devel-

oped in conformal field theories. Now we know the Kac
and new determinant formulas for infinitely many alge-
bras, and only for three of them these determinants can
be explicitly calculated. These are the (super)Virasoro
and the spin-4/3 parafermion current algebras, for which
the (generalized) (anti) commutation relations are known.
For the rest of the FSCA's the generalized commutation
relations have not yet been written down because of the
complications due to the non-Abelian braiding properties
of these algebras.

Since all of the necessary tools for the rational level

It FSCA's have been worked out [18j (namely, the Z„~v
parafermion theory, the rational level K string functions,
and the BRST operators), it is straightforward to gener-
alize the Kac and new determinants to those algebras.
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