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Evaluation of the one-loop effective action at zero and finite temperature: Scalar fields

Clarence I.. Y. Lee
California Institute of Technology, Pasadena, California 91125

(Received 6 December 1993)

A method for determining the leading quantum contributions to the effective action for both zero and

finite temperatures is presented. While it is described in the context of a scalar field theory, it can be

straightforwardly extended to include fermions. An extrapolation procedure which can significantly

enhance the computational efficiency is introduced. This formalism is used to investigate quantum

corrections to the nucleation rate in first-order phase transitions.

PACS number(s}: 03.65.Sq, 05.70.Fh, 11.10.Wx, 11.27.+d

I. INTRODUCTION

The evaluation of quantum corrections to classical
solutions is an important problem which pervades much
of modern theoretical physics. However, while effective
potentials have been studied extensively, methods for
determining the effective action are less well developed.
Moreover, the actual evaluation of such effects for realis-
tic systems has often been hampered by their general in-
tractability to analytical solution and the lack of eScient
computational methods, although there have been efforts
to address this problem [1—5].

In the effective potential approximation to the effective
action, quantum fluctuations are integrated out about a
constant classical field —but this is not expected to be
adequate because the classical field is generally an inho-
mogeneous configuration. The derivative expansion [6]
improves on this by accounting for spatially varying
background fields; its leading term is the effective poten-
tial. The expansion is a perturbative approximation
which extracts the dominant contribution of short-
distance quantum effects on long-distance physics. When
it converges, it provides an efBcient means for performing
calculations. However, when it diverges, one must often
resort to brute-force techniques which entail an explicit,
computationally intensive evaluation. Furthermore, the
derivative expansion fails whenever the potential V is
nonconvex ( V" (0) in some region of space, which in-

cludes an important class of perturbatively calculated po-
tentials [7]. It is clear that a general method, which is
also applicable to such cases, is needed.

In this paper, a method for calculating the quantum
effects arising from the effective action is presented. The
next section contains the general formalism for evaluat-
ing the effective action. Section III discusses the exact
formulation of the computational method as well as ex-
trapolation techniques which improve its convergence
properties. This formalism is applied to the analysis of
phase transitions in Sec. IV [7].

II. GENERAL FORMALISM

where V is the tree-level potential which has a (classical)
vacuum at P„. Since this paper considers 3+1 dimen-
sions exclusively, renormalizability constrains V to have
no polynomials in P of higher power than a quartic. The
classical field P is determined by the equation

a„a~y= —v(y) . (2.2)

The contribution of one-loop quantum effects to the
effective action can be written as

where p = V"(tI)„) and the trace runs over space-time
coordinates. ' Part of this trace can be evaluated as
TrX'"=Tr'J(t~X"'~t)dt, where Tr' runs over the
remaining spatial degrees of freedom. Since this paper
deals only with time-independent P fields, specializing to
this case means that states in the energy basis ~to) are
eigenstates of the operator in X"'. So inserting a com-
plete set of such states and performing a partial integra-
tion yields

2drod
—N2 —V2+P2 2~

(2.4)

where the subscript j indexes the eigenstates, then

Observe the nonlocality of this expression; this generic
feature of loop corrections makes exact analytical treat-
ments difficult. The remaining trace can be conveniently
performed over the eigenstates of the operators in X"'.if

and g. are chosen. such that

[—~'+l 'l0,'=(~,')'0,' (2.3)

[ —&'+ V"(P)]g, =(to, )'ttt, ,

'The trace excludes possible negative and zero modes of the
operator t) + V"(P). When such modes arise, they must be ex-
plicitly removed and treated diS'erently [7].z(y) =,'a„ya~y v(y), —
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(2.1)
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Consider a scalar field theory with the Lagrangian den-
sity
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TrX"'= ——f g (co —co )dt .(1)

Hence the one-loop effective action can be written as

S,ft(p) =f [X(p) —&(p, )]d'x

E(P)=E„(P)+E"'(y,A)+E„(y,A), (2.6)

~here E„is the energy of the classical field configuration

E„(P)=—f [X(P)—X(P„)]d x, (2.7)

E'" is the one-loop contribution

E"'(y, A) =-
N (AJ

(2.8)

and E„is the energy due to the one-loop counterterms

E„(P,A)= —fX„($,A)d x . (2.9)

At finite temperature T, the free energy F replaces E [7]:

F =E AF =E'" F"=E
cl cl ct (2.10)

for bosons, P(x, r) is periodic in Euclidean time r with
period T ', and there is an additional contribution due
to one-loop effects [7]:

N /T

EFr =T gin
cP /T

1 —e
(2.1 1)

Observe that no additional counterterms need to be add-
ed to F" because finite temperatures do not change the
short-distance behavior of the theory.

In the following section, we describe the method
developed to evaluate the quantum corrections b F& and
b,F& formally given by Eqs. (2.8) and (2.11). While for
some special situations, the co~ can be obtained analytical-

ly, this is unfortunately not possible for a general poten-
tial V"(P). Instead the eigenvalues must be found nu-

merically; then, for b,F&, the bare sum g 0 (co —co ) is
J

computed explicitly, and finally the counterterm sub-
tracted; for AFr, the sum in Eq. (2.11) must be performed
term by term. To attain reasonable accuracy this sub-
traction has to be done at a large cutoff A (to achieve
convergence) when both the bare sum and the counter-

+ f ——g (~ —co )+fX„(P,A)d x dt .
co. (A

J

(2.5)

The bare sum in TrX" ' is divergent; it is regulated in Eq.
(2.5) by a momentum cutoff A, and a counterterm
X„(P,A) has been added to render it finite.

por time-independent fields p, it is more convenient to

focus on the energy E of the system which is related to

Seff through

S„(y)= E(—y) f dt .

Then

term (which individually diverge as a function of the
cutofi) are numerically very large. Since the final result is
much smaller, each term has to be determined very pre-
cisely, resulting in a heavy computational burden. Fur-
thermore, the straightforward approach of evaluating the
free energy by a "brute-force" term-by-term summation
of the expressions in Eqs. (2.8) and (2.11) until conver-
gence is reached is also computationally inefficient.

III. METHOD OF COMPUTATION

To circumvent the above-described problem of having
to compute both the regulated bare sum and its counter-
term to very high numerical accuracy, the three-
dimensional problem is first decomposed into channels of
definite angular momentum. Then for each channel, the
divergent part of the bare sum is analytically removed
through subtraction with the corresponding divergence
in the counterterm, leaving a much smaller finite piece.
Since the contribution of higher partial-wave channels
decreases rapidly, this procedure overcomes the problem.

An improved computational method is then presented.
It is based in part on the observation that the higher-
energy modes in the spectrum of Eq. (2.4) are less per-
turbed by the potential V"(P) due to the nonuniform
background field P than the lower-energy ones. This al-
lows us to formulate an approximation method which ac-
counts for the contribution of the high-energy modes ac-
curately (where the accuracy of the approximation in-

creases with the energy) so that only some of the lower-
energy modes need to be treated exactly [2].

A. Exact formulation

(r, 8,$)= u„,(r) Yt~ (8,$}, —1 (3.1)

where the radial wave function is determined by

di 1(1+1)+ + V"(P(r ))—~„, u„,(r) =0
1 T

(3.2)

with the boundary condition u„&(0)=0. The Y& are the
spherical harmonics corresponding to a state with total
angular momentum I and z-component m.

The difference in the eigenenergies co and co of the un-

bound states (co)p} can be characterized by the phase
shift between the (asymptotic forms) of the corresponding
continuum state eigenfunctions 1(t and f, as was first
shown in one dimension [1]. Since the phase shift is gen-
erally a well-behaved, smoothly varying function of the
energy, it is relatively easy to calculate. Hence it is con-
venient to express the free energy in terms of this quanti-
ty. To determine the phase shift, we consider Eq. (2.4)
which determines the fluctuations about the classical field
configuration.

Since most classical solutions P exhibit spherical sym-
metry [P=P(r}],we will restrict our analysis to such sys-
tems. Then the solution to Eq. (2.4) can be separated into
radial and angular parts by choosing an eigenfunction of
the form
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The corresponding equation for u„& where V"(P) is re-

placed by p,

d 1 (1+1)
q
+ +p (c—o„(} u„ I(r}=0, (3.3}

where (21+1)n&(co) is the density of states of angular
momentum 1 for the potential V"(P) with an analogous
definition for nI . On taking the continuum limit
(L~ ~ ), it follows from Eq. (3.8) that the densities of
states are related to the continuum phase shift through

has an exact analytical solution:
d5, (~)

nI(co) =nI (co)+-
7T d co

(3.11)

u„~ (r)=&2k„rj &(k„r), (3.4) Now if Eq. (2.4) has N bound states, then since Eqs. (2.4)
and (2.3) must have the same total number of states,

where j& is a spherical Bessel function and k„=co„@,.—
These solutions have the asymptotic form N+ g(21 +1)f n&(co)dc@= g (21+1)f n&~(co) dco .

I P I P

u„((r)~csin k„r0 lm
Il P —+ 00 (3.5)

(3.12)

The potentials we consider behave asymptotically as
V"(P(r))~p when r~~ (which corresponds to those
with finite action). For such potentials, the asymptotic
behavior of the solution to Eq. (3.2}will be bF, (A) = g(21 +1)bFI(A),

I
(3.13)

For a finite potential, this implies Nm =5(p)
It is convenient to define the free energy in each angu-

lar momentum channel such that

u„I(r}~v 2sin k„r +51(k—„), r ~ 00 . (3.6)
lm

ll b Fr = g(21+ 1)EFT,
I

(3.14)

These equations serve to define the phase shift 5& for each
angular momentum channel 1. Note also that both u„&
and u„& are (21+ 1)-fold degenerate.

To facilitate the counting of states, it is convenient to
discretize the eigenvalue spectrum. This procedure can
be achieved by enclosing the system in a box of radius L
(where L is much greater than the range of the potential
V" ) and imposing the boundary condition

F"(A)= g(21+1)F("(A);
I

then, from the above equations,

(3.15)

hF', (A)= — g (co„I—p) — g f 5I(co) da),2» 2m I~nI ~1"

and to similarly partition the counterterm energy as

u„((L)=0,
which requires that

(3.7)

and

(3.16)

k„L— +5I(k„)=no. .lm
(3.8)

Note that such a discretization is implicit in the formal
sums in Eqs. (2.8) and (2.11). The values attained by c0

(before discretization) as defined by the energy eigenvalue
of Eq. (3.3) is a continuous spectrum ranging from an en-
ergy of p to infinity. The corresponding spectrum for co

determined by Eq. (3.2) will generally consist of some
discrete bound states with energies co &p and a continu-
ous spectrum with energies co )p . The difference in
structure between the continuum spectra of the two sys-
tems manifests in a de'erence in the respective density of
states. Hence it is appropriate to express the sum over
eigenenergies for the states in the continuum as an in-
tegral over the density of states:

gcoj. = g (21+1}f conj (co) dc0, (3.9)
j I

+co~ = g (21+1)co„I+g (21+1)f conI(co) dc0,
I P

~nI ~&

(3.10)

~nI ~T

EFz =T g ln
1 —e

~nl ~&

51(~)
dco .

co/T

(3.17)

The Appendix discusses the renormalization of the La-
grangian given by Eq. (2.1). It is shown there that the
contribution of the counterterms to the energy are of the
general form

f g(c0 p p)—f h(—x)d x
(2m. )' 2m.

=—f Tr'(gh ), (3.18)

where g is a power of the propagator, h is a function of P
and its derivatives, and Tr' is a trace over the spatial vari-
ables. The partial wave decomposition of these contribu-
tions is achieved by taking the trace with respect to the
eigenstates of Eq. (2.3) denoted here by ~

nlm ):
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Tr'(gh)= g g (nlm~g(co +V —p )~n'I'm')(n'I'm'~h(r)~nlm )
nlm n'I'm'

=—g(21 +1)f g(co —p —Ic ) f h(r) u 1(r)~ dr dp .
I

From the Appendix, the counterterm contribution to the free energy is

F"(A)=——f Tr'[bp(co, p)[m (r) —Ic ]+ ,'bp(—co,p) [m (r) —Ic ] ]
oo 2' '

(3.19)

(3.20)

where

b,p(co,p) =
p p +lg

has an approximate WKB solution given by

exp I f "k
( co,y )dy

0fwKB( ) gk( )
(3.23)

and m (r)= V"(P(r)). Evaluating the trace using Eq.
(3.19) yields which is valid when the wavelength is much less than the

distance scale over which k varies:

F(' (A) = A

p 4~ (p2+ 2)l/2

X f ~uz~(r)~ [m (r) Ic ]dr—
1 1

( 2+p2)3/2

where k(co, x) is the local wave number

k(co, x) =+co —V"(P(x)) .

Hence the accuracy of the WKB approximation increases
with energy. The phase shift for such solutions is given
by

X f ~uz&(r)~ [m (r) I2 ] dr 'dp, (3—.21)
(co) =f [k(co,x) —lim k(co,y)]dx . (3.24)

where A =+A —Ic is a three-momentum cutoff.
This completes the formulation of the method for the

exact calculation of the free energy. However, as we
have remarked above, the convergence of such an exact
computation can be suSciently slow so that extrapolation
techniques can be useful. Among the various such pro-
cedures, we consider in particular the WKB approxima-
tion, which provides an analytic expression for the phase
shift that is valid at high energies and hence can
significantly reduce the effort required to evaluate the
phase shift integral [2].

B. WKB-improved method

A differential equation of the form

Explicitly,

' 1/2

swtKB(co) = co —m (r)—, dr
l(l +1)

a(co) r

1/2
1(l +1)

N Pao(co)
(3.25)

I (I +1) 2 2 1(l +1)
co —m (a)— —0 and Qj p =0

a Q
2

where a and a0 denote the classical turning points defined
by

d +k (x) f(x)=0
dx

(3.22) Applying this method to Eq. (3.2) yields an analytic ex-
pression for the energy integral of the phase shift:

I/2

f 5~ (co) dco= f f co —m (r) — 8(A —Q(r})dco
P 0 Q(r) T

' 1/2

CO P
I (I+1) 9(A —Qp(r)) dco dr (3.26)
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with

Q(r) = m (r)+ 1(I + 1)
2

momentum channel is logarithmically divergent:
'I

gF'(A)= ln —
lt [m (r) p—]dr+0(A ) .

4m p o
(3.27)

2+ 1 (1 +1)
Qor = p+

and e(x) is the unit step function. Observe that since the
high-energy behavior of the phase shift is independent of
the angular momentum, the energy of each angular

I

Now the divergent piece in hF
&

can be analytically corn-

bined with the infinite part of Ff ' in Eq. (3.21) to leave

only finite terms. Performing this subtraction and taking
the limit A~ ao gives the final expression for the WKB
improved, temperature-independent renormalized free
energy:

hF) „„=lim [hF((A)+F("(A)]

(a)„~—p) — f 5~(co) de —f "[g~(Awra, r)+et(r)[m (r) —p ]
~2 (p2

+p((r}[m (r) p, ] ]—dr .

In this equation, y& is the contribution from the WKB phase shift above Awxa:

m,~(r)~ —m((r)2
y&(r) = ——A,s(r)QA, s(r) —m&(r) + A,sir)Q—A,s(,r) m& (r)—

(3.28)

A,s(r)+ QA,g r) —m((r)2
+—m&(r) ln

2 p

A,s(r)+ QA, s(r) m& (r)———m&(r) ln
2 p

(3.29)

where hF, „„=g(2l+1)bF', „„. (3.32)

m((r) =@~+0 2 p l(1+1) 2 2 l (1 +1)
m&(r) =m (r}+

2

and

&2/ j (&)/2 ~l

Kg(r) =
+s +( r)

(3.30)

s'I j((s)I'
(3.31)

0 [ 2+ ( )2]3/2

Equation (3.28} indicates that hF', „„can now be com-
puted by first summing over the bound state energies,
then the continuum state contributions can be evaluated
by explicitly computing the exact phase shift only up to
Aw~a, beyond which the WKB method provides an
analytical expression that accounts for contributions at
higher energies. Note that while the WKB procedure en-
tails an approximation, its accuracy can be made such
that the difference between the exact and the WKB re-
sults is smaller than the desired precision. Finally, sum-
mation over l yields

A,s(r) =max{Aw~a, QO(r)),

A,N(r) =max(Awxn, Q(r) },
and Aw~n denotes the energy above which the phase shift
is computed by the WKB method. The remaining terms
in the last integral come from finite parts of the counter-
term with

Since AFT is not divergent, it can be computed exactly
using Eqs. (3.14) and (3.16}, or by replacing the exact
phase shift 5& above a certain energy scale by the approxi-
mate WKB phase shift 5~ given by Eq. (3.25).

IV. APPLICATION AND DISCUSSION

In Ref. [7] these methods have been used to calculate
the free energy of an instanton configuration which deter-
mines the decay rate in a first-order phase transition.
The computation of hF& will be described first. It is
found that the accuracy available on conventional com-
puters prevents a precise determination of this quantity
when it is straightforwardly evaluated as in Eq. (2.8)—
that is, by doing the bare sum and subtracting the coun-
terterm, without a decomposition into partial waves.
When hF, is computed exactly, by utilizing such a
decomposition, very high numerical accuracy is still re-
quired because for each l the bare sum and F&"(A}must
be evaluated at a large value of the cuto8' A. But since
both quantities diverge as a function of A, we find that
convergence with reasonable accuracy is still dificult to
attain. In contrast, evaluation of AF, „„using the WKB
improved method consisting of Eqs. (3.28) and (3.32) con-
verges rapidly for much lower values of the cutoff A~~a
and typically only the first 50 partial waves need to be
summed; the parameters required for convergence are
very much dependent on the nature of V"(P(r)) and the
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(+i
FIG. 1. Renormalization scheme for the divergent one-loop

graphs with one vertex. A box with a cross denotes a counter-
term insertion.

values we have quoted come from the potentials we have
examined.

The exact computation of AFT can be performed by
evaluating Eqs. (3.14) and (3.17), but at high tempera-
tures it is found that several hundred partial waves must
be summed to attain convergence. When the exact phase
shift is replaced by the approximate WKB expression at
high energies, there is a reduction in the computational
burden and the same number of angular momentum
channels must be summed. The improvement is not
marked as it was for b,F& „„in part because EFr is not
renormalized. The results of these computations are
summarized in Tables IV and V of Ref. [7].

In summary, we have elucidated a method for the ex-
act evaluation the effective action to one loop. The WKB
extrapolation scheme was devised to reduce the computa-
tional efFort. These methods enable an efficient calcula-
tion of the free energy associated with a phase transition,
as detailed above. However, the applicability of this
method is not limited to this example. Rather, it can be
utilized in a broader variety of problems involving the
nonperturbative evaluation of observables in a nonuni-
form background in quantum field theory [8] as well as in
classical systems [9]. It can also be generalized to encom-
pass theories with fermions [10].
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and two vertices corresponding to quadratic and logarith-
mic divergences, respectively.
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where the counterterms are chosen to exactly cancel the
divergent graphs as shown in Figs. 1 and 2. These condi-
tions are imposed at zero external momenta; this choice
has the advantage that the one-loop contribution to the
effective potential V& satisfies
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2 (k is +i e')—(2tr)
APPENDIX: ONE-LOOP RENORMALIZATION

OF THE SCALAR FIELD THEORY

This appendix discusses the one-loop renormalization
of the scalar field theory described by Eq. (2.1). The clas-

The terms in Eq. (A3) involving a and P renormalize the
graphs with one and two external vertices, respectively.
These divergent integrals can be suitably regularized by
imposing a momentum cutoff A.
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