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Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model
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We study a solvable QCD-like toy theory, a generalization of the Nambu-Jona-Lasinio model, which
implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and
chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system,
corresponding to a (0, 1 ) multiplet and a (0+, 1+) heavy spin multiplet. Consequently the mass
difference of the two multiplets is given by a Goldberger-Treiman relation and g& is found to be small.
The Isgur-Wise function g(m ), the decay constant f8, and other observables are studied.

PACS number(s): 11.30.Hv, 11.30.Rd, 12.38.Aw, 14.40.Gx

I. INTRODUCTION

In recent years, QCD applied to systems containing a
single very massive quark, where one can imagine the
limit M~ 00 to be a reasonable physical approximation,
has been the subject of considerable attention [1—5]. The
pseudoscalar and vector rnesons containing one very mas-
sive and one light quark become degenerate in the
M~ 00 limit, due to a heavy quark spin symmetry again
valid to 1/M. Moreover, Isgur and Wise [1]pointed out
that transition amplitudes, such as weak decays, involv-
ing heavy quarks are described by a flavor-independent
function of the invariant difference in four-velocities,
g(v' u), and therefore a heavy quark spin-flavor symme-
try, SU(2Nf) exists, valid to order 1/M. Georgi has
given a useful field-theoretic construction of this limit [5],
and has studied the consequences and phenomenological
applications of the theory, such as the computation of the
QCD anomalous dimension which controls the perturba-
tive evolution of g(v' v) with scale for u' v &1.

For many purposes one must also implement the chiral
symmetries of the light quarks, in addition to the heavy
quark symmetry. The heavy quark (HQ) and chiral light
quark (LQ) symmetries together control the interactions
of heavy-light (HL) mesons with pions and E mesons, etc.
Several authors have written down model-independent
chiral Lagrangians which involve these symmetries at the
meson level [6—12]. A number of studies of the phenom-
enological applications of these chiral Lagrangians have
been undertaken, such as the computation of the chiral
log radiative corrections to g(v' v) [7] associated with
SU(3) X SU(3}-breaking terms, the study of radiative and
meson decays of heavy mesons [11],and chiral dynamics
including the effects of excited heavy mesons [12].

The chiral Lagrangian introduced by Wise [6]
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represents a straightforward implementation of the heavy
quark and light flavor symmetries in the nonlinear
current form. In this form one needs only identify the
linear flavor symmetries, such as isospin or SU(3},and the
chiral effective Lagrangian, to leading order in the
momentum expansion, is automatically determined, up to
an unspecified axial-vector coupling constant gz. This
effective Lagrangian is then manifestly invariant under
the usual global flavor symmetries, and the full set of
chiral transformations are local gaugelike transforma-
tions which are functionals of the pions. The underlying
chiral representations of the heavy mesons need never be
specified. Model-independent approaches are clearly the
most reliable way in which to minimally implement the
physical symmetries.

We may wish, however, to go closer to the underlying
chiral dynamics than the model independent approaches
allow. We may pose additional questions within dynarni-
cal models which can reveal additional physical conse-
quences to the real world. For example, is there a more
primitive chiral form of the Lagrangian in which the ex-
plicit chiral representations of the heavy mesons are
identified? A related question in the broken phase is-
what is the analogue of the Goldberger-Treiman relation
in the heavy meson system, i.e., what receives mass from
the chiral condensate's mass gap? In the case of the
nucleon-meson system we can similarly write the chiral
Lagrangian in the nonlinear current form, never having
to specify the precise chiral representation of nucleons.
However, if we ask for the linear chiral form we also
know the answer: the left-handed [right-handed] nucleon
is assigned to a (0, —,') [(—,', 0)] representation under
SU(2)z XSU(2)L. Most of the nucleon mass arises from
the chiral condensate, or the vacuum expectation value
(VEV) of X which is (—', 2'). We know this because the
Goldberger-Treiman relation yields the pion-nucleon
coupling constant in terms of the nucleon mass
gNN =rnN/f, and Gg=1

In the case of heavy mesons, however, it is clear that
the meson mass arises primarily from the mass of the
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heavy constituent quark, such as the b quark, and the
chiral mass gap is a perturbation. Our question then is
related to the outcome of a gedanken experiment: what
happens to the heavy-light meson spectrum if we could
somehow restore the chiral symmetry, maintaining the
other features of confining QCD? While the nucleon
mass goes to zero in this gedanken limit, leaving degen-
erate (approximately) massless left- and right-handed
states, the heavy meson masses must remain (approxi-
mately) unafFected. Yet, the explicit linear chiral symme-
try SU(2)t XSU(2)tt must somehow be realized in the
heavy meson mass spectrum in this limit. This leads to
the conclusion that the ground state must become doubly
degenerate with even and odd parity mesons 8& and 82,
respectively, and these must form the SU(2)t XSU(2)&
representations in the linear combinations (B&+B2 )/v'2.
Therefore, the breaking of the chiral symmetry leads to a
mass gap between these parity partners and associated
pionic transitions between parity partners will occur (in

Appendix B2 we give a brief schematic discussion of par-
ity doubling).

It is difficult to imagine that a simple potential model
can capture this phenomenon. The chiral symmetry limit
is relativistic, and the chiral symmetry breaking is a
dynamical rearrangement of the vacuum. Thus, the
naive picture of a heavy meson as a bound state of a
heavy quark and a constituent quark will miss those as-
pects of the physics which involve the necessary mixing
of the parity doubled states. This will show up in the
present analysis in the meaning and quantitative estimate
of g~, and the analogue to the Goldberger-Treiman rela-
tion.

Thus, to better understand these issues it is interesting,
if not essential, to study simple, solvable, strongly cou-
pled toy field-theoretical models in which both heavy
quark and chiral symmetries are present at the funda-
mental quark level, and the dynamics of chiral symmetry
breaking is made explicit. We consider presently the sim-

plest such scheme. We emphasize at the outset that this
toy model is unrealistic and is intended only to convey
the schematics of QCD chiral dynamics in heavy ligh-t

mesons (although we will brazenly attempt a fit to data).
The simple model we consider is based upon a local
gluonic current-current interaction Lagrangian:

where the (i,j) sums extend over all of the fundamental
fermion flavors, both heavy and light, and we sum over
the octet color index A. We view Eq. (1) as essentially a
QCD-inspired generalization of the Nambu —Jona-
Lasinio model. For small g Eq. (1) corresponds to the
low-energy perturbative interaction generated by the ex-
change of a "massive gluon" of mass A/&2. We propose
to study this model using the technique of the large-N ex-
pansion, or equivalently, the fermion bubble approxima-
tion, with a cutoff at A. The model is exactly solvable in
leading order.

Solving the theory in the leading large-N approxima-
tion is equivalent to factorizing Eq. (1) into auxiliary

fields describing the composite pions and heavy-light
mesons, at the scale A and integrating out the heavy and
light quarks to generate the effective Lagrangian at a
scale p&A. The hadrons in our model, both light and
heavy, appear as dynamically generated bound states. In
the light quark, meson sector we recover the chiral quark
model of Manohar and Georgi [13] (with g~~ =1). In the
heavy meson sector we produce various bound states of
the heavy quark and the light quarks, and the full

effective Lagrangian of these heavy meson bound states
coupled to light mesons is determined. The effective La-
grangian is manifestly heavy quark spin and chirally sym-
metric.

We will make certain further simplifying assumptions,
keeping only terms in the renormalized effective Lagrang-
ian that are —1 or =O(pin(A/p)/A), while dropping
subleading terms -O(p/A). This is a drastic approxi-
mation from the point of view of the quantitative applica-
tion of the model, but adequate for capturing the
schematic of the chiral dynamics. We emphasize that we
have in mind, presently, a hierarchy of scales,

p & A «M, where M is the heavy quark mass scale. The
momentum-space loop integrals will extend from p to the
cutoff A. We view in the context of the model A to be a
physical scale below which the theory is nonperturbative
in g, but above which an effective softening of the point-
like approximation due to the perturbative 1/q gluon
propagator takes place. While it is tempting to identify
A with —

AQCD we would hope that A-1 GeV emerges
from a fit to the physical quantities derived in the model.
In fact, the simplest attempt at a fit to ftt and f yields
A-1.35 GeV, and most of the light sector observables
are obtained within a factor of 2. p is an infrared cutoff
which we would like to identify with the scale of light
constituent quark masses.

In the unbroken chiral symmetry phase the model pro-
duces the necessary degenerate parity doubling of the
threshold spectrum of heavy mesons. In addition to the
usual pseudoscalar and vector HL mesons [the B and B*
mesons which form a (0, 1 ) heavy quark symmetry
multiplet], there is necessarily a scalar and pseudovector
HL meson bound state generated, which is a consequence
of the chiral symmetry. This is identified with the

s&
'=

—,
' p-wave radially excited mesons (in the D system

this is distinct from the observed (Dz) states which are

s&
'=

—,', see Ming-Lu et al. [14]). Unfortunately, these

states have not been observed and will be fairly broad res-
onances, but their effects may ultimately be detectable
[12]. Technically, in the symmetric phase we must hold

p fixed at a nonzero value to protect from infrared singu-
larities.

While the HQ symmetry maintains the degeneracy
within the (0, 1 ) and (0+, 1+) multiplets, unbroken
chiral symmetry implies the degeneracy of the two multi-

plets themselves. As we vary the model's coupling pa-
rameter to dynamically induce the chiral symmetry
breaking, the theory develops a mass gap. This leads to a
calculable mass splitting, elevating the (0+, 1 ) HQ mul-

tiplet and depressing the (0, 1 ). The mass gap between
the ground state rnesons and the resonances is constant in
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the M~ oo limit and is given essentially by -gf . This
is the analogue of the Goldberger Tr-eiman relation of the

theory, and is probably more general than our specific toy
model result. Moreover, as a general result of the parity
doubling, the axial-vector coupling constant g~ is not
necessarily expected to be close to unity. In fact, g~
tends to be small based upon our fit, =0.32 [see Appen-
dix B2; it occurs here as a term of order ln(A/p)/A,
which is subleading to 1]. This is a prediction which is
thus far consistent with the upper limit in processes such
as D*~D+m., though a measurement of the full D'
width is still lacking to date. In the limit of very low q
pion emission we can decouple the heavier parity dou-
bling states to return to the effective chiral Lagrangian
for the (0, 1 ) ground state mesons of Ref. [6]. There
remain in the low energy effective Lagrangian potentially
important effects of the heavy resonances in chiral per-
turbation theory [12].

Thus, a key result we find is that the chiral mass gap,
and hence an analogue Goldberger-Treiman relation,
refers to the splitting between parity conjugate heavy
meson multiplets in a heavy-light meson theory; i.e.,
heavy meson chiral theory is a parity doubled implementa-
tion of chiral symmetry. There are other issues of the ap-
plicability of the chiral theory and its consequences
which the present analysis will attempt to address. Al-
though not entirely realistic, the model is completely
solvable for various observables. fs is determined in
terms of the short-distance cutoff on the theory and the
Isgur-Wise function is computed. The Isgur-Wise func-
tion result in the present model involves issues of going
beyond the chiral logs, which arise also in matching com-
posite mesons onto QCD. We will discuss this issue
which is related to consideration of reparametrization in-

variance [14—17].

II. TOY MODEL FIELD THEORY WITH
CHIRAL AND HEAVY QUARK SYMMETRY

A. The light quark chiral dynamics

Let us write the effective Lagrangian in the light quark
sector, including the current-current form of the light fer-
mion interaction Lagrangian of Eq. (1):

(2)

For concreteness we will take ll =(u, d), A,
" are color ma-

trices, and in the limit that the quark mass matrix m ~0
we have an exact chiral SU(2)I XSU(2)z invariant La-
grangian. This is a single gluon exchange potential, gen-
erated by a fake, massive gluon of mass A/v'2. We treat
the physics on scales q (A using Eq. (2), in a fermion
bubble approximation, imposing a UV loop momentum
cutoff of A. Well above the scale A we would imagine the
potential to soften into a 1/q perturbative gluon ex-
change; hence, A plays the role of a matching scale be-
tween strong infrared physics and weak ultraviolet QCD.
Finally, the "theory" in the light sector consists of in-
tegrating out the fermions down to an infrared scale p,
keeping induced terms of order A, and In(A/p) in the

&L, =4(i&—m, )4—gk, X,A —g A X,'4L,

+Tr(B„X„B"X„)—m Tr(X„X„)

+v Tr(m~X„+H. c. )+A, Tr(X„X„X„X„). (3)

X, describes the renormalized composite light mesons.
We have written the renormalized effective Lagrangian,
so that g=g/QZ2. Zz=(g N/16m )ln(A /p ) is the
finite, induced wave-function renormalization constant of
the X field.

A (TrX„X„) term could be included in Eq. (3), though
it is subleading in N„and for SU(2) XSU(2) with (0', m.)

real this is equivalent to the quartic term we have includ-
ed. The theory can be tuned by choosing a sufficiently
large coupling g to develop a chiral-symmetry-breaking
condensate, thus generating a constituent quark mass.
The chiral breaking lifts of the isovector, 0+[1m(n. )]
states. The 0 [Re(m. ) ] pion becomes the Nambu-
Goldstone mode. In QCD the residual U(1) symmetry is
broken by anomalies and the effects of instantons. This
generates additional terms such as an extra 't Hooft
determinant, detX+ H. c. term, which elevates Im(o ) =ri.
Any additional necessary Wess-Zumino terms should be
incorporated as we11.

Since the light sector dynamics is not our principa1
concern in the subsequent analysis we will henceforth as-
sume that the fields (o., m') comprising X are real, so X
henceforth contains only the 0 m' isotriplet and the real
o isosinglet. Therefore, Eq. (3) becomes a linear version
of the chiral quark model in the manner of Georgi,
Manohar, and Holdom [14]. Nonetheless, we can

unrenormalized Lagrangian (we will discard perturbative
terms that are finite, thus subleading, in the infinite A
limit as a simplifying approximation). This generates an
effective Lagrangian of composite particles. This is our
essential approximation to the infrared strong coupling
behavior of QCD, or the "brown muck" of heavy-light
physics. Overall, this is certainly a drastic approxima-
tion. Truncating on dimension-6 operators is, in a sense,
a pure s-wave approximation to QCD, and cannot
dynamically confine the quarks and discarding the sub-
leading terms will limit the quantitative reliability of the
model (the model could easily be improved). The physi-
cal value of A is determined in principle by fitting to the
derived phenomenological parameters. The theory will
contain the dynamical chiral symmetry breaking, and
will determine a chiral Lagrangian of the heavy-light sys-
tem.

Upon Fierz rearrangement it is seen that the interac-
tion Lagrangian of Eq. (2) contains the Nambu —Jona-
Lasinio model. The subsequent analysis is standard. We
can factorize Eq. (2) into a Yukawa theory with a static
auxiliary field X=2(cr+im'r') on the scale p, -A and

then integrate out the fermions to determine the effective
Lagrangian at scales p & A. The field X is 2X2 complex
at this stage, which implies parity doubling of the m and
the parity partner of o. , the g is also present. This
analysis is summarized in Appendix B.

The light sector effective Lagrangian at scales @&A
can be identified with a linear cr model:
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dynamically put the model either in a symmetric phase,
m )0, by choosing g N/4~ & 1, or in a chiral symrne-

try breaking phase m &0 with g N/4m ) 1. The criti-
cal bare coupling corresponds to m =0 as po~0. For
further discussion of the light quark sector see Appendix
B.

B. The heavy-light quark dynamics

Now we focus on the dynamics of rnesons containing
one light and one heavy quark. The model produces one
bound state per channel in the fermion bubble approxi-
mation. We can conveniently solve the theory by factor-
izing the heavy-light (HL) interaction into auxiliary back-
ground interpolating fields with Yukawa couplings to
heavy and light quark vertices. The original four-fermion
interaction is recovered when the auxiliary fields are in-

tegrated out. Upon integrating out the quarks on scales
A to IM, the auxiliary fields acquire induced kinetic terms
on the scale p and thus become dynamical heavy-light
mesons ("8mesons"). In this way we derive the effective
Lagrangian for the HL mesons coupled to the dynamical
pions.

The heavy-light fermion sector interaction Lagrangian,
together with the HQ kinetic term, involves the HL cross
term of Eq. (1) and can be written as

2 gA gA
&HL=Q(ie™)Q—,Qr„2 QA'"

2
f. (4)

Here we may generally take Q =(t, b, c } to be a multiplet
of N& heavy quarks, and M the heavy quark mass matrix.
We will presently consider, however, just a single heavy
flavor in the following discussion. g should be viewed as
the effective coupling at the scale A in both the light sec-
tor and the HL sector of our model. (In a more detailed
discussion one might wish to distinguish the coupling
constant in the heavy-light effective active from that of
the light-light action at A; we ignore this possibility in
this paper. )

Upon Fierz rearrangement of the interaction, again
keeping only leading terms in 1/Nc and writing in terms
of color singlet densities, Eq. (4) takes the form

XHi =Q(ill —M)Q
2+, (Q '0;O'Q. —Q 'r'0 0'r'Q.

-,'Q-'r„V, C'r"Q.
—

—,'Q 'r„rsvp 0'ri, rsQ. »
where i are the isospin indices, and a the heavy flavor in-
dices.

In the heavy quark limit we introduce a projection
onto a heavy quark field with a well-defined four-velocity
u„. Presently we rewrite the full theory identically in
terms of a single four-velocity sector, corresponding to
the four-velocity of the heavy constituent quark or
equivalently the bound state heavy mesons:

1+&Q~ exp( iM—U x)Q(x)

Note that (1+i()Q„/2=Q„, i.e., the field Q, always car-
ries an implicit factor of (1+&)/2. The HQ kinetic term
then takes the form

Q;i"a„Q,. (7)

The Isgur-Wise flavor symmetry is just the group of
SU(EH) rotations on Q;, and is now a manifest symmetry
of our Lagrangian. We will consider just a single heavy
flavor in the following.

We now rewrite the terms of Eq. (5) in a manifestly
heavy spin symmetric form, letting Q~Q, and further
rearranging r matrices. Then, Eq. (5) takes the form

z„,=Q, aU~a„Q„

2

+,', Q.~, e'Q. Q.r'~,-O'r'Q.
2,

1 pf
——; 1 pf—

+Q.ri 2 rsvp 0'r~
2 r„Q.

We have now brought the interaction to a form which
can be factorized by introducing heavy static auxiliary
fields, (B,B'). To do so we must introduce four indepen
dent fields: B(8 ) are 0+(0 ) scalars, while B„(B„)are
1 (1+) vectors. These form a minimal complete set of
auxiliary fields needed to factorize Eq. (8) in the HQ lim-

it. Equation (8) then becomes

&HL=Q. iU "~„Q.+gQ. W, B '. +igQ. r'0;B".+gQ.r„AB '." igQ. r„— rsvp;8 '."+H c.

2A (8 '„8„,+8 ', 8—;„}+2A(8 ',"8;,„+8'„I'8;„„}.

Upon integrating out the 8 fields in Eq. (9) we reproduce
Eq. (8). (Note that the 8 fields do not yet have canonical
dimension of heavy meson fields; see Appendix A. )

Equation (9) is a heavy-spin symmetric forin. We can
assemble the auxiliary fields into complex 4 multiplets

under O(4)=SU(2)i, XSU(2)I, where SU(2)i, (SU(2)&} is
the little group of rotations on Q„(g and gluons) which

preserves u„. One heavy spin 4 multiplet consists of the
0+ scalar together with the abnormal parity (1+) vector
as (B,B ") (the four-velocity label v, and isospin i indices
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are understood}:

8'=(iy 8+y„B "),

8'=(iy 8+y„B ") 1+)
(10}

S=(iy 8 +y„B") I+8

The other 4 multiplet consists of the usual 0 scalar and
a 1 vector (B,B"):

B=(iy 8 +y„B"},

We emphasize that Eq. (12) is exactly equivalent to the
full four-fermion theory in the heavy quark symmetric
and leading large-N limit Eq. (4). The theory forces a
parity doubling of the heavy rnesons upon us because the
chiral symmetry is controlled dynamically by g. For
weak g the linear chiral invariance is realized and the
theory must contain parity doubled meson states. Heavy
spin symmetry organizes the parity partners into heavy
spin 4 multiplets. The effect of chiral symmetry breaking
on the spectrum can now be investigated by solving the
theory and choosing the broken phase.

See Appendix A3 for a discussion of normalization
conventions.

XHz =Q„iv"B„Q„+gQ„( ilia"—y +%') {;1+He.

+A [Tr(%$)+Tr(%'8')] . (12)

Notice that the combination iy 8—"+%' is coupled.
I

Under heavy spin O(4)=SU(2}z XSU(2), rotations the
(B,B ") mix analogously to (8,8"}.Note that v„B"=0
always. We have introduced the calligraphic 8 and 8'
with the explicit projection factors. Falk has previously
written similar effective "superfields" for excited mesons
in model-independent analyses; he includes an extra fac-
tor of y (relative to us} in his writing of effective fields
for the (0+, 1+) multiplet in a model-independent ap-
proach [12); for us the field 8' has overall odd parity
while S is even.

The factorized heavy-light interaction Lagrangian then
takes the compact form

III. FULL EFFEt.l IVE LAGRANGIAN

We now proceed to "solve" the theory. The full
effective Lagrangian for the heavy mesons is derived by
integrating out the heavy and light quarks in Eq. (12)
over momentum scales p & k & A, keeping the leading in-
duced terms. Details of the explicit calculations are
given in Appendix A. We begin the discussion with the
use of the linearly realized chiral symmetry form,
X=—,'(o+in"r), and we derive the nonlinear realization

subsequently below. The loop integrations result in an
unrenormalized effective Lagrangian. By performing a
conventional wave-function renormalization and several
field redefinitions we arrive at the full effective action val-
id to O((p, /A) ):

XLH = —i—'Tr(9v. BS)—i—'Tr(9 'v Bg ) — [Tr($ VS)—Tr(9 'o 9')+Tr(% 'm" rS)+Tr(&"rS) ]LH

h„+ [Tr($(o +rr )%)+Tr($'(o +n )8')]
4A

+ Tr[Sy (Pn r)S 5'y (rIm"r)%' S'y—(8a )S Sy (8——o )%']+3,[Tr($$)+Tr($'8')] .
4

g 2g'QZ, A
gr= r Z 7

VZ2

k„= 2gf.v'&2

1

[A Z, (A+@)/2n. ], —1

1

(14)

The light quark PCAC (partial conservation of axial-
vector current) masses are contained in the "shifted" 0.

field, cr=o+2m QZ2/g. The parameters of this La-
grangian are determined as

Z, = (A —p), Z~= [ln(A /p )] . (15)
8~

The parameters defined above arise from the loop calcu-
lations of Figs. 1 and 2 and are presented in Appendix A.
The g„, h„, and k„are dimensionless. They are deter-
mined in principle by fitting the observables of the model
as in Sec. IV. We will generally take p to be of order the
light quark constituent mass, and it will henceforth be
neglected in the expression for Z&. Note that terms such
as X 'y'(o 8o )X are potentially induced, but they are sub-
leading as =O(1/ln(A/JM)}, relative to the terms we
keep.

We now identify the chiral representations of the com-
posite fields in the effective theory. This can easily be
done by returning to Eq. (12) and examining which heavy
meson linear combinations couple to PL and Pz. If we
define the combinations
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—(8 —i 8'), X2= —(X+iX'), (16)
1 . , 1

2

inspection of Eq. (12) reveals that %,[%2] couples to

gz =(1+y )f/2 [lijl =(1—y~)y/2]. Thus, the chiral

representation of %&[Sz] must be (0, —,') [(—,', 0)]. Writing
in terms of X=—,'(o +i z w.) (we will henceforth ignore the
m contributions which can easily be restored by shifting
o ~cr), the effective Lagrangian becomes

XLH= —i —,'Tr(X&v BX&)—i —,Tr(Xzv BXz)——[Tr(g&X gz)+Tr(%2XX, )]

+ b, + XtX [Tr(g,g, )+Tr(%2%2)]+ [Tr[%,y'(8X )S2]—Tr(zy'(8X)%&)] .

Inspection of the effective Lagrangian [as well as Eq. (12)]
confirms that it is manifestly invariant under
SU(2) X SU(2) provided the fields transform as

$,=(0,—,'), %2=(—,',0), X=(—,', —,') . (18)

We now see that indeed, Eqs. (13) and (17) have a struc-
ture analogous to that of a parity doubled nucleon
theory, with 8—(n,p)z +&, the normal even parity nu-
cleon doublet, and 8'-(n, p)~, the odd parity dou-
bling partner. We give a brief synopsis of such a system
in Appendix B 3. The essential results are that the axial-
vector current couples only through the perturbative k„
term and describes transitions between parity partners,
and the parity degeneracy will be lifted by (o ).

X= ,'f„exp(in—"~/f ), 2X/f =( (19)

We can pass to the current form by performing the chiral
field redefinitions

+1~(+1 ~ +2~(+2 .

We then have the Lagrangian

(20)

Note that Eqs. (13) and (17) describe the heavy meson
dynamics in either a broken or an unbroken phase; i.e., it
is simply a linear O. -model form. In the spontaneously
broken phase of the heavy meson theory we can pass to
the nonlinear realization by replacing X with a unitary
matrix field which is a function of angular pion fields, and
0. is now decoupled. Thus, the nonlinear realization is

.jLH= —
—,'Tr(g&v (iB+dz )8&)——,

' Tr(gz v(i 8 +dz )Sz)— [Tr(%&%2)+Tr(%zS&)+H.c. ]

+ b, „[Tr(P,P, )+Tr(%2$z) ]
—i [Tr(%,y y+ "%2)+Tr(2y'y+ "%,)],

2
where

h,
b, + f

(21)

(22)

and the chiral currents are

a„,=pa„g', a„„=g'a„g,
(23)

As usual the 8„are matrices acting on the isospin indices of meson fields. The mass matrix of the chirally redefined

heavy mesons is at this stage nondiagonal. We should mention that if an extra y were included in the definition of the
parity partner, then the axial-vector current components of the d"„L and 8„z terms would carry y' factors, while no

y would occur in the k„ term.

Note that the fields 8& and A2 are of mixed parity. The mass matrix can readily be diagonalized now that the La-

grangian is written in the current form

—(»+A» '= ~-(&i—&z» (24)

with eigenvalues 2b,„gf /2 and 2b, „+g—f /2, respectively [recall that our normalization conventions imply the physi-
cal mass shift is 5M if the Lagrangian contains —,5M(trail); see Appendix A]. The mass eigenfields are nontrivial func-

tionals of the pions through the absorbed g, g factors as in Eq. (20). The Lagrangian now becomes

g,f. TrXX+ 5„+ Tr%'8'
4 " 4

(25)
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Note the appearance of the off-diagonal pionic transition

terms of the form fil(u.A )8 '. At this stage it can be seen
that these terms are associated with a Goldberger-
Treiman relation, by taking A„=d„n"r/f, integrating

by parts, and using the equations of motion. One finds
that the %'%m amplitude has a coupling strength

g~s =g„and this is seen to be given by b,M/f . '

We can decouple the heavier field 8 ' to leading order
in the mass gap g„f by "integrating it out" (which

amounts to setting it to zero in leading order). We can
then perform the residual mass redefinition:
%~exp( iM—v x}S where M=25„g,f—/2 to yield

the final result

and is the analogue of the gN& in the nucleon system.
We note that the light quark constituent mass is given by
m, =g„f l2 so we expect hM =600 MeV; however, this
must be obtained in principle from a fit of the model to
all data (see Sec. IV B); unfortunately, without exception-
al circumstances the width of this state is too large for
direct observation). (2) gA is not necessarily expected to
be —1, being given by a subleading perturbative contri-
bution k„alone. This is especially a consequence of pari-

ty doubling and contrasts the chiral quark model in
which, g~q =1 is a leading term. The fit we present below
in Sec. IV B, which is crude, yields gz =0.32. This result

may be indicated in the D system where D'~D+m
gives g„&0.7 [6,11].

XLn= 'Tr—i—v (t}+V)S i —TrSy QS,LH 2

where we now discover that

g„=k„=2gf QZ2/Z, .

(26)

(27)

IV. OTHER OBSERVABLES:
fa, AND ISGUR-WISE FUNCTION

A. Heavy meson decay constant, fs

bM gas f— (28)

Here g~z =g, is the BB'~ transition coupling constant

Our fit to the model yields g„=0.32 [see Eq. (38) and dis-

cussion]. Equation (26) is equivalent to the point of
departure taken by Ref. [6] in writing effective Lagrang-
ians involving simultaneous heavy symmetries and chiral
symmetries. Use of this effective Lagrangian is justified
so long as q is small compared to the mass gap. We see
that g„here arises from the perturbative k„ term, which
is subleading to unity in our expansion.

In summary, the central observation of this analysis is
that the underlying chiral representations of the full HL
meson theory is a parity doubled scheme. There are two
general implications of such a scheme: (1}The mass gap
between the parity partners arises from (o ). Thus a
Goldberger-Treiman relation refers, not to the overall
mass of the B mesons -M, but rather to the mass split-
ting between the even and odd parity multiplets:

We presently compute the heavy meson decay constant

fz. Consider the heavy-light axial-vector current

Qy„y g. We can compute the renormalized matrix ele-

ment

Qz, ' f d x e ™x(S~Q(x)y„y'g(x)~0)

=fs +Msu„+ . (29)

As a consequence of the heavy quark spin symmetry, B
and B„have identical decay constants for the axial-

vector current, while B and B„have the same decay con-
stants for the vector current. The B meson must have a
properly normalized kinetic term, which includes the
finite renormalization effects, S~QZ, ' S. We adopt a
conventional normalization in which we expect fs =180
MeV.

The amplitude on the left-hand side (LHS) takes the
form

d4k
4Tr y] y

— +mq 1 — iT B +V
2&Z, (2~)' " ' (k —p)' —n' 'k

v„B [A p+~v p(A —p—)+—,'moA —02ln(A~/p2)+O((u p)2)] .
16&QZ, " (30)

We see that the integral involved here is identical to I& of
Eqs. (60) and (62}, and thus the equations of motion can
be used for the B fields. Upon use of the equation of
motion, shifting u p~2b, +. . . =2A&/Zt A/n+-
a large cancellation is seen to occur on the RHS of Eq.

I

(30) leaving

v„B [2n.A IZ, ]
2g

166+z, "

(31}

tThe coefficient of this term corresponds to f"=h =1 and

k, =g in Falk and Luke's notation [12]. Our conclusion is then
that k, =g„(h=1, the widths of the resonances are deter-
mined to be very large (see Sec. IVB), the chiral perturbative
contribution of these resonances, e.g., to fv, lfD, may be
significant.

We thus obtain

QM~fs=(A) ~ (32)
g N

For example, let g N/4n. =1 and use fs =180 MeV,
Mz =5 GeV as input parameters, to find A=1.35 GeV
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where A' is a normalization factor. This essentially re-
places the momentum space cutoff procedure by a point-
split regulator, and A-1/e The. wave function is singu-
lar at the origin, and is not normalizable without a spatial
cutoff' of the normalization integral at 1/A (our theory
makes no sense at shorter distances than this). Thus the
wave function is at the origin is given effectively by

(34)

This implies that the result for f~ is insensitive to in-

frared parameters such as the light quark masses in our
model, and indeed we find fz, =fs „. This is a defect of
the model, but it is an expected result of an extremely rel-
ativistic, potential dominated system. In this sense, QCD
lies somewhere between this extreme result and that of a
nonrelativistic potential model.

B. Fitting the model to data

While the model we have presented is not likely to be
quantitatively successful, we can attempt a fit to observ-
ables, and predict some features of the HL meson system.
We use as independent inputs f =95 MeV, and fs =180
MeV for M~ =5 GeV. The latter implies A=1.35 GeV
as discussed in the previous subsection. We see, owing to
the smallness of the ratio f /A = (z —1 )Ig, that
K=g X/4m is very close to unity. In defining Zz we
cutoff the renormalization-group Aow at an infrared scale
p-m, taken as the approximate constituent light quark
mass. Then, to obtain Zz =

—,'win(A Im, ), we self-

consistently solve for the constituent quark mass

m, . = i gf IQZ~ ( m, ). This yields

g X
, =1.065, g=3.75,

4w

A=1.35 GeV,

Z, =1.11, m, =169 MeV .

(35)

m, is about a factor of 2 too small. We can moreover use
the pion mass, m„, to extract the light quark PCAC
masses:

m'.f'.=~(m„+m, )f. ,
(36)

glVA =0.25 ( GeV )
8~'QZ,

hence, m „+md =8.6 MeV, which is to be compared with
the conventional —15 Me V, and is small. Also,
m, =m~(mg +md )/m ~ = 107 MeV is small.

The mass gap between the excited 0+ and ground state

for Wc=3. Remarkably, our result is insensitive to the
light quark masses.

fs is a measure of the wave function of the meson at
the origin in a nonrelativistic potential model. We can
compute the wave function in principle in our model by
point splitting the current in Eq. (20):

QZ, ' I d x e ™x(S~Q(x e/—2)r(y'f(x+e/2)~0)

=JPP(e), (33)

0 mesons is then

b M =g„f =2m, = 338 MeV [600 MeV] . (37)

2

12vrf (39)

where p -38.9 MeV. While this width is not yet mea-
sured directly, we can use the analysis of Ref. [19] to ob-
tain an estimated result of I =53.4 keV from the mea-
sured branching ratio of (D'~Dy)I(D*~D~) and a
potential model calculation of D*~Dy. Combining
these results we find gz =0.56, which is compatible with
the parity doubled interpretation, but is also not far from
the naive g~ -gz~ -0.8 from the chiral quark model
(note that we derive the chiral light-quark model here
with g~q =1; thus, our prediction of g~ -0.3 represents a
significant suppression). Amundson et al. [11] give the
current experimental limit of g~ &0.7 consistent with
this result. Thus, our model indicates that g ~ is

suppressed and smaller than unity, giving the physical
underlying rationale, though the situation is arguably not
decisive.

Note that Z, =mA/2-2. 12 GeV and Z2 —1. 1.
Hence, 2h = 3A/m. = 1.3 GeV. Our model seems to suffer
from generating a value of A that is slightly large. This
implies 6:4Z26/ZI 1 ~ 2 suggesting that our approxi-
mation of truncating on the Zz(v.p ) /Z, terms is prob-
ably unreliable (Appendix A).

The binding energy is determined in the model.
Neglecting the light quark PCAC masses we have, in the
infinite mass HQ limit,

2h, m,
MD ~ =M, q+6m, fim =2k —m,+, (40)

g„A

The result in brackets obtains when the known constitu-
ent masses are inputted. The decay width DO+~0 vr)

is given by 3(bM/f ) ik ~/8m. . This is much too large
for observation of these resonances when k -AM-600
MeV; with the lower estimate of hM-338 MeV the
width approaches 450 MeV, which is still large. Hence,
the direct observation of the parity partners of the
ground state is unlikely. Their effect in chiral pertur-
bation theory is nontrivial [12]; conceivably the decay
width I (D, (1+) +D„'d—(1 )+K)—~kz ~

is phase-space
suppressed by the K-meson mass and the 1/M correc-
tions to the D masses, which raise the 1 and depress the
1+ states.

We obtain the axial-vector coupling constant

2gf QZz 4f (Iln(A Im, )g„=— = — =0.32 . (38)
Zi AVE

We might expect both AM and g~ to be underestimated
in this approximation, as are the light sector observables,
owing largely to the short-distance singularity of our
wave function.

g~ can be in principle extracted from the decay
D*+-~D +m+, though it is unmeasured to date. This
decay partial width is given by Ref. [6], and in our con-
ventions it takes the form
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Mti =QMg+2Mg5m (41)

where m, is the constituent light quark mass (the latter
term is small, but non-negligible). For the fit we have
presented we find h„=2g QZ2A/Zi =17.9, and

g„=g/QZz =3.55. If we use a conventional charm- (b-)

quark mass of 1.2 —1.8 GeV (4.5 —5.0 GeV) this overesti-
mates: MD=2. 4—3.0 GeV (M~=5. 8—6.3 GeV). These
results should be corrected for finite mass of the heavy
quark. The corrected bound state mass is

g d k —1+ted k I+t('
Tr 8

M (2~) 2 k —m 2

1 1

v.k v'k

This involves the integral

I)=
(2~) (k —m ) ukv'k

(43)

This yields a result MD =2.0—2.75 GeV (Mti =5.65 —6.3

GeV). This illustrates the problem of A being too large in

the model.
The effect of the explicit SU(3)-breaking light quark

masses is calculable, upon restoring these terms in Eq.
(13) as contained in the shifted o field. Using the full

constituent quark mass m, =g„cr /2 we have

2h,
Mti —

Mii~ = —(m, —m, )+(m, —m, )
g„A

=A (u"+v'"), (44)

where the latter term follows by symmetry, since 3 can
only depend upon v v' and is even under v~v'. Now
multiply by v+v':

d k k (v+u') 1 1

(2n) (k —m ) v k v'. k

d'k 2

(2n} (k —m ) vk

= —(m, —m, .)

+ [2. 1 X 10 (MeV) '](m, —m, ) . Therefore

(A —2m} .
8m

(45)

(42) l

16m.(1+u u'} (46)

For the 8, —80 mass difference we take m, =450 MeV
(the storage quark constituent mass) and m, =300 MeV
to obtain Mti, —Mti~„+= 86.25 MeV. (If we use the pre-
dicted m, .=1.69 MeV and m, =276 MeV we obtain 52.5
MeV). This compares to =100 MeV experimentally. It
shows, however, that the model must include the effects
of the 0. term in computing these differences. The
MD+ —MDO= [(+0.26), ( —0.3)](md —m„) =(2.6, —3)
MeV (using standard constituent masses in the first en-
tries, and the model's derived constituent masses in the
second). This is subject to electromagnetic corrections,
estimated to be +2.0 MeV.

We have seen that fit in insensitive to the light quark
masses in this model. Thus, we obtain fthm, /fthm„d=1,
while lattice results —1.09 [20]. This result owes to the
unrealistic non-normalizable singularity of the wave func-
tion at the origin. This is consistent with the behavior of
the binding energy for small constituent quark mass, in
which increasing the constituent mass actually decreases
the meson mass (for large constituent mass the cr terms

contribute to increase the meson mass).

C. Isgur-Wise function

The analysis of the Isgur-Wise function in the mode1
involves a careful treatment of the cutoff procedure. We
select a preferred cutoff by demanding the validity of
reparametrization invariance (or the residual mass sym-
metry) [15—17].

We consider the transition amplitude in four-velocity
defined by the matrix element (B„~Q„I Q, .~8„.), where I
is an arbitrary Dirac matrix:

and we conclude that the Isgur-Wise function is given by

g(v v') = 2
1+v v

(47)

This should be true if the momentum space integral is
Lorentz invariant and finite. Computing the integral
directly, without recourse to the symmetry argument one
can obtain

1 ((,) dg
cosH

(1+2v v'cos8sin8) ~
(48)

which agrees with the previous result.
This result contains a t-channel pole at t =(M, +Mz ),

where Mi(M2) is the incoming (outgoing) heavy meson
mass. One might ask if this is consistent with the slope
constraint of de Rafael and Taron [18] arising from t
channel unitarity? Our slope, g'(0)= —1 is inconsistent
with their lower bound of —

—,
' arising from a t-channel

branch cut at threshold. Grinstein and Mende [18] have
pointed out that the de Raphael —Taron constraint is
weakened by effects of resonance poles, as we are present-
ly observing. However, the t-channel unitarity constraint
is an interesting issue in heavy quark effective theory
(HQET). In an HQET such as we have studied, the an-
tiparticle has been discarded at the outset, and with it
goes crossing symmetry and t-channel unitarity. More-
over, our cutoff theory would seem to require the bound
of Q & A without a unitarization. Since
Q =2M (1—v v') we see that this bound corresponds to
the limit v -v'~1 for M —+ ao. Nevertheless we can com-
pute the t-channel behavior by incorporating the heavy
antiquarks and computing the large-N bubble sum with
the full interaction. While we do not present this analysis
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here, we find, perhaps not surprisingly, a Nambu —Jona-
Lasinio pole at M&+Mz is generated, and our slope is
consistent with the existence of this pole.

The previous result of Eq. (47) is, however, sensitive to
the definition of the cutoff procedure, which we have tak-
en to be a Lorentz-invariant Euclidean momentum space

I

cutoff. Different results follow if the energy integrations
are first performed by residues, and then a three-
momentum cutoff procedure is used. To see this let us
compute directly with a three-momentum cutoff. Let
u'=(1, 0) and u =(uo, v). First we perform the energy in-

tegration by closing dko below to pick up the single pole:

d 4k ko+ voko —v k
A(1+v v')=

(2m ) ko k—+i e voko k
1

ko

= ', f"u
4m o V (u v')2 —1

u v'++(u u') —1
ln +2

u u' —+(v u') —1
(49)

14k 1

(2m) [(k+p) —m ](u k+p)
(50)

We have chosen to route the external momentum p
through the light fermion line. The g symmetry applies
to the external heavy mesons and requires that the fol-
lowing shift in v p and p be a symmetry of integral:

U p ~v p+g, p~p+ (51)

This result, using a non-Lorentz-invariant regularization
procedure, differs significantly from Eq. (47) in which the
Lorentz invariant cutoff was used.

There is however an implicit gauge invariance in heavy
quark effective theories associated with the "residual
mass ambiguity. " One is free to add a term yQ„Q„ to the
effective Lagrangian of Eq. (12). y should be viewed as a
gauge potential in the sense that if we redefine the heavy
quark mass M~M+)u, , and thus Q~exp(ipu x)Q we
can compensate this gauge transformation by shifting
g~g+p. Hence iv.B+g is a covariant derivative. This
is essentially the demand that the global zero of energy of
a classical theory be arbitrary. This symmetry and its im-
plications will be discussed elsewhere, however we can
see immediate implications for our present problem.

We can observe that the non-Lorentz invariant regu-
larization procedure violates the g symmetry. Consider
the integral involved in our calculation of the Isgur-Wise
function:

ing p ~p+ vy. Therefore the shift in the integral is

6 d kI= —2v k

(2m) [(k+p) —m ] (u k+p)

[(k+p) —m ](v k+p, )
(52)

S= d k —2u k

(2n. ) (k —m ) (u k)
1

(k —m )(u k)

(53)

If we evaluate S using the covariant cutoff' we find that
S=0.

Now consider computing S by first performing dko by
residues, then the residual three-momentum integration
with a cutoff. We find

f dk u. k dk 1

(2~)4 (k2 m2)2(v k) (2~)4 (k2 m2)2

i p~ k dk

4 2 alo (k2+ 2)3/2

The symmetry condition is (5/5y)I =0, and is equivalent
to demanding that the integral generates no nontrivial
surface term upon shifting k~k+a. For simplicity we
consider the surface term

This is readily seen to be a symmetry in the case of the
momentum p routed through the heavy fermion line.

In the present example we can implement this by shift-
I

Consider now

(54)

f d k k dk
sinOd 0

(2m. ) (k —m )(v.k) 8no . 0 (k +m ) (vo —~v~u(k)cos8)
(55)

[1—(u. ri) ] .
12m

(56)

where u (k)=k/+k +m and u„=(vo, v), and thus
vo —v = 1. Notice that if either m ~0 or if v~O then
S~O. Let us expand in m, using the latter results, to
find, for S

X
(1—uo)4no(1.+x )'i

Here we introduce a four-vector 2)„=(1,0) which is the
direction of the dko line integration.

This latter result implies that the g symmetry is broken
when the ko line integral is not parallel to u„. For the
computation of the Isgur-Wise function where vW v' then
the g symmetry can never be present in the residue com-
putation. However, utilizing the Lorentz invariant cutoff
we see that the g symmetry can be maintained. The g
symmetry therefore requires that we reject the result of



49 CHIRAL DYNAMICS AND HEAVY QUARK SYMMETRY IN A. . . 419

Eq. (49) in favor of Eq. (47) which is consistent with the
absence of momentum space surface terms, and the atten-
dant symmetry.

V. CONCLUSIONS

We have presented perhaps the simplest, solvable,
strongly coupled toy field-theoretic model in which both
heavy quark and chiral symmetries are present at the fun-
damental quark level, and the dynamics of chiral syrnme-

try breaking is made explicit. %e find that the chiral rep-
resentations of the heavy mesons are parity doubled.
This has a well-defined meaning in the toy model because
we can tune the coupling constant to restore the spon-
taneously broken chiral symmetry. In the symmetry lirn-

it the ground state is a degenerate system of (0, 1 ) and
(0+, 1+) heavy mesons. When chiral symmetry is broken
the degeneracy is lifted, elevating the (0+, 1+) and
depressing the (0, 1 ) heavy meson multiplets. We ob-
tain the full chiral Lagrangian containing the parity dou-
bled composite HL mesons together with the composite
pions. The mass gap between the multiplets is given by

gf, and the analogue of the Goldberger-Treiman rela-
tion of the system reflects this, gs~ =AM/f . We are
able in the broken phase to pass to a nonlinearly realized
chiral symmetry, and to write a purely derivatively cou-
pled pion effective Lagrangian. We can then decouple
the heavier parity doubling field to arrive at the conven-
tional low energy effective chiral Lagrangian for S.

%e believe that the general phenomenon of the parity
doubled chiral representations of heavy rnesons is in-
herent to QCD itself. We emphasize at the outset that
this toy model is only intended to convey the schematics
of QCD chiral dynamics in heavy-light mesons. The
model is designed to imitate these dynamical features of
QCD, rather than provide a detailed phenomenological
fit. Nonetheless, the simplest fit seems to agree within a
factor of 2 to the expected values of physical quantities,
and is predictive. While we would be inclined to trust the
result gz =0.32 only to within a factor of 2, the model

suggests that g~ is smaller than might be naively expect-
ed on the basis of the simple constituent quark model in
which. The direct observation of the parity partners of
the groundstate mesons is unlikely owing to their large
widths. It would be interesting to extend these results to
the heavy quark containing baryons where similar con-
clusions must hold.

Our analysis achieves the basic systematics of chiral

symmetry in these systems where we might expect poten-
tial models to fail. The chiral symmetry limit is relativis-
tic, and the chiral symmetry breaking is a dynamical
rearrangement of the vacuum, two features which would
be hard to realize in any potential model treatment. One
must be careful in estimating the value of gz in a naive
potential model unless the mixing with the parity doubled
states is under control. As we have observed in Eq. (21),
the g~ term is a transition matrix element between the
0 and 0 states in the mixed parity basis appearing
there. In a basis in which the g~ term is diagonal, the
mass matrix must be correspondingly diagonal. There
remains the transition amplitude term between the parity

partners (some authors include an extra factor of y in
the odd parity fields, and this transition term can then be
mistaken for the g„ term in a mixed parity basis). In our
model, the constituent quarks are found to have g~~ =1,
and yet the value of g~ obtained in the Lagrangian of
Ref. [6] is suppressed to -0.32. This is a subtlety of par-
ity doubling which must be treated with some care. The
resonances may have important contributions in chiral
perturbation theory to quantities such as fD, /fD and
flavor ratios of Isgur-Wise functions [12] (in the notation
of Falk, h =1 and g~ =g, and thus h &&g in our model,
so the resonance contributions are significant).

We have studied the physical predictions of this sys-
tem. The wave function of the theory is too singular at
the origin to represent a realistic QCD wave function.
This is a consequence of the strong coupling of the point-
like four-fermion interaction term. %'hile it is a defect of
the model, it indicates the trend in a theory in which the
potential term is dominating the dynamics. For example,
we obtain the unrealistic f~,&fz„d =1, because the singu-
lar short-distance behavior of the wave function becomes
insensitive to the infrared parameters of the theory. This
contrasts lattice results, indicating f~, /f~„&=1.1 [20].
However, a weakly coupled potential model would give a
larger result Qm, /md —1.2 [21].

In our analysis we fix A- l. 35 GeV from fs and exam-
ine the relationship with the cutoff wave function at the
origin. Inputting also f fixes g, and marginal results
(within a factor of 2) obtain for EM,g„and the light
quark sector. A defect, related to the short-distance
singularity of the wave function, is the fact that for small
light quark constituent mass, the ground state mass is ac-
tually depressed as the light quark constituent mass is in-
creased from small constituent mass. Nonetheless, the
common h, term is suSciently large for m, -300 MeV
that a reasonable result for MBs MBu, d emerges om
the fit.

Of further interest is the Isgur-Wise function, which is
associated with an ambiguous linearly divergent integral
in the present scheme. The ambiguity is resolved by in-
voking "residual mass invariance" [15,16], or equivalent-

ly, "reparametrization invariance, " and enforcing an as-
sociated Ward identity [17]. The simple Isgur-Wise func-
tion corresponds to a t-channel threshold pole at
(M&+Mz) . This pole is beyond the cutoff scale of our
model, but it may be indicative of a Nambu —Jona-
Lasinio result when the QQ system is studied. In fact, the
fundamental issues raised by de Rafael and Taron can in
principle be explored in this scheme [18]. We will defer
this discussion to another place.

We believe there remains much to do in dynamical
analyses of this kind for heavy-light systems and their in-
teractions. Our model has inherent shortcomings. While
the agreement of this crude model with observation is

marginal at best, it suggests that improvements, such as a
Pagels-Stokar approximation, Holdom's approach
[22,23), or "Russian sum-rule" methods [24], will lead to
more reliable estimates of crucial heavy meson observ-
ables. The singular behavior of the wave function is not
expected in a more realistic scheme. Replacing our pure
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s-wave dynamics by QCD ladder approximation is clearly
of some interest. For example, pinning down a predic-
tion of g~ or the Isgur-Wise function from such models
would be quite interesting. The full range of phenomeno-
logical applications of generalized models would seem to
be an interesting direction for future research. This toy
scheme is a first step in that direction and highlights the
challenges and advantages for more elaborate ap-
proaches.

Note added. After completion of this work we became
aware of the contemporaneous, extensive treatment of the
light-quark sector in the NJL model by Bijnens, Bruno,
and de Raphael [25]. We have tacitly dropped the effects
of the p and the A

&
in our analysis for sake of simplicity,

which is the essential difference between our results.
These authors argue that g~ in the light sector (Georgi-
Manohar) is reduced to -0.62 by mixing induced by the
A &. Our suppression of the g„as in Eq. (27) is a diferent
egect, arising from the parity doubling chiral structure of
the heavy meson spectrum. We have not examined the
effect upon the heavy meson g~ discussed here due to the
A

&
mixing, and might expect this to be a further and im-

portant suppression effect. In the limit 6&=0 the work
of Bijnens et al. would appear to coincide with our light-
quark sector, though they do not consider the parity dou-
bling of the (m, o), working directly in the current form
(nonlinear rr model) of the theory).

FIG. I. Integrating out light fermions (g) and heavy fermion

(Q) yields the leading large-N contribution to the effective La-
grangian for the heavy-light meson S.

SHq(k) = 1+pi
2

(A I)
k+m~+gX

SLq(k) =i
k —02

and B'. This can be viewed as a block-spin renormaliza-
tion of the theory of Eq. (12}defined at the scale @=A, to
a new scale p(A, and is analogous to the treatment of
the light quark dynamics in Appendix B. We begin in the
approximation of treating the 0. and m fields as zero-
momentum (constant in spacetime} backgrounds (small
momentum m amplitudes are considered subsequently}.
We note that the fermion propagators take the form
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APPENDIX A: FERMION LOOP APPROXIMATION

Q2=(m, +g rr/2)'+g'm/4, .

rr'= rr'7r' (A2)

1. Zero momentum pions

Let us now integrate out the heavy and light fermion
fields in Eq. (12) to produce an effective Lagrangian for 8

I

We obtain, from the diagram of Fig. 1 [recall that the 8
contain (1+8 ) /2 projection factors],

g —P+m +gX'
it's = gN f T—r ( i%'y +—%) ( iy52jl'+g)—

(2m. ) (k —p) —Q

gN Tr[( i%'—y +%)I—, ( i y'S'+—S)]

1

v k

(A3)

and

d4k (it.' —If)+m +gX5

(2~) (k —p ) —Q

1

v-k
(A4)

We carry out a "block-spin" integration over heavy
and light quark modes between the scales p and A in Eu-
clidean momentum space. The integrals are evaluated
with a Euclidean four-momentum cutoff:

p
d4k 1

(2n. ) [(k —p) —Q~)]

d4k

(2m. ) (k —Q )v k

2 [A —p —Q ln(A2/p~)],
16m.

(A5)

i " [A —
ju

—Q—ln(A /p )],
16

p
d4k 1

(2m. ) [(k —p} —Q }]v k

(A —p)+ v p[ln(A /p )],
16m-

Then Tr(I, ) can be
Tr(%y X)=Tr($ '%)=0, etc.]

written

kp vp=i " [ln(A /p )] .
(277.) (k~ —g~} v. k 1677&

as [note
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ig N Tr(SI,S)=—
—,'Tr(9$)[(v.p+go/2)(Z&+4Z2v. p)+Z&(A+@)/m —2~0~ Zz],

ig 2N Tr(% '( i—y )I
& ( —i y )9')= —-'Tr($ '9' )[(v .p —g rr /2) ( Z& + 4Z2 v

.p ) +Z
&
( A+p ) /n —2

~
0

~ Z2 ],
ig N[Tr(23'( i—y )I,S)+Tr(SI, ( —iy )8')]=—

—,'Tr[2il'(gn"r/2)$+S(gn"r/2)2V](Z, +4Z2v.p),
(A6)

where we let go. =go. +2m and 2. Theg& term

Z&= (A —p), Z2= [ln(A /p )]
8m

' ' 16'' (A7)

(note that the expression for Z, contains a factor of I/m,
not I/n ).

Now consider small, but nonzero (o, m ) momentum q„,
with q =0. We compute the effective Lagrangian, where
the (o,m.) are coupled through X . We then have the am-
plitude of Fig. 2:

1 3Ny d k T .—,z+ — (k'+g/2)(o+im"ry )(k' g/2—)

2 (2m)4 [(k+q/2)2 —0 ][(k—q/2) —0 ]v (k —p)

We are interested in the divergent terms of order q, since the q =0 term has previously been computed:

d4k

4 (2m') (k) (k) (v k)

(A8)

gN —Tr[( —illy +$)[ri,g](rJ im"ry )—( —iy'%'+$)]l (nA /p )4

= ——gZzTr[( iS'y +—%)[I,g](rr —i~'&y )( &y'&—''+&)] .
4

(A9)

If we now expand the result of Eq. (A9) we observe some
simplifications, e.g., %[I,f]%=0, and we obtain

gZ2Tr[9—$(in"ry )9 Sg(im" ry—)8

+i%'y grrS+Siy go%'] . (Alo)

,'gZ2(Tr[Xty'y„PS

—lory'y„r

S']r)"n'—

Tr[X—y'yg+%y'y„X ]a ~) . (Al 1)

3. Normalization conventions

Consider a complex scalar field 4 with the Lagrangian

a„e'a e—(M+5M )'e'e . (A12}

I
I
I
I
I

This implies an operator in the effective Lagrangian of
the form

—i—,'Tr(%„v BS}+5M—,'Tr(%%„) . (A14)

Thus when the Lagrangian is written in terms of 8 and
8' the normal sign conventions are those of the vector
mesons, and opposite those of scalars, i.e., the term in the
Lagrangian +—,'5M Tr($%) an increase in the B mass by
an amount 5M. A properly normalized kinetic term is
—i —,

' Tr(%v BS),with the overall minus sign and —,'.
One must take care of using HQET propagators, since

the direction of momentum routing is fixed. Ultimately,
the veracity of Eq. (A3) is best checked by computing
with finite M, routing Mv„ through the Q propagator,
and p through the light quark propagator, and then tak-
ing the M ~ ao limit. Note that v„~—v„and p„~—p„
is a symmetry of the final expressions. Hence, S„can be
viewed as annihilating incoming particles, (QQ), or creat-
ing outgoing antiparticles (QQ).

Define 4'=v'2M exp(iMv x)4 (4' destroys incoming
momentum Mv„+p„) and the Lagrangian becomes, to
order 1/M,

iv„4' tP'4' —5M@' t4' . (A13)

Now let 8, =
—,'(1—gf)iy 4' and write in terms of traces

(the field S„with these conventions annihilates an incom-
ing meson state ~B ) }:

FIG. 2. Induced single pion emission vertex for S from g
coupled to the classical background pion field.

4. Structure of the effective Lagrangian

The heavy meson effective Lagrangian therefore takes
the form
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Lr H= i—,'Z—,Tr(%u. c}X)—i—,'Z, Tr(%'v. M')+2Z2Tr(%(u i3.)2&)+2Z~Tr(g'(v c})g'}
gZi

[Tr(o 8 j —Tr($'o%') ]
—igz~ [Tr(go u c}g) T—r(gjl'o v c}g')]

gZi
[Tr(8'm" rX)+Tr(%~ r%')] igz—2[Tr(g'mr. u c}X.)+Tr(jj'vr rv..c}g')]

g Z2+ [Tr(%(cr +~ )8)+Tr(X'(cr +sr )X')]
4

+(A2 —Z, (A+@)/2n )[Tr(%%)+Tr($'%')]

+ g Tr[%y P(m"r)% %'y'g—(n"r)%' —%'y P(o )% %y—r}(o )%'] .
2

If we define

v=[1+(4Z, /Z, )iu a]-'"
then Eq. (A16) becomes, more compactly,

gZi
XLH= —i —,'Z, Tr('TXv d'TS) i ,'Z,—Tr—(TS'u O'TS') — [Tr(Vo'7%) —Tr(VS'o V%')]

(A15)

(A16)

gZi g Z2

4
[Tr(VX'm"r7$)+Tr(VXm" v'TS')]+ [Tr(%(o +m )8}+Tr($'(o +m)8'}].

4

+(A —Z, (A+p, )/2n )[Tr($%)+Tr($'S')]

Z2+ g Tr[%y'8(m"r)S —9'y'8l~ r)X' —Sy'8(o )9—%y'8(o)8] .
2

(A17)

To simplify the subsequent analysis we will assume that the subleading terms of order Z2u p/Z& are negligible, and
take '7= 1. Since these terms arise upon expanding the loop integrals in powers of 1/A, we cannot self-consistently use
the effective Lagrangian in this form unless this condition is at least approximately valid. We see that other terms, such
as the last one in Eq. (A17) which leads to g„, are leading in this order and describe various physical processes. Thus,
we expect the amplitudes these terms describe to be small. If 4Z2u p/Z, is large, then we must retain full analytic ex-
pressions for the loop integrals to fit the theory.

We see that there is thus an induced kinetic term for the 9 and S fields with a common wave-function normaliza-
tion. We absorb the factor Z, into the fields as S~QZ, %. Thus, with the field redefinition we then have the full
effective Lagrangian:

XLH = —i —,'Tr(Ãu Mil) —i —,'Tr(FY'v c)S')——[Tr( crS)—Tr(FY' o 9') ]— [Tr(FY'n" rS )—+Tr(gn" rS') ]
g

2Z
+ [Tr(9(cr +sr )S}+Tr(%'(o +m )g'}]+5[Tr(99)+Tr(%'8')]

4Zi

+ g Tr[%y'8(m" r)X %'y'8(n" r)%' ——%'y'l(o )8—%y'8(o. )$'],
2Z ]

(A18)

where

[A —Z, (A+ p)/2m. ] .1

1

(A19)

APPENDIX B: LIGHT QUARK DYNAMICS

1. Deriving the constituent quark model

M~ =2A+Mg .

Note that b, )0 (b, & 0) for g ~Ã/167r & 1 (g X/16~ ) 1).

(A20)

The equation of motion in momentum space is
U p =2k+ . and 2h is the mass difference between the
heavy meson and the heavy quark in the chiral sym-
metric phase:

The effective Lagrangian in the light quark sector is

2 gA gA
&=4(i& m, )4 , Py„—

Z
0ky"—20.

For concreteness we will take g=(u, d), and in the limit
that the quark mass matrix m ~0, we have an exact
chiral SU(2)XSU(2) invariant Lagrangian. This can be
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viewed as a single gluon exchange potential, where we as-
sume a "gluon mass" A/v'2, and we have written the
form of the effective Lagrangian at q -A, integrating
out the massive gluon, and truncating on dimension-6

I

operators.
Upon Fierz rearrangement of the interaction Lagrang-

ian, keeping only leading terms in 1/Nc, Eq. (Bl) takes
the form

2

+L I~i~ mq 4+ 2 (4L PR PR PL+ PL+ PR PR+ PL ,'4—r„r"44r"r"0 —,'4—r„rsvp "44r"rsvp"0
A

,—'A—„tt4r"0 ,—'A—„r44r"y 4), (B2)

where pl =(1—y5)g/2, gx =(I+y5)tP/2. Here ~" are
Pauli matrices acting upon the isospin indices.

For the present analysis we will truncate Eq. (B2) on
the pure Nambu-Jona-Lasinio terms, since the (vector)
and (axial-vector) terms play no significant role in the
chiral dynamics (they are associated with the formation
of virtual p and A, vector mesons in the model). Hence
we take

2N
Z2= ln(A /IM ),

16m

V(X) A2 g (A2 p2) Tr(XIX)'1 N
8m

(A —p, )Tr(m X+H.c. )

2

&l. =4(i& m, )4+—, (PL, A 4 PL,

+pl. ~"g„p~r" (B3)

N
ln(A /jp, )Tr(XtXXtX) .

16
(B7)

We see that Zz~0 as p~A, reflecting the compositeness
of the X field. Let us now renormalize the X field,

X~QZ2X, (B8)

We can solve the light-quark dynamics in large N in the
usual way by writing an equivalent effective Lagrangian
of the form

and we have the properly normalized effective Lagrang-
ian at the scale ju (this is proper normalization for real cr

and m):

X =f(i' m~ )g g—fi Xfz —
gpss X fi ——

—,'A Tr(XtX),

(B4)

where

&=4(i& m, O' —
gled, XS—R ffzX 4—r.

+Tr( B„Xt&"X) —V( X),
where

(B9)

X=—'crI +im'—2 2
(B5)

is an auxiliary field. We emphasize that at this stage X is
a 2 X2 complex field, so both cr and m' are complex (oth-
erwise, with 0. and ~ real there would be unwanted con-
tributions from ( TXX ) = ( TX X )%0 in integrating out
X).

Thus there is parity doubling at this stage, Im(o ) is the
fourth Goldstone boson associated with the U(1) prob-
lem, and Im(n') is the 0+ isotriplet. The restriction to
real m' will emerge d namically at very low energies,
since the induced Tr(X XX X) term will lift the degenera-
cy of the Re(n ) and Im(n ). We ultimately must add a
det(X)+H. c. term to get rid of the Im(o ) mode.

We now integrate out the fermion fields on scales
A )q &p, keeping only the leading large-Nc fermion
loop contributions. We use the massless fermion propa-
gator, treating X as a classical background field. Thus we
arrive at an effective field theory at the scale p:

X=/(iB m)g g—g Xg„gg„X f- —

+Z2 Tr(B„XtB"X)—V(X), (B6)

where

g = I/QZz,
V(X)=m Tr(X X)—co Tr(m X+H.c. )

+A, Tr(XtXXtX),

m o'
1

Z2
—A — (A —p, )
1 2 gN

8n
(B10)

166
2 2=g

N ln(A /p )

ggN(Az 2)
8H

The effective Lagrangian is seen to be a linear o. model at
scales p (A. As the scale p —+0 we see that the theory is
trivial, since g ~0. However, these evolution results ap-
ply only to a scale po corresponding to a mass scale for
the fermion. Nonzero m will block the evolution into
the far infrared, but we will neglect this presently. The
theory will develop a chiral instability (a constituent
quark mass) provided that m becomes tachyonic (nega-
tive) at some scale po. By tuning the bare coupling con-
stant g we can put the model in a symmetric phase,
m )O~g N/4m & 1, or in a chiral symmetry breaking
phase: m &O~g N/4H) 1, where the critical bare
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16~ A

g Nln(A /p )

g 2N

4m

coupling corresponds to m' =0 as pp~0.
In the broken phase (ignoring m ) the o field develops

a vacuum expectation value (o. =f =&2~m ~/&A, .
We see that the renormalized cr field develops a vacuum
expectation value given by

II =(m +gcJ/2) +g tr /4, tr =tr'tr',

2 =—0 +l—$57T"7 .

(815)

(816)

In the broken phase we replace a =f and
X~ ,'f e—xp(irr'r'/f ). For future ease of writing we

can often replace go /2=go /2+ m QZ2 since it is easy
to restore the explicit chiral-symmetry-breaking quark
mass terms.

N

4~
(811) 2. Schematic discussion of a parity doubled nucleon

In the broken phase we can then write o =f +&, and
the physical mass of the & is readily seen to be
m&=2~m ~, while the fermion mass becomes
mo= —,'f„g. Thus, using Eqs. (810) to relate g =A, , we

obtain the usual Nambu —Jona-Lasinio result: m =2mp.
The solution to the theory can thus be written as a

chiral quark model in which we have both constituent
quarks described by f and the mesons described by X. In
the broken phase it is useful to pass to a nonlinear 0.
model and write

—M}NLXNg —M2EL r Kg —MpNI rg
MoN„K—L +H. c. (817)

Consider a "nucleon" doublet N with the
SU(2)L X SU(2)z assignments NL —( —,', 0), Ntt —(0, —,

' ).
Also, we introduce a partner, E, of opposite parity with
assignments KL -(0, —,

' ), Ktt - ( —,', 0). A typical renormal-
izable linear o -model e6'ective matter Lagrangian (not in-
cluding the X kinetic and potential terms) is then

L =Ni8N+KirIK

and

2~—,
' f„exp(itr'r'/f )

X =g(i' m)P—mogl exp—(in'r'/f )1(„

—m o gtt exp( i n'r'/f —
)gt

+Tr(t)„X t)"X)+eu Tr(m X+H.c. ),

(812)

(813)

Parity symmetry requires Mp =Mp. We consider the spe-
cial case M1=M2=M, which is the analogue of our
model, but this is not generally required by symmetries.
Now perform the redefinitions, NL ~gNr, KL ~g Kt,
Ntt ~g N„, Ktt ~(Ktt . Thus, the Lagrangian becomes

X=N (i 'tt) +V +y A )N +K (i rI+ T yA )K—

P+m +gX
p2 Q2

where we define

(814)

where mo = ,'gf is the const—ituent quark mass. Note, in

our present normalization conventions that f„=93MeV.
By a chiral redefinition of the fields, get +gftt and—
QL ~g tlL we arrive at the Georgi-Manohar Lagrangian
[their Eq. (2.9)] with g„=l.0 [note that they fit

G„/Gt =(5/3)g„and obtain g„=0.75, consistent with
our large Napproximati-on].

When the cr and m fields are slowly varying in space,
the light quark propagator of the chiral quark model is
given by (in terms of the unrenormalized fields)

SF=i(gf —m g ,'cr ig ,'y~tr —r)———

MNN ME% Mph Mph'+ H. C. (818)

Upon diagonalizing, the mass eigenfields are just
(¹K)/&2, with mass eigenvalues M+Mo. We can
decouple the heavier state by setting (N+K)/&2=0,
where the light eff'ective Lagrangian for Q = (N —K )/~2
1S

X =Q(itti+X)Q —(M —Mo)QQ . (819)

We see that g~ =0. Hence, g~ is not generally of order
unity as is the case of a nonparity doubled nucleon. [This
is also a consequence of the special case M1=M2, more
generally g„=sin(28) where 0 is the mass mixing angle. ]
With g„=0 the only nontrivial Goldberger-Treiman re-
lation refers to the pionic transition amplitude be-
tween the ground state Q and the parity partner
Q' = (N +K) /&2.
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