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Exact critical bubble free energy and the efFectiveness of effective potential approximations
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To calculate the temperature at which a first-order cosmological phase transition occurs, one must
calculate F,(T), the free energy of a critical bubble configuration. F,(T) is often approximated by the
classical energy plus an integral over the bubble of the effective potential; one must choose a method for
calculating the effective potential when V" (0. We test different effective potential approximations at
one loop. The agreement is best if one pulls a factor p, '/T into the decay rate prefactor [where
lc'= V"(tI)f )], and takes the real part of the effective potential in the region V" (0. We perform a simi-

lar analysis on the one-dimensional kink.

PACS number(s): 05.70.Fh, 11.10.Wx, 11.27.+d, 98.80.Cq

I. INTRODUCTION

Thermal tunneling and the critical bubble free energy

where the co are eigenvalues of [ —V + V"(P)], and the
(co ) are eigenvalues of [ —V +p ]. We use the identity

[6]

A scalar field theory whose potential V has two local
minima may tunnel out of the false vacuum (P&) by the
nucleation and subsequent growth of bubbles of true vac-
uum (P, ). While we will refer to V as the "classical" po-
tential, it may arise in part from integrating out other
particles in the theory, e.g. , gauge bosons [1], so V may
have implicit temperature ( T) dependence. The nu-
cleation rate per unit volume in the static limit (R T )) 1)
is calculated in the Gaussian approximation (i.e., to one-
loop order) to be [2—4]

—1/2
I 1 ~co — 1 det[c)'+ V"(P}]
V V m T 2 det[c)z+ pz]

where p = V"(Pf ). E, is the classical energy of the crit-
ical bubble, a static and spherically symmetric field

configuration P(r}, of radius R, which extremizes the
classical action [5] subject to period boundary conditions
in Euclidean time. The determinants range over a com-
plete basis of fluctuations about the classical solution
[p(r) or p&], subject to the same boundary conditions.
co &0 is the eigenvalue of the "breathing" mode about
P(r). The second term on the right-hand side of Eq. (1.1)
is from Afileck [3], and the —,

' is from analytically continu-

ing the breathing mode integration [2].
With the periodic boundary conditions

—gin[(2nnT) +co ]
2 .

=—+ T ln(1 —e )+C
2

= T ln 2sinh
N (1.3)

r T'
V 2n 2m. T

' 3/2
~co ~/2T p«~dyr-

sin( co ~/2T)
(1.4)

where the "traditional" bubble free energy

strad —E +gptrad —E +ggtrad +gF trad
1+T c 1

CO.
0

gFtrad ~ I J J +Fct
1

J

(1.5)

(1.6)

The constants C cancel out in Eq. (1.1). The co contri-
bution is then traditionally pulled back into the prefactor.
The three "translation" modes (n=0 and coo=0) are not
treated correctly above; they actually give V(E, /2m. T)
in the prefactor [2], and the remaining coo contribution
(from n%0 modes) gives T in the prefactor. This gives

det[c) +V"(P)]=exp g gin[(2mnT) +co ]
n= —oo j

(1.2)

ct) . /T
1 —egFtrad y~ T lnT N-/T

J 1 —e
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Primes on the sums in Eq. (1.6) indicate the omission of
the translation and breathing modes (col,j = 1 —4).
Counterterrns F"are discussed below.
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We now define'

Fsub —E +gF sub —E +gF sub +gF sub
C C 1+T c

gF sub —~trad
1

—
1

hF'" =bF—"' 4T—ln(T/p) .

Now Eq. (1.4) becomes

(1.7)

(1.8)

P, Ec

2' 2' T

' 3/2
F'" /—T

sin( ~co
~
/2T}

(1.9)

We will find that the effective potential approximation
most closely approximates I"," .

co ~+k +V"(P), r0 —++k +p

and one finds, with m —= V"(P),

(1.10)

1 4 m
Vi(P)= m ln

64m (M 2
——m +2m p ——-p4 22 14

2

[V,+T($)—V, +T(ff)] over all space. No attempt is
made to remove the four translation and breathing
modes. In Eq. (1.6) one substitutes

fd'xf' "

The effective potential

The sums in Eq. (1.6) are often approximated by treat-
ing the fluctuations locally as plane waves to get an
effective potential V, + T

= V, + VT, then integrating

T4
VT((())= I (m /T),22

I(y)= f dx—x ln(1 —e " +~ ) .
0

The expansion of I(y) for realy (2n is [6,7]

(1.12}

2
k

tl 1T Q 5 3 y, + 4(2k)!((2k + 1 )
—y'

45 12 6 32 k i k!(k +2}! (1.13)

where c3=3+21n(4m) —2y=5. 4076. We choose a re-
normalization scheme in which all divergent graphs are
precisely canceled by counterterms so that at zero exter-
nal momenta, V, ( Pf }= V', ( tt)f ) = V", ($f )=0 (and there is
no wave-function renormalization) [8], specifically

Fct= ' 3x. 4A4+1p4 +m2 4A2 —
2J

2

64m

real part of Eq. (1.13), corresponding to ja =b =c=O].
Another method (B), proposed in Ref. [9], replaces the
lower limit of integration in Eq. (1.10) by k=Im [ m] (el-
iminating fluctuations with wavelengths longer than the
bubble thickness), and corresponds to [a =

—,
' —

—,
' ln(2),

b =—,', c=O].

The derivative expansion

m =V"

+m 2 —ln4 4A
2

P m2 2

(1.14)

For configurations (()(x) which vary slowly, the
effective potential approximation is the leading term in a
derivative expansion of the free energy. The next term
(at high T) is [10,11]

In the region m &0 we must modify these results to
give a real answer. For V, we will always take the real
part of Eq. (1.11). For VT let us keep the first equation of
Eq. (1.12), but replace I(m /T) by I'"'s'( ~m

~
/T) where

I(nes)( Y}—
45 12

Y +Y [a+b ln(Y )]

y4

32 3[ln(Y )—c +c]+ (1.15}

Methods we consider are then parametrized by [a,b, c].
The most common and obvious method (A} is to take the

gF«r —/Fat = T
d xm 'V(m }

192m
(1.16)

Scales, approximations, and goals

and again we take the real part (Method A) when neces-
sary. More terms are given explicitly in Ref. [11];they
become increasingly divergent at m =0, where the
derivation breaks down (because an integration by parts
becomes invalid). Also, no attempt is made to omit the
problematic modes. The usefulness of Eq. (1.16) is thus
highly suspect, but we note that derivative corrections
are predicted to be 0(T').

This is somewhat like removing the lowest 4 apj. 's from the
sums in Eq. (1.6), in addition to the lowest 4 ro, s, since their
contribution to F,'" is —4[p/2+ T 1n(1 —e " )]
=4T 1n( T/p).

Our generic tree-level potential will be quartic in P
with $f =0, V"(0)=p, and ((), =o. By rescaling [12]
P=oP, x =x/p, and T=pT we can rewrite the four-
action S0 as
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E
So=

cr 1 3 1
X

p T 2
dp 1 -2 2~+1 -3
dF 2 3

(1.17)

For example, the classical energy is

ElD ~ 2
1

2d~
o P(1 —P)

(2.4)

Note that in one dimension (1D) [compare with Eq.
(1.18)] E,=po E, and hF, z

=pb, F, z, so with scales re-
stored E,' =p,o /6.

K & 1 is a dimensionless parameter; a ~ 1 (degenerate
minima) is the thin-wall limit, while larger v gives thicker
bubbles. With tildes indicating dimensionless results,

E, = (cr /p )E„bF i, r pb Fi, r . (1.18)

II. THE ONE-DIMENSIONAL KINK

The loop expansion [13] is an expansion in (p/a ) and T.
It is sometimes claimed that higher loops should elimi-
nate the complex terms in F,", but this cannot be gen-
erally true since the higher-loop contributions are
suppressed by these arbitrary parameters. Henceforth we
will drop the tildes and work in the rescaled theory (i.e.,
set p=cr =1).

We always use the static approximation [14] (RT )&1}
and the one-loop approximation. In Sec. III we will use
the thin-wall approximation, R &)1. At times we will
make high-temperature expansions, requiring T & 1 (note
the thin-wall and high-temperature limits together imply
the static limit). We are examining the validity of the
effective potential approximation.

In this paper we will study several systems: the one-
dimensional kink, the thin-wall bubble, and two thick-
wall bubbles. We will calculate b,F, and b,Fr for each
system exactly [F,'" in Eq. (1.8)], in the effective potential
approximation [Fr ' from Eqs. (1.11) and (1.12), using
different methods to calculate I'"'s' in Eq. (1.15)], and us-

ing the next term of the derivative expansion [F,"from
Eq. (1.16)].

k = %$
k =

s L & s

n.s —5(k, )
(2.5)

5( k) = 2m —2 arctan(k) —2 arctan(2k),

where we have imposed vanishing boundary conditions
on a box of length L, so s is a positive integer. We drop
the translation mode eigenvalue co&,

' there is no negative
eigenvalue in 1D. In the continuum limit

&3 (Adk d5 +k +1gF trad o~dk2
QF™—T ln( 1 e

—+3/2T)
T

+Fct
2m

(2.6)

dk d5 Tl (1 &k~+1/r)—
o ndk.

In our renormalization scheme the 1D counterterms
analogous to Eq. (1.14) are

Exact results from the eigenvalue sum

The solutions to the eigenvalue equations (setting @= 1)
are known [15,16]:

co, =Q(k, ) +1, co, =0, eo2=~3/2,

co, )2=+(k, ) +1,

Classical results

We warm up by calculating the free energy of a kink in
one spatial dimension [15]:

, = V'(P),

Fct & 4A2+ 1 + m2 2+2 ln 4A2
16m

—m'] ~,="

[3+6ln(4A )] .
1

8m
(2.7)

dP = —+2V(P),
dx

V(P}=—,'P (1—P}' .

(2.1) (This differs from Ref. [15] by 3/8n. due to different re-
normalization schemes; also note their m =p /2. ) We
defin QQsu —gy tra and Qy su —Qy tra Z ln( Z y@ )

and find
The potential is that of Eq. (1.17) with v= l. The kink
solution is (up to an arbitrary shift in coordinate)

P(x) =
—,
' [1—tanh( —,'x) ],

V"[$(x)]= 1 ——', sech'( —,'x) .
(2.2)

Equation (2.1) allows us to convert integrals over x into
integrals over P:

gFsub 1

4v'3
9 = —0.2138,

8m.

3 6ci —3
hF', + z.= —(In&12)T + ln( T)+2' 8m.

3g(3)
+32.3' +

(2.8)

(2.9}

Jo P(l —P)
(2.3) where e& =1+21n(4m. ) —2y=4. 9076, and g(3)=1.2021.

These results are in the row marked "sub" of Table I.
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TABLE I. Kink free energy in low- and high-T regimes.

Method

sub

pot( A)
der( A)
pot(8)

hF)
—0.2138
—0.0916
—0.0916
—0.0916

T 1n( T)

0
0
0
0.4495

—1.2425
—2.1145
—2.1730
—1.7222

LF~+ z

1n( T)

0.4775
0.4475
0.4775
0.4775

1.0522
1.0522
1.0522
1.0522

0
0
0
0.0045

T 2

0.0036
0.0036
0.0036
0.0036

19elective potential and derivative expansion results

The 1D effective potential for real m is [7]

m4 —1 T2-
V, = ln(m }+,Vr = I(m/T), (2.10)

rr —
my y2

6 2 8
+ + [ln(y )—c, ]

g(3)y' +
646

I(y) =

(2.11)

For m & 0 we replace l(m IT) by I '"'g'(
~
m

~
/T) where

I (neg)( Y} + Y[ff+b ln(Y )]

p2

S 1[ln(Y )—c +c]+ . (2.12)

Method A gives [&=S=c=0] and method B gives
{8=1—ln(2), b = —1/2, 8=0].

We integrate (the real part of) Vl from Eq. (2.10) over
all space, using Eq. (2.3), to get SF'""'= —0.916, which
difFers significantly from ~'," = —0.2138 (note each re-
sult is renormalization dependent, but the difference is
not). This difFerence, which was calculated in Ref. [15],
dominates the low-T regime.

A similar integral for the high-T expansion gives

SF'+'T"'=in[2(~3 —~2) ]T+ ln(T)2'

as incorporated in the third line of Table I. It is a very
poor approximation to Eq. (2.14}!

Results from method B are given in the fourth line of
Table I; these are also unsatisfactory. In fact, the choice
[it=1.940, b =c=OI in Eq. (2.12) would give the correct
("sub") results, but it is not clear if there is any physics in
this choice.

III. THE THIN-WALL CRITICAL BUBBLE

V Q= V'(P) (3.1)

is a thin-wall bubble, given approximately by the kink
solution in the radial coordinate, Eq. (2.2) with x =r —R
and R »1 [2]. The tree-level critical bubble energy has
volume and surface terms:

'2P

E, =4m r r — +V r
1 d
2 dr

= ——mR i V(1)i+4mR E,'
4
3

(3.2)

where E,' = ,' was give—n in Eq. (2.4), and

~ V(1)~ =(Ic 1)/6. We—extremize to find the bubble ra-
dius R and energy E,:

Classical results

For ~ close to (but larger than) unity in Eq. (1.17},the
solution to

+ ' '+3~(3) T-'+
Sm 32~3

(2.13)

as shown in the line marked "pot(A)" of Table I. Note
that the difFerence between the true result and the
effective potential approximation no longer lies in the
constant term, but only (as far as we have taken the ex-
pansion) in the T term. It is

2 Sm

K 19(—a.—1 )2

V Scaled V

2'
9

(3.3)

bF'" AFAR""'= —in[4—~3(&3—&2) ]T

=0.8720 T . (2.14}

0.05-

0—
0

-0 05

The next term of the derivative expansion [analogous
to Eq. (1.16}]is

QFder ~Pt dx m
—3 V2(m2}T

96

6
48

in(~3 —~2)T

—0.1

-0.15-

—0.2

—0.25

= —0.0585 T (2.15} FIG. 1. The potential V(tft }for several a' s.
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The wall thickness is of order 1 (i.e., p '). It can also be shown [2] that ro = —2/R, so the static and thin-wall limits

imply that the third factor of Eq. (1.4) is near unity.

Exact results for a domain wall

In the thin-wall limit the surface free-energy density f, r =b,I', r/(4m R ) of the bubble wall equals that of a planar
domain wall [17]. We can thus solve the eigenvalue equation in Cartesian coordinates, using Eq. (2.5} for the radial
wave number k„and plane waves for the tangential k„ to get

A k, dk, k, Qk,i+3/4

unsub

0 2' 2 2

QA2 —k2 dkf+
0 7T

A+1
2'

—2 —4+
k +1 4k +1

gk, +k +1 3A2

2 8m.
ln(4A )

327T2

2
+6 = —0.024 74,

327r2 3

„k,dk,
(3.4}

„dk„
0 77

2 —4 —gk, + k„+ I /T
ln 1 —ek+1 4k+1

We have performed the fr integration numerically, and

fit to an expansion in T ', the results are shown in Table
II in the row marked "sub."

Effective potential and derivative expansion results

Results from integrating the e8'ective potential and the
next term of the derivative expansion, over the bubble

[again using Eq. (2.3)] are shown in the rest of Table II.
Using the general I'"'s' of Eq. (1.15) gives

ff+ r = T (0.0518 b) T ln( T)
1

+ (0. 1545+0.0259 a —0.0242 b) T
—(0.0190)ln( T)+ ( —0.056 12—0.000 514c) .

(3.5)

Matching this to the true f',"+r gives the coefficients

[a,b, c] shown in the first line (v= 1}of Table III.

TABLE II. Thin-wall bubble free energy density for low and high T.

Method

sub

pot( A)
der( A)
pot(B)

—0.02474
—0.006 61
—0.006 61
—0.006 61

T' T ln( T)

—1/4 0
—1/4 0
—1/4 0
—1/4 0.008 64

ln( T)

0.152 15 —0.01900 —0.03712 0
0.154 52 —0.01900 —0.056 12 0
0.151 87 —0.01900 —0.056 12 0
0.16409 —0.01900 —0.056 12 0.00006

—0.000 12
—0.000 12
—0.000 12
—0.000 12

These results are also useful for the study of second-order phase transitions, in which the domain-wall free energy density is set to
zero [17]. Restoring units,

2

f [P""
]=p — +0. 152 15p T, —0.01900 p' 1n( T, lp ) —. . =0,

giving, for p «o., T, =&2/3o+0. 3p+ . . . That is, the critical temperature is a bit higher than the leading result which is in the

literature.
First subtracting the derivative correction of Eq. (1.16) from hF &"+ & would give a values of 0.0109, 0.3877, and 0.5128, respectively.

For the kink it gives 8=2.070. These results are no more enlightening.
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TABLE III. I'"'~' parameters that make hF('+r =SF~"+z.

1.5

1

1.5
2.5

—0.0913
0.2834
0.4188

—36.974
—1.424
—0.180 0.5

We see "derivative corrections" are 0( T}. The deriva-

tive expansion prediction, f,'+z from Eq. (1.16), is a

reasonable approximation to them in this case.

-0.5

r
10

IV. THICK-WALL CRITICAL BUBBLES

Classical results

From Eq. (1.17), the (scaled) potential (Fig. 1}is

1 z 2»+1~3» 4

2 3 2
(4.1)

0.5

—0.5

p (r ) and V" (r), K' =2 .5

Larger») 1 gives thicker bubbles. The minima are at
/=0 and /=1, with V"(0)=1 and V"(1)=2»—1. The
bubble profile is the solution to

P"+2/'/r =$(1—$)(1 2»'P) . — (4.2)
-1.5

Figure 2 plots P(r) and V"(r) for»=1.5 and»=2. 5.
From Ref. [12],the classical energy is, approximately,

FIG. 2. Thick-wall bubble profiles P(r) aud V"(r).

E =""1+—1+ "+ '"
4 1 —a (1—a)2

9]c

(1+2»)

(4.3)
to match the effective potential approximation to the ex-

act result are given in Table III.

Exact, efFective potential, and derivative expansion results

Our method of calculating the exact free energy F,'"b,

formally given by Eq. (1.7), is described in Ref. [8]. The
results for ~=1.5 are in Table IV, and for a =2.5 in Table
V, along with effective potential and derivative expan-
sion approximations. Thin-wall predictions are also
shown for two values of R: one chosen to give the
correct T coefficient ("Thin-1"), and one given by Eq.
(3.3) ("Thin-2"). Finally, the parameters in I'"'s' needed

V. CONCLUSIONS: A NEW PREFACTOR
AND DERIVATIVE CORRECTIONS

We have tested the effective potential approximation to
the critical bubble free energy. The agreement is best if
one pulls a factor of p IT into the decay rate prefactor,
Eq. (1.9), and takes the real part of the effective potential
in the region V" (0 (method A). That is, Fr'""' closely
approximates F,'" =F,'"d 4T ln(Tlp). T—able III shows
that no single set of I'"'s) parameters [a,b, c] does con-

TABLE IV. Thick-wall bubble free energy for ~= 1.5.

Method

sub

pot( A)
der(a)
pot(B)
Thin-1
Thin-2

hF)
—2.13
—2.65
—2.65
—2.65
—1.81
—4.97

T2

—78.61
—78.61
—78.61
—78.61
—78.61
—50.27

T ln( T)

0
0
0
4.76
0
0

hF
T

49.52
45.47
43.98
49.73
47.84
30.59

ln( T)

—5.193
—5.193
—5.193
—5.193
—5.974
—3.820

—15.64
—16.12
—16.12
—16.12
—17.65
—7.46

In our fit to the data we allowed a T term, not shown, and constrained the T, Tln(T), and ln(T) terms.
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TABLE V. Thick-wall bubble free energy for a =2.5 .

Method

sub

pot( A)
der( A)
pot{B)
Thin-1
Thin-2

hF,
—1.34
—1.009
—1.009
—1.009
—0.572
—0.553

—24.90
—24.90
—24.90
—24.90
—24.90
—5.59

T ln(T)

0
0
0
2.48
0
0

17.17
14.05
13.35
15.60
15.15
3.40

ln( T)

—1.408
—1.408
—1.408
—1.408
—1.892
—0.424

—4.60
—4.64
—4.64
—4.64
—5.59
—0.83

sistently better than method A. With scales restored,
E, =O(tr Ip), IsF',"+&=O(T /p), and "derivative
corrections" are

gPsub gP~ot( A) O ( T) (5.1)

This di8'erence is numerically fairly small, and very poor-
ly predicted by the derivative expansion [Eq. (1.16)]. In
summary,

3/2
l~ l&2T F~o IT—=X e "', (5.2)

V 2' 2m. T sin( ~co l2T)
~Fpot( ~] ~sub~~&

where X=e ' ' is a dimensionless number
representing derivative corrections. For the thick wall

bubbles we examined, X was between 10 ' and 10 2 (but
in the thin-wall limit it appears that X) 1).

In 1D, where b,E&"+r is only 0 ( T), derivative correc-
tions [still 0( T), and numerically larger] are much more
significant than in 3D.
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