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Statistical mechanics of strings on periodic lattices
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We present a simple model for string statistics on a periodic lattice. We show how the fraction of
topological (infinite) string depends on lattice size and compare our results to those of established
numerical simulations.
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In recent years there have been several large-scale nu-
merical simulations [1—6] of string formation. For simplic-
ity, these simulations were performed on periodic lattices.
Those of [3—5], in particular, paid considerable attention
to the existence of a new phase of long string that was a
direct consequence of the periodic boundaries. We shall
provide a simple interpretation of this phase and show
how it, and several other aspects of the numerical simu-
lations, can be derived analytically in a simple model of
string formation. In this model, in which strings are as-
sumed to behave as random walks, it is possible to assess
the inHuence of finite system size on the predictions for
string distributions. This is important in that finite size
(with periodic boundaries) was always an artifact of the
calculational scheme, and not a reflection of the physics.

Our primary motivation for investigating string for-
mation stems from the possibility that a network of cos-
mic strings, left over from an early grand unified theory
phase transition, could provide an explanation for the ob-
served large-scale structure in the Universe [7—9]. Strings
themselves occur in many branches of physics, from poly-
mer structures and topological defects in liquid crystals
[10,11] to the observation of vortices in the A transition
of 4He and type II superconductors [12]. All this serves
as further motivation for our work.

For the purpose of the model we perform all our calcu-
lations in thermal equilibrium at a temperature T, in a
periodic box of side d. As we shall see, the critical tem-
perature is defined to be that temperature at which the
free energy E —TS vanishes. It is the Hagedorn temper-
ature, above which the canonical partition function for
the strings diverge [16]. It turns out for cosmic strings
that T, is closely related to the usual Ginsburg temper-
ature [18], defined as the temperature at which thermal
Huctuations in the scalar field become small enough that
the domain structure of the phase transition is estab-
lished. Thus we see that T, (T where T is the critical
temperature above which the full unbroken symmetry is
restored.
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For simplicity we assume that the energy of a string
is proportional to its length L (E = oL) and that the
strings are both noninteracting and static. This latter
assumption may seem unreasonable for cosmic strings.
However, the underlying quantum mechanics of such
strings enables us to trade dynamical degrees of freedom
for temperature-dependent string parameters in static
strings [15]. Moreover, interactions and rigidity can be
incorporated, but they only lead to inessential complica-
tions.

Numerical results have shown that at the phase transi-
tion, to a good approximation, strings can be thought of
as classical Brownian random walks [1,13]. Were strings
infinitely thin they would have an infinite number of de-
grees of freedom, since they could bend on any scale. In
order to evaluate A(E, V), the density of string states in a
periodic volume V (i.e., a torus), we must impose a lower
cutoff a on the scale on which the strings can bend, cor-
responding to the fundamental lattice spacing we adopt.
For quantum strings we can either relate the cutoff to
the string tension [14], if we take them to be fundamental
(i.e., infinitely thin), or identify it with the relevant effec-
tive Compton wavelength if the strings are to be consid-
ered as hot vortices (see [15],for example). The Compton
wavelength at formation is, in fact, the initial correlation
length of the scalar field, ((T,) = m (T, ) where my
is the temperature-dependent mass of the scalar field.
Hence we see that the lower cutoff scale a is determined
by ((T,).

Furthermore, to simplify computation, we will restrict
the strings to lie on a cubic lattice of coordination num-
ber A = 6 [17]. If backtracking of the string is not for-
bidden the procedure will give rise to some overcounting.
However, the effect will be seen to be very small at the
critical temperature and we shall let it stand, except in
that the smallest loop will have four segments joining ver-
tices (links). Finally, all our strings are closed. Closure
is crucial for the long string phase and for the numeri-
cal simulations whose behavior we are trying to derive
analytically.

The number of configurations of an open string of
length L is A I (i.e., entropy S = (Link)/a) and thus
for closed strings
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where P(L, V) is the sum of probabilities over all lattice
sites that a string of length L will close. Using this ex-
pression implies that the partition function for a single
string is of the form

and the constraints on k are governed by the boundary
conditions of the system, as we shall shortly see. Since
we are assuming that all strings are closed, P(L, V) is
given by the sum over all lattice sites of the probabilities
of first return p(r, r, L/a) = p(0; L/a)

Using the normalization condition

Z' = ) P(L, V)e ~ '"
L

(2) ) lf~(r) ' = 1 (7)

where P = T, o is the string tension, o,ir the efFective
string tension,

p(r', r, L/a) = p(r' —r; L/a)
= ).f~(r')f~(r)e (5)

where fi, (r) are the normalized eigenfunctions of

(6)

o,a = (E —TS)/L = o (1 —T/T, ),
and T, is the Hagedorn temperature, defined by T, =
oa/in A. The partition function for an ensemble of
strings is (in the absence of interactions) Z = exp(Zi).
Above the Hagedorn temperature the effective string ten-
sion is negative and the canonical partition function di-
verges exponentially [16].

Cosmic strings are composite (i.e. , they are composed
of more fundamental scalar and gauge fields), unlike the
case of fundamental strings [14]. For composite strings
the consequences of increasing the temperature above T,
towards T, where the full symmetry of the theory is re-
stored are dramatic. The effective width of the defects
become so large they essentially overlap leading to indis-
tinguishable objects. Hence the concept of a string con-
figuration becomes ill defined as the fundamental fields
remain, but no longer in the string configuration. Thus
the Hagedorn temperature marks the period in the ther-
mal transition below which strings exist as well-defined
objects.

In order to calculate P(L, V), let p(r', r, L/a) denote
the probability density that a string of L/a = n steps
begins at r' and ends at r. In the limit n m oo, a m 0,
and Ia = const, p(r', r, L/a) satisfies the heat equation
(setting A = 6) [17]

Op a
On 6

= —V' p.

We can incorporate more physics into the model by
adding correction terms proportional to p to the right-
hand side of (4). For example, excluded volumes can
be modeled using a term h(r)p, where h(r) denotes the
fraction of space from which the end points of the string
segments are excluded [17]. However, although excluded
volume has to be taken into account, we shall simulate it
more simply (at the end of this paper) by the introduc-
tion of a parameter r. describing the maximum allowed
fraction of space which can be filled with string. Hence we

persist with (4). The solution to the uncorrected equa-
tion is the heat-kernel expansion

we obtain the single-loop partition function

Z' = ) —) p(0 L/a)e ~ "
r

a ~ —Eg L/t a—Pcr, ff L
/ ~

L

= ) N(L, P), (10)

where the factor a/L removes the overcounting due to
the degeneracy of the starting positions on the loops and
N(L, P) is the loop distribution function at T = P
The partition function counts the number of loops of all
lengths. Therefore, at the phase transition when o,n = 0
the loop distribution function is

fi, (r) = e' ', Ei, = (12)

where lkl takes the values 0 & lkl ( oo. Substituting
into Eq. (5) and writing the sums as integrals we find

p(r' —r; L/a) = Q
3

ask eik (r' —r) —aLir /6

Completing the square and integrating over k reproduces
the well-known Gaussian probability distribution

p(r' —r;I/a) =
l l

e
i,2vrL)

(14)

This expression ought to include a coefficient 0(L lr' —rl)—
to ensure that no string can have an extension greater
than its length. However, the Gaussian factor damps the

we have dropped the P dependence to signify that we are
working at the critical temperature, at which the effective
energy cost for producing string is zero.

In the numerical simulations it is N(L) that is studied
most carefully. They consist of throwing down random
field phases on the lattice, and then identifying the vor-
tices that arise. As such, there is no direct identification
with the form (11). The simplification comes after es-
tablishing the random nature of the strings produced in
this process [1,13], allowing N(L) to be calculable ana-
lytically.

We begin our analysis by considering a system with
infinite volume. The normalized eigenfunctions of equa-
tion (6) are of the form



49 STATISTICAL MECHANICS OF STRINGS ON PERIODIC LAL VICES

probability suKciently to accommodate this.
If we consider a subvolume d, substituting our expres-

sion for p(r; L/a) into Eq. (8) and integrating over the
volume we 6nd that the loop distribution function for an
infinite lattice is

N(L) =

d3

a2L

(3a l ' s( 3id

(2mL) ( 2naL&

~ 3/2

) — 'o ( "+ "+ "&/e
),27rL )

7

(22)

N(L)= — dr dke
L qs (2vr) s

ds / 3. &'/2

a2L (27rL)

(1s)

(16)

3 oo ( 3 ) 3/2

A = lim —
~ ) LN(L)=~ —

~

E&~)
(17)

which reproduces the L ~ dependence observed in all
the simulations [1—6].

Defining the string density to mean the fraction of links
covered by string, the corresponding density of string for
an in6nite system is

(23)

after inversion. By inverting the theta functions we, in
effect, introduce a winding vector u' = (t', m', n'), where
l', m', and n' are the winding numbers around the three
axes, i.e. , we can decompose N(L) in an obvious way as

N(L) =) n„= ) ni
u'

(24)

Consider now the behavior of the loop distribution
function in the large and small loop regimes. Since
lim, ~ 8s(0~x) = 1, taking the short-loop limit L &&

d /a in Eq. (22) gives

a
/e(r) =

(
—
)

e'"', k = —rr,

where u = (I, m, n) and I, m, and n take all integer val-

ues, with corresponding eigenvalues

27K,2~2 a2
EI (19)

Using these results gives the probability distribution

(' — /)=( —
) & l/ ( )

6 x(y' —y) 2z'iaL I
d 3d2 )

/7r(z' —z) 2vriaL &

d 3d2 (20)

where 83 is the Jacobi theta function. Summing over all
lattice sites, the loop distribution function is

(21)

or equivalently

This result is in agreement with the work of [13] in which
strings are formed on an in6nite lattice but can be either
opened or closed. In our formalism open strings are not
accounted for, although it is clear that if (as in [13]) all
the links of the lattice were 6lled with string, then a
&action 1 —A = 0.67 of the links would be Rom in6nite
string.

Having established how strings should form in systems
with infinite boundaries, we now turn our attention to
the effect of imposing periodic boundaries. For a periodic
box of side d the normalized eigenfunctions of Eq. (6) are
given by

d f 3a ) /N(L«d/e) —
~ ~

~1+6e ' + ).a2L (,2~LJ (.

(2s)

Neglecting exponentially small factors reproduces the ex-
pected L ~ behavior for Brownian strings in an infinite
system [1,18].

However, on switching to the long-loop limit in Eq.
(21) we find the surprising result

N(L )) d /a) — 1+6e / +L (26)

(1,) Nl. »g'/o(l ).

To lowest order this gives

That is, for long strings N(L) behaves like L i. This is
the phase we invoked in the introduction, with a natural
description in terms of nonzero winding number, i.e., all
strings with nonzero winding number "wrap" themselves
around the lattice. The appearance of this phase is a di-
rect consequence of the periodiciy of our boundary condi-
tions. With the in6nite boundary conditions used in the
earlier work on strings this phase is not present because
there is a finite probability of a string not returning to
its starting point, and hence being infinite [13]. Instead,
on a periodic lattice the probabiliy of return is always
unity —given a sufficiently long random walk, and hence
all strings form loops.

Figure 1 shows the predicted loop distribution of ori-
entable loops for a 40 periodic lattice. Although N(L) is
given by the product of three infinite sums, the long-loop
distribution converges very rapidly and is essentially one
term. The short-loop distribution converges more slowly,
though we still see good numerical convergence of the
untransformed theta functions with as few as 6ve terms.
Both short- and long-loop regions are clearly in evidence,
separated by a characteristic length scale l, .

Following Allega, Fernandez, and Taracon [S], we de-
termine l, &om
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use the approximation

3 d' ) (2 L) (3d')
lim 8 0 —1 = ! erfc

al.))d' ( 27raL j ( 3d j (2uI j
(30)

which gives the topological string distribution

1 )5 25 3 35 4 45

10gIP I~

FIG. 1. Loop distribution for a periodic cubic lattice with
40 points. The two "phases" of short and long loops, sepa-
rated by a new scale l„are clearly visible.

3d'
t,

2'F6

showing the expected dimensional dependence for Brow-
nian strings.

Comparing our Fig. 1 with Fig. 1 of Ref. [5] shows
that our theory is in remarkable agreement with the sim-
ulations. We predict approximately 3% more loops on
small scales, though given our original na'ive incorpora-
tion of backtracking this is to be expected. At the phase
transition the effective string tension (which included the
backtracking effects) vanishes. Hence at T, backtracking
is not entirely accounted for. Further comparisons re-
veal that our predictions for /, also agree well, the factor
3/2m being 15% lower than the numerical values. This
discrepancy is easily explained by noting that the precise
N(L) oc L s(2 result is only valid in the infinite d limit.
Had we considered extra terms we would have found that
the true dependence is roughly L 2 . Thus the slope of
N(L) in the short-loop phase is shallower and the inter-
section scale t, increased.

Consider now the nature of the loops formed at the
phase transition. Clearly strings of length greater than
O(d /a) will typically come into contact with one of the
boundaries —and hence have a nonzero winding vector
u'. Having decomposed N(L) into a sum over the wind-

ing vector u' it is important to know what contribution
to the overall string density is made by both topological
and nontopological string; that is, string which does and
does not wind around the lattice, respectively. Setting
l' = m' = n' = 0, we see from (22) that

(3u &"
np ——

u2L q2~L j (29)

implying that almost all short loops have a zero wind-

ing vector. Moreover, this is identical to the number of
loops in the subvolume d of an infinite lattice (16). The
corresponding topological contribution to the total loop
distribution is just the right-hand side of (22) minus this
number. [We have implicitly assumed that there are no
short loops with a nonzero winding number, which is only
true in the limit as d becomes large and the exponential
factor in (25) negligible. ] In the long string limit we can

a 3 (3d'5 6 (3d'l
n~& Qp — 1 +-

L i/vr (2aL j ir (2uL j
2 4 — (3d'~

+
~sr 7r (2aL j

On comparing (31) with (26) we note that almost all

long strings will have some topological winding around
the lattice. Moreover, the difFerence between (31) and

(26) is the number of long strings which do not come
into contact with the boundaries.

Since we now know the distribution of string lengths we

can calculate the fraction that topological string makes
to the overall string density A, de6ned by

p+ Au

t, /a ~(d/a)

Lnp L + Ln„gp &, (32)
4 l, /a

lim fi(d, r) =
V. +Ap

where to leading order

s/2

Ap ——A
i2%

(33)

(34)

where we have assumed that all intermediate strings
(L d2/a) have a nonzero winding number. The up-
per limit on I, is calculated from a threshold fraction of
the total volume of the lattice ~, above which the system
can be considered full of string —above this limit the
fields are no longer in stringlike configurations and the
unbroken symmetry of the system will be restored. We
would like to determine ~ analytically. It is easy to un-

derstand ft om where it emerges and how it is constrained.
Unfortunately it is not so easy to determine its precise
value.

Suppose we have a box full of fundamental string with
zero thickness. Clearly, the total number of links that
could be covered with string is (d/a)s, which means that
K & 1. We might expect v. to have some weak dependence
on box size (d/a). This is motivated by the case of a self-

avoiding random walk beginning at the origin [17]. The
fraction K of space accessible to the walk, treated as a
non-self-avoiding random walk in self-consistent impene-
trable dust, behaves with volume as r. = 1 —O((d/a) ~ ).
The simulations of [3—5], whose work is concerned prin-

cipally with U(1) string formation, provides values of r
in the region of 0.7 for lattices smaller than about 100
points.

Defining ft(d, r) as the fraction of topological string
for a given lattice size, ft ——A ~p/A, in the infinite d

limit this tends to the nonzero ratio
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For r. of 0.7 this result implies that about 68% of loops
formed at the phase transition will be topologically non-
trivial. Since K must be less than 1 there is also an upper
bound on ft, of 75%. Moreover, when we consider the
infinite lattice-size value of K we find that fi tends to the
limiting value of 60% for a simple cubic lattice.

Figure 2 shows the fraction of topological string plotted
against lattice size for the case of e = 0.7. From this we
see that f& falls quite rapidly from a value of near unity
to the limiting value given above. These results are once
more in excellent agreement with the simulations of Al-

lega et nL [4]. For very small lattices we would expect the
&action of topological string to approach unity. This fea-
ture is not completely reproduced because at these scales
our approximations break down. The largest simulations
currently have about 100 lattice points. Our results im-

ply that they have yet to show limiting behavior and that
6nite-lattice eKects should be small but measurable.

These results should be contrasted to those of [13] in
which it is argued that, in the infinite volume limit, we

should not think in terms of loops. Rather, the authors
use the fact that Ao is just the probability that a random
walk on the lattice intersects itself. Then ~ is to be un-
derstood as 1 —Ao, the probability that a random walk
does not intersect itself (i.e. , becomes an infinite string).
Thus f(oo, e) = 1—Ao. This is certainly compatible with
our results, requiring a lattice totally full of string at the
transition. We do not wish to be so prescriptive in our
simple model.

In conclusion we have shown how a simple model of
string formation on a periodic lattice can accurately pre-
dict the results of numerical simulations, and shown how
it is that these results are similar to those obtained nu-
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FIG. 2. Fraction of topological string formed on a cubic
lattice with (d/a) points. We have chosen ~ = 0.7 in accor-
dance with the simulations of [4—6].

mericaiiy in [13] using a nonperiodic lattice. Moreover,
we have provided a physical interpretation of the long
string region observed in the simulations on periodic lat-
tices, namely, that the long string winds around the lat-
tice. With this interpretation we have given the first
prediction of how the total fraction of long (or toplogi-
cal) string varies with lattice size and deduced that the
simulations are not yet large enough to show asymptotic
behavior. This new phase for extremely long strings is
an artifact of the periodicity and would not necessarily
be expected for more general boundary conditions.
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