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Localized discussion of stimulated processes
for Rindler observers and accelerated detectors
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We investigate the implications of the presence of Minkowski particles on the Rindler particle
content in the accelerated frame as well as on the excitation and deexcitation of an accelerated
particle detector. To obtain localized statements, the field quantization is based on wave packets.
For bosonic particles, nonempty Minkowski modes imply an ampli6cation of the number of Rindler
particles in specific modes. The underlying processes re8ect a nonlocal pair structure: specific
pairs of modes with trajectories of the wave packet maxima passing di8'erent Rindler wedges are
correlated. An elementary object of quantum optics in noninertial situations is the accelerated
detector. The richer structure of the physics of its excitation and deexcitation is studied in detail.
In addition to the generalizations of the inertially known excitation and deexcitation processes there
are structurally new processes that are inertially forbidden. These processes re8ect the nonlocal
pair correlations.

PACS number(s): 04.62.+v, 03.70.+k, 42.50.—p

I. INTRODUCTION

It has been known since the work of Fulling [1] and
Unruh [2] that the Minkowski vacuum state appears to
a uniformly accelerated observer as being occupied with
a thermal distribution of particles called Rindler parti-
cles. This has been the subject of a considerable amount
of research. For reviews see [3—6]. The effect has also
been confirmed theoretically on an operational basis by
the investigation of the behavior of uniformly accelerated
particle detectors [2,7]. It was found that an acceler-
ated detector becomes spontaneously excited while mov-

ing through the Minkowski vacuum, a result called the
Unruh effect. This effect has been analyzed in more detail
by Unruh and Wald [8,9]. They concluded that the detec-
tor emits a Minkowski particle when it is spontaneously
excited. They also noticed that this emitted particle is
to some extent disconnected from the emitting detec-
tor. Another remarkable trait of the quantum field the-
ory in a uniformly accelerated frame of reference is that
the Minkowski vacuum appears as an entangled state of
Rindler particles with nonlocal Einstein-Podolsky-Rosen-
(EPR-) type correlations. This has been already found

by Unruh [2] and has been discussed more explicitly in
Refs. [10—12,5].

Currently there is a debate going on whether a uni-

formly accelerated particle detector radiates. The au-
thurs of Refs. [13—17] show that the expectation value
of the stress-energy tensor of the quantum field is not
increased by the presence of the detector. This result,
which is seemingly at variance with the particle emission
process mentioned above, has led to a discussion about
the interpretation of the stress-energy tensor for a uni-
formly accelerated detector. We will not want to deal
with the point in the present paper. A discussion of the
related problems will be given in a separate paper [18].

In the context of particle creation caused by the ex-

pansion or contraction of Robertson-Walker universes it
has been observed by Parker [19] that the presence of real
particles tends to increase the number of created parti-
cle pairs for bosons and to decrease it for fermions. This
effect has been called gravitationaL ampLification or atten
uation. It plays an important role for interacting quan-
tum fields in Robertson-Walker universes, as has been
demonstrated by Audretsch and Spangehl [20]. For a
Schwarzschild black hole, Wald has shown in [21] that if
bosonic particles or antiparticles are sent in during the
collapse to a Schwarzschild black hole, they induce an ad-
ditional creation of particle-antiparticle pairs out of the
curved background. The localization of this stimulated
amplification of the thermal Hawking radiation has beerl
studied in detail by Audretsch and Miiller [22] using wave

packet modes.
In this paper, it is our aim to investigate the impli-

cations of the presence of Minkowski particles on the
Rindler particle content in the accelerated frame on one
hand and on the excitation and deexcitation of a uni-

formly accelerated particle detector on the other. To ob-

tain a localization of the respective processes, we base
in Sec. II the quantization of a massless bosonic field

in Minkowski and in Rindler spacetirne on wave packet
modes and discuss the related Bogoliubov trarisforma-
tion. We show in Sec. III that the concept of amplifi-

cation is also realized in the framework of Rindler quan-
tum field theory. Based on the wave packet localization
we are able to work out the spatio-temporal relations be-
tween the nonempty Minkowski modes and the amplifica-
tion (as compared with the Minkowski vacuum state) of
the particle number expectation value in specific Rindler
modes. The concepts of equivalent and mirror moRes and
their trajectories become important, rejecting a certain
pair structure in the underlying physical processes. This
will directly lead to a discussion of the nonlocal correla-
tions and their modifications caused by the presence of
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Minkowski particles.
We mention that nonempty Minkowski states have

been treated previously by Padmanabhan and Singh [23]
and by Mishima and Nakayama [24]. They did however
not give a localization of the processes or an interpreta-
tion in terms of amplification.

In Sec. IV, we turn to the excitation and deexcitation
of uniformly accelerated detectors and show that their
response is consistent with an interpretation in terms of
amplification. We generalize the work of Unruh and Wald
[8] in including ingoing Minkowski particles and in refer-
ring for the ingoing and outgoing Minkowski particles
to wave packet states with fixed energy and well-defined
trajectory of their maxima. It turns out that the iner-
tial concepts of spontaneous and stimulated excitation
and deexcitation are characteristically generalized. For
example, there is not only the process of spontaneous de-
tector excitation with emission instead of absorption of a
Minkowski particle, but also the possibility to stimulate
this excitation by incident Minkowski particles. We re-
gard the discussion of this and similar structurally new
eKects as a first step in the development of a quantum
optics in noninertial situations.

FIG. 1. Illustration of the trajectories of equivalent and
mirror packet modes [Eqs. (12)—(14)] representing the pair
structure: Solid lines denote Minkowski modes, dashed lines
Rindler modes. Only right-moving modes (k ) 0) are drawn.
The Minkowski wave packet (k, m ) is the equivalent mode
to the right-wedge Rindler wave packet (k', m' )R. Corre-
spondingly, (kp, mp) and (—k', m')L, are equivalent modes.

(k, m ) and (kp, mp) are Minkowski mirror modes. (k', m') R
and (—k', m'}L, are Rindler mirror modes.

II. WAVE PACKET QUANTIZATION IN
RINDLER SPACE

A. Accelerated observer

Rindler coordinates (rj', (') are related to Minkowski
coordinates (t, z) by means of the transformation

t = —e ~ sinhag,
1

a
1 Ix = —e ~ coshag,
a

1 —auu= ——e
a

1v= —e ".
a (2)

where a = const ) 0 and —oo ( (', rI' ( +oo. The
coordinate lines ( = const are the trajectories of uni-

t

formly accelerated observers with acceleration ae
Throughout the paper, we shall work with the convention
that Rindler quantities are marked by a prime whereas
Minkowski quantities are unprimed. Without loss of gen-
erality we restrict ourselves for physical interpretations to
the observer at (' = 0. We can define Rindler null coor-
dinates u' = ri' —(' and v' = rI'+ $'. They are connected
to the Minkowski null coordinates u = t —x and v = t+x
by the transformation

—e "k' fork'&0,
—e" k' for k'(0. (4)

Note that in this case k and k' have diferent signs, which
means that right-moving massless particles have k' ( 0
in wedge L.

The components in the two coordinate systems have an
invariant interpretation: apt and k' are the energy and
momentum as measured by the accelerated observer at
the intersection point of the null ray and observer tra-
jectory [point P in Fig. 2 (a)], if the inertial observer
measures energy ~A, and momentum k. The special rela-
tivistic relation (3) is of purely kinematical origin. It is
called the Doppler shift formula and will play a role in
the physical interpretation below.

We supply the left Rindler wedge L with a similar set
of coordinates (rI', (') in replacing (t, z) by ( t, —z) in-
Eq. (1). The left wedge null coordinates u' = ri' —('
and v' = ri' + $' are obtained from Minkowski null co-
ordinates by replacing (u, v) by (—u, —v) in Eq. (2). In
L the components of a null momentum vector transform
according to

The Rindler coordinates (1) and (2) cover only the right
wedge R in Fig. 1. The lines u = 0 and v = 0 play the
role of event horizons for the accelerated observers (cf.
Fig. 2).

The components of a momentum vector k~ tangential
to the null rays u, v = const are (u~, k) in Minkowski
coordinates (with uI, = ~k~) and (erg, k') in Rindler coor-
dinates. The relation between k and k' can be obtained
&om the coordinate transformation (1):

e " k' for k' ) 0,
e k' for k'(0.

B. Wave packets

In order to quantize the real massless scalar field P(z),
we use a complete set of positive &equency plane wave
solutions of the Klein-Gordon equation. The Minkowski
mode functions are

fM 1 ikm —italy, t
A:

e
+47I (de

with wl = ~k~. In the right and left Rindler wedge, we
look for solutions that have the form of plane waves [8]:
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R 1
Pk'

i/47Bd g r

I 1
Pk'

v 47lidirr

zk ( —z4pl t Qe

ik $ +a~I, Ig
4

(6)

Both sets of Rindler mode functions are defined to be
identically zero in the opposite wedge. They do not form
a complete set on the whole spacetime, but only in the
wedges R and L.

Because our intention is to localize the statements
about the quantum processes associated with acceler-
ated motion, we introduce wave packets as the basic
mode functions for field quantization, as has been done
for example in [22,5]. Following Hawking [25], we define
Minkowski nave packets by a superposition of the plane
waves (5) in a momentum interval e:

(7)

For each wave packet, k/e and me/2m are both fixed pa-
rameters which have to be integers (

—oo & k, m & +oo).
A particular Minkowski wave packet is specified by the
set (k, m) of two packet parameters: The domain of in-

tegration in (7) shows that the momentum parameter k

labels the packet energy (~ = ~k]) and indicates its direc-
tion of propagation. The trajectory parameter m fixes
the null geodesic of the packet maximum, because, for
a given m, the maximum is located at the value of u, v

where the phase in the exponent of (7) becomes station-
ary. Using (5), we find (cf. Fig. 1)

u „=const = —m for k ) 0,
v „=const =+m for k (0.

To illustrate (7) we assume e to be small. We may then
consider ur, as being constant. Integration of (7) with

(5) shows that the wave packet has a form proportional
to sin[e/2(z p t —m)]/(z p t —m) in this case.

By trajectory we will always mean the path of the
packet maximum. We observe that a wave packet which
passes wedge L always has m ( 0, whereas one passing
R has m ) 0. The width in momentum of a wave packet
is e, while its width in space is 27r/e. The wave packet
modes are complete and orthonormal provided that the
underlying set of mode functions is.

In the same way, we can define swindler wave packets
in the right and left wedges:

FIG. 2. Processes that can take place when the detector
makes a transition: (a) detector excitation with absorption
of a Minkowski particle from wedge R (inertially allowed),
(b) detector excitation with emission of a Minkowski particle
into wedge I (inertially forbidden), (c) detector deexcitation
with emission of a Minkowski particle into wedge R (iner-
tially allowed), (d) detector deexcitation with disappearance
of a Minkowski particle from wedge I (inertially forbidden).
Emission processes (b) and (c) can also occur spontaneously,
independent of the presence of Minkowski particles.

R 1
Pk'~'

k'+e'
—ik'vn' R

k'+~'

V&'

with —~ ( /g', m' ( +go. Again A,
" labels the propaga-

tion direction and energy as registered by the accelerated
observer as described above, and m' specifies the trajec-
tory. For the right wedge, the trajectories of the packet
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maxima are given by

u' „=const = —m' for k' ) 0,
v' = const =+m' for k' ( 0,

and for the left wedge by

(10)
+ak 'pk' (*)+ ak pk' '(*) (17)

v' „=const =+m' for k' ) 0,
u' „=const = —m' for k' ( 0.

Certain pairs of Rindler and Minkowski packet modes
will play a central role, representing the pair structure
in the physical interpretation below. The following ter-
minology will be useful: We define the equivalent mode
of a right-wedge Rindler wave packet (k', m' )R to be the
Minkowski wave packet (k, m ) 0) traveling on the
same null trajectory (see Fig. 1) with an energy obtained
from the Doppler shift formula (3). We find, with (2),
(8), and (10),

R gMy
~k'rr&'k&ri (Pk'ri&' & fkrr&) &

R M~Pk-k- = —(pk fk )

which leads to Rindler packet creation and annihilation

operators a&, „a&, , for the left wedge, and a&, „a&,Rt R

for the right wedge.
We can gain insight into the connection between the

two quantization schemes with the help of a Bogoliubov
transformation. We use the general definitions and rela-

tions of Ref. [22] for a spacetime with horizon. The v&ave

packet Bogolivbov coegcienta are defined by

(k', m')~, ' ', (k, m ):=(e k', a e ). L gMy
gk'm'krr& —

, (pk&r&i& & fkii&) &

L gM~y
(Pk'~'»ki&i ) &

Furthermore we introduce to each Minkowski wave
packet (k, m ) 0) an associated Minkowski minor
mode (kp, mp & 0). It has the same energy, but its tra-
jectory is obtained by "re8ection" at one of the horizons
(m = 0) (see Fig. 1):

where the brackets denote the Klein-Gordon inner prod-
uct. They can be reduced to the plane wave Bogoliubov
coefficients

k'+e' k+e
A,

" 'le
gI gI

—'k' '6 'k

Pk & &r&& kri& ~~~' k & It:

(k, m );"' (kp, mp):= (k, —m ).

(k', m')„ mirror
( kf /) (i4)

Correspondingly, one can de6ne the Rindler mirror mode
of a Rindler wave packet. This is a Rindler wave packet
of the same energy traveling in the same direction in
the other wedge with a trajectory which is obtained by
"reQection":

x
i

(~ki )
The latter can be calculated from the mode functions

(5) and (6) by direct integration of the Klein-Gordon
product. We obtain

~a ( . k'

Pkk

~

~= p —(u)k(uk ) exp
~

—i —ln —
~a a)

( k', m')I, is th—en the equivalent mode to (kp, mp).
subscript a is no tensor index but refers always to
Minkowski wave packets passing the right wedge R, while

P denotes Minkowski wave packets that cross the left
wedge L:

m ) 0, mp(0.

with

(20)

['1 if k ) 0, k' ) 0
0 if sgn(k') g sgn(k)

f —1 if k & 0, k' & 0.

( .k'l
xe+ " ~'I'11+i IX—a)

C. Wave packet Bogoliubov coefficients

The quantization is carried out with respect to the
wave packet bases de6ned above. The expansion of the
6eld operator in terms of Minkowski wave packets is

P(~) ) [bM fM (~) + bMtf M4
( )]

de6ning Minkowski packet creation and annihilation op-
erators 6&

~ and b& . The Minkowski vacuum state is

given by bk ]0 ) = 0 for all values of (k, m). The ex-
pansion in terms of Rindler wave packets yields

The mathematical structure of (20) is very similar to that
of the Bogoliubov coeKcients for the collapse to a black
hole. Therefore the wave packet analysis can be carried
out along similar lines as in [22].

For ~k'~ & a, we can use Stirling's formula to approxi-
mate the phase of the gamma function. If we assume fur-
thermore c' to be small, the nonoscillating terms in the
formula (19) can be removed from the integral, yielding

i
k'

Pk'rr&'krri (2~~k' )
xg gp(k, m, k', m'). (22)

Here, the functions Q yp(k, m, k', m') are given by
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g )p(k, m, k', m'):= e'"s"~" ~

/2vran'

k+e
2p™

k

( I 1 1 (didk' exp ik'—
~

m'+ —+ —ln
~k ) (23)

Following the procedure of Ref. [22], it can be shown that

) .Ig-yp I' = 1. (24)

Analogously one can find, using the same approxima-
tions, the Bogoliubov coefficients for the left wedge. They
can be obtained from (22) with (23) by substituting p for
n, il for P, and replacing y~ ~ by

—1 if I ) O, k'&Q
0 if sgn(k') = sgn(k)

ifk(o, k') Q.
(25)

An analysis of the functions g )p (k, m, k', m') based
on the method of stationary phase for the integrals in
(23) shows that they act as localizing functions. They
are nonzero essentially only for certain parameter com-
binations, thus relating as in Fig. 1 the Rindler wave
packet (k', m')~ in R with a specific Minkowski wave
packet (k, m): g connects (k', m' )R with the equiva-
lent Minkowski packet (k, m ), whereas gp connects
(k', m')~ with the mirror mode (kp, mp) of its equiva-
lent Minkowski mode.

Although we could use the full Bogoliubov coefFicients
(22) in the subsequent calculations, we can point out
clearer their physical structure if we take this observa-
tion as a basis for an additional approximation. We write
g (k, m, k', m') = bye b, where k = k {k',m') and
m = m (m') by virtue of (12). The Bogoliubov coeffi-
cients simplify to

(kp, mp). Both are fixed with regard to the trajectories
and the energies, which refiect the Doppler shift formula.
There is a corresponding equation relating a Minkowski
wave packet with a pair of Rindler wave packets (equiv-
alent mode and its mirror mode):

—""' I'i 1+'—
I (»)

gyes,
r ( 27rcui~ ) ( a )

Their squares

l~~ I'= l~~ I' =1+ ..., ,.
i@~ i' =

flak [' =
(32)

obey the general relation ay
~

—~Pi ~

= 1.

where again (12) and (13) have been used. This pair
structure will be of crucial importance for the discussion
of the physical implications.

The Bogoliubov parameters ni, P~ in (26) result from
Eq. (22), where the value of g )~ is taken to be 1 because
of (24):

1
2 k'

=pi e ' ) I'~ 1+i
~

(30)
( 27I tdg ~ )

~k k = O'k ~kk. ~ A a =P~ 414 „
(26)

III. AMPLIFICATION OF THE RINDLER
PARTICLE CONTENT

with (12) and (13). This leads to the Bogoliubov trans-
formation A. The vacuum effect and its amplification

a ~ M * Mfa„, , = n„,b„—P„,b (27)

In an analogous way, we investigate the functions g and
g„ to obtain

gk'm'km ~ gk' ~kk„~~~„.

Only the equivalent mode (k~, m~)
( ek', —a —e ) to (k', m')I, and its mirror mode

(k„,m„) = (—e k', a e ) contribute to the Bo-
goliubov coefficients (28).

The Bogoliubov coefficients (26)—(28) have a diagonal
form. Within the approximation they connect, as can be
read off from (27), via the respective creation and anni-
hilation operators a Rindler wave packet (k', m')~ with
one particular pair of Minkowski wave packets consist-
ing of the equivalent mode (k, m ) and its mirror mode

With the concept particle we will refer in the follow-

ing always to the packet state quantization above, thus
restricting ourselves to bosons. In this section we will

specifically be concerned with the Rindler particle con-
tent of nonempty Minkowski wave packet modes. Our
first question is: To what extent does the presence of
particles in specific Minkowski wave packet modes in8u-
ence the expectation value of the Rindler particle number
for a particular Rindler wave packet, for example in the
right wedged

If the Minkowski state is the vacuum ~0 ), the an-
swer is well known [2]: The expectation value of the
Rindler particle number operator nk, , referring to the
wave packet mode (k', m')~, shows the familiar thermal
spectrum
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+I@~ I'): ("a I&-l'+ "~

+]px I', (34)

where nx, = (P ]a& ax, ]P ) is the mean number of
Minkowski particles in the mode (k, m). In the approxi-
mation of (26), this can be written

I~P, I& ) = n~. .+ Ip~ I'(~g. .+ ~g, , )

+lp~ I' (35)

The packet parameters are again related according to the
pair structure relations (12) and (13). This result shows
that for a given Minkowski state ~PM&, the Rindler parti-
cle content of the wave packet on the trajectory m' with
momentum k' consists of several parts that contribute
additively.

First, there is the last term in (35) which is identical to
(33). This vacuuxn term is always present, independent
of whether or not ~PM& is the Minkowski vacuum.

The remaining terms all go back to the presence of
real Minkowski particles. The first term in (35) agrees
with the number n& of Minkowski particles in the
mode (k, m ) equivalent to (k', m' )R, representing a
Minkowski wave packet on the same trajectory, with en-

ergy given by the Doppler shift formula (3) (see Fig. 1).
These particles reappear as Rindler particles. The second
term shows that, in addition to this, the same Minkowski
particles induce the appearance of additional Rindler par-
ticles in the mode (k', m' )R. This contribution is pro-
portional to n& . Furthermore this stimulated effect
shows the same spectral energy distribution ~Px, ] as the
vacuum effect (33).

Beyond that, there is as third terxn in (35) a contribu-
tion going back to Minkowski particles with the same en-

ergy but with packet maximum traveling through the left
wedge along the trajectory of the mirror mode (kp, mp) of
the mode (k, m ). Like the second term, this third term
is proportional to the respective number of Minkowski
particles n& in that mode and to the spectral vac-

uum factor ~Px, [ . It represents a characteristic nonlocal-
ity which we will again encounter below. With nonlocal-
ity we always refer to the trajectories, i.e., to the packet
maxima. One should be aware of the fact that a packet

I

The expectation value (33) does not depend on the
trajectory parameter m', indicating that Rindler wave

packet states with the same energy are uniformly occu-
pied independent of their trajectory.

Next we ask for the Rindler particle number in the
mode (k', m')xx if the Minkowski state ]P ) is not the
vacuum. Using the formula (2.11) of [22], we obtain

@MAL
R, I'M) = ) ~M~ Ig

with maximum in L has a tail in R and vice versa.
The structure of the various terms in (35) is in close

analogy to the corresponding expressions in the in-out
scheme of induced creation of bosons in Robertson-
Walker universes [19,20] and by black holes [21,22]. The
two middle terms can be characterized as the ampli-

fication terms. Their effect is to amplify the vacuum

part ~px, [
in the wedge R when Minkowski particles are

present in appropriate modes with trajectories in wedge

R or even only in wedge L. The corresponding attenua-
tion process for fermions in Robertson-Walker universes
has been discussed in [20].

The physical interpretation of these amplification
terms and their nonlocal character refers to the pair
structure: In the Minkowski vacuum, Rindler particles
occur always in pairs, belonging to Rindler mirror modes
with trajectories located in different Rindler wedges. For
bosonic fields, the presence of Minkowski particles stim-
ulates an additional appearance of pairs in the respective
equivalent Rindler mode and its mirror mode, leading to
the amplification terms in (35). The results of the next
section will confirm this interpretation.

B. Nonlocal correlations

In order to explore further the pair structure and its
nonlocality that arose in the previous section, we will

now look for a general transcription of Minkowski wave

packet states in terms of Rindler many-particle states

~qx, ~), where q is the Rindler particle number. For the
Minkowski vacuum we find (cf. [2])

. (pj, )'
) = ).I

"
I lq g,

- &13lqx-, - &R.
„-',"', ~k o (~K )

(36)

The Minkowski vacuum can thus be decomposed into a
set of EPR-type entangled Rindler states [5,10,11].Equa-
tion (36) shows strong correlations between Rindler mir-

ror states with the same particle number in the left and
right wedge. Whenever one measures q particles in the
wave packet (k', m') R in the right wedge (using an accel-
erated particle detector, for example), one will find with
unit probability q particles in the respective mirror mode
in the left wedge. In this sense, Rindler particles appear
in pairs.

Similarly, it is possible to transform a Minkowski
many-particle state into a Rindler dual representation
of the type above. We consider a wave packet state
~nM& ) with n Minkowski particles on a trajectory mp

that passes through the left wedge I (cf. Fig. 1). Apply-
ing the corresponding creation operators to (36), we find

with the help of the Bogoliubov coeKcients (26), whereby
as usual the pair structure relations (12), (13), and (14)
have to be taken into account:

(—ni, )
" . ((n+q)!) ' fp~, &

~').I „,q, I I

'
I I(&+q&—I &I lqx &R

q=o
(37)



4062 JURGEN AUDRETSCH AND RAINER MULLER

Again, always a Rindler mode and its mirror mode
are connected. The first line refers to the Rindler modes
(—k', m')I, and their mirror modes in B which are not
equivalent to the Minkowski mode (kp, mp). For these
modes we have total agreement with the vacuum expres-
sion (36). According to the second line of (37), devi-
ations caused by the Minkowski particle content occur
only for the left-wedge Rindler mode (—k', m')I, equiva-
lent to (kp, mp) and its mirror mode in the right wedge.
Again we have the same type of nonlocal correlations as
for the Minkowski vacuum. If we perform a measure-
ment of the Rindler particle number in the equivalent
mode (

—k', m')I, in the left wedge with result n + q, we
can be sure to find q particles in its mirror mode in the
right wedge. The Minkowski particle content contributes
with the number n in L, but additional q Rindler par-
ticles appear as correlated pairs in the respective modes
in L and B. Note that the probability for this result is
modified as compared to the vacuum case (see below).
The important point is that this probability depends on
the number n of Minkowski particles.

We want to discuss these probabilities in still another
way. Taking the results (36), (37) as a starting point,
we can derive the probability distribution of right-wedge
Rindler particles, i.e. , the probability that q Rindler par-

ticles in the mode (k'm')R in R are found for a given
Minkowski state, regardless of the Rindler state in L:

P(qf I& ) = ) l(4 1(IL)~ lq~ - )~) I'

where the sum extends over a complete set of left-wedge
Rindler states. If the Minkowski state is the vacuum, we
find

(q„, , lo )
a

, 2(q+1)

—e 2"~~ I la e
—(2~~a I /a) q

~ ~

This is a Bose-Einstein distribution. It shows that the
Minkowski vacuum is a truly thermal state in the Rindler
representation. Equation (38) corresponds to the prob-
ability distribution of particles created out of the vac-
uum in a Robertson-Walker universe [19] or, when a is
replaced by the surface gravity z, by a black hole [26] .

Miming to nonempty Minkowski states with parti-
cles in L, the corresponding probability distribution
of Rindler particles can be found from (37). For n
Minkowski particles in the state with (kp, mp), we ob-
tain, for the probability to find q Rindler particles in the
right-wedge Rindler mirror mode (k', m' )R,

P(q" I, , ) = (n+ q).
n!q! In& I'!"+&+'!

—(27rwI, r /a) (n+q) 27rw& I /a
y y

—27r~g( /a
&IqI

(39)

For the remaining modes the probability agrees with the
one found for the vacuum case (38). The distribution (39)
is a negative binominal distribution. It shows that, as
compared with the Minkowski vacuum, Minkowski par-
ticles with modes passing L have the tendency to increase
the number of Rindler particles in R, in accordance with
the interpretation of (35) (stimulated amplification). The
result (35) with nP = 0 can directly be reproduced
from the probability distribution (39). For the case of
stimulated emission by black holes with unit absorptivity,
the same distribution has been inferred by Gasperini [27]
by analogy with particle creation in Robertson-Walker
universe s.

IV. INCIDENT PARTICLES AND THE
ACCELERATED DETECTOR

A. Particle detector model

I

generalization of the concepts of spontaneous and stim-
ulated detector excitation and deexcitation, as they are
known for an inertially moving detector. This is a step
toward a complete noninertial quantum optics which is
still to be developed.

As a model of the accelerated particle detector we con-
sider a two-level system with constant energy diH'erence

F, whereby the energy of the lower state is zero. Denot-
ing the corresponding eigenstates by

I g) and
I $), the gen-

eral form of the unperturbed Hamiltonian can be written

Hri = F dt (il') d(g'), (4o)

d(q') = e ' " d(0).

where we have introduced the operator d:=
I $) (t I

obey-
ing (dt, dj = 1. The &ee evolution of d with respect to
the Rindler time variable g' can be obtained from the
Heisenberg equations of motion:

Let us now investigate the processes that occur when a
particle detector is uniformly accelerating along the tra-
jectory (' = 0 in wedge R through the Minkowski vacuum
or a Minkowski many-particle wave packet state. This is
important for two reasons: We want to reproduce on an
operational basis the structure we have found for Rindler
quantum Geld theory in the presence of Minkowski parti-
cles. Furthermore, the processes that occur wil1 lead to a

We couple the detector to the massless scalar field by
an interaction of Unruh-DeWitt type [2,7]:

HI = xm(g') y(*(n')), (42)

where the field operator P(z(q')) is evaluated along the
world line of the detector x(g'). A is a coupling constant
and the detector monopole moment is
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m(~') = I (d(~') + d'(n')) (43)

B. Rindler particles, Minkowski particles,
and the detector response

In a 6rst step, we calculate in the interaction pic-
ture the probability amplitude for a transition IP;, E;) i

Ipf, Ef) of the coupled detector-field system in an in-out
approach. IE) represents the state of the detector, IP)
that of the scalar field. The 6nal state in 6rst order per-
turbation theory is

ldll @s) = —
& J ~n +rid'')l0', s') (44)

Let us 6rst treat the case where the detector is initially
in the ground state IE;) =

I $): Eq (44.) gives with the
decomposition (17) of the field operator into Rindler wave

packets for the final state:

Ipf, Ef) = iA ) 17—i(k', m')apl, IQ;, t).
k'm'

(45)

Here 1)i(k', m') is defined as

where p is a real number. In writing (43), it has been
assumed that the monopole moment has only oH'-diagonal

components, so that the interaction couples only different
detector states.

Iyf Ef) = i~) +i(k m')uxt IP' $),
Ic'm'

(49)

describing a detector deexcitation with the emission of a
Rindler quantum. A description in terms of Minkowski

particles can again be obtained with the Bogoliubov
transformation (27)

It is possible to interpret Eq. (45) directly in terms of
Rindler particles. The basic process underlying the tran-
sition (45) corresponds to the excitation of the detector
accompanied by the absorption of a Rindler particle &om
the right wedge. The factor h, (E, uri, ~) shows that a par-
ticle can only be absorbed if its energy coincides with the
detector level spacing. Its trajectory is not 6xed. The ac-
tion of the annihilation operator a&, , in Eq. (45) shows

that the detector excitation probability is proportional
to the number of Rindler particles with energy E in the
state IP;). In this sense, one can say that the uniformly
accelerated detector is a device for measuring the Rindler
particle number. It is therefore to be expected that the
pair structure phenomena induced by incident Minkowski
particles will be rediscovered for detectors. In fact we will

find consequences with an even richer physical structure.
Correspondingly, in the second case if the detector is

initially in the excited state IE,) =
I g), the final state in

first order perturbation theory is

(48) xIP;, $). (50)

with up~ = Ik'I and 0' = sgn(k'). The factor

(E )
1 iform &E&(u i+a'
0 otherwise

(47)

Ipf, Ef) = iA ) Vi(k—', m')
I
a„',b„p„',b„ t—

A:fmt

x IP;, g). (48)

represents the resonance condition. Using the Bogoli-
ubov transformation (27), we can express (45) in terms
of processes referring to Minkowski particles:

Before interpreting Eqs. (48) and (50), we want to
demonstrate the internal coherence of the scheme. The
physical results of Sec. IIIA can be reproduced by the
present detector calculation. The total excitation proba-
bility of the detector, regardless of the 6nal state of the
quantum field, may serve as a measure of the Rindler par-
ticle content of the initial field state IP;) [2]. The detector
response function is obtained in summing the probabil-
ity for excitation over a complete set of field states IP).
This can be evaluated using formula (48) and gives, with
reference to (12) and (13),

).Il' & I&f t)I = ).~I n~. .+IPSE I'(na. .+n~, ,)+IPi I' Ib"(E ~~) (51)

with g = A IJ, 7r/e'E. Because of the resonance condition
(47), all the equivalent modes (k, m ) to modes with

= E and their mirror modes (kp, m)s) contribute to
(51). The structure of this expression is very similar to
that of Eq. (35) for the Rindler particle number. Apart
&om the detector-dependent prefactor, there are two dif-
ferences: It contains contributions &om the modes with
resonant energy k = kE, since the detector cannot dis-
criminate between left- and right-moving Rindler parti-
cles in R. Only one of them corresponds to (35), because
there we asked for the particle number in a single mode.

Secondly, there is a sum over all trajectory parameters
m' which is due to the fact that the detector picks up
wave packets with energy E on all trajectories of the
Minkowski particles.

C. Spontaneous and stimulated processes in lowest
order

From now on, the concept of particles will be solely re-
stricted to Minkowski particles, which may be detected
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in the usual way. Our approach generalizes the work of
Unruh and Wald [8] to stiinulated processes and a local-
ization with wave packets. In specifying different initial
states of the accelerated detector and the Minkowski par-
ticle field, we see from the expressions (48) and (50) that
there are in lowest order four different types of processes.

Es:citation with absorption of a Minkowski particle
We ask for the probability that the detector in B gets

excited
I $) —+

I f) and the number of Minkowski particles
is reduced by one. From (48) we obtain for the two cases
that the trajectories of the incident Minkowski packets
either cross R or cross L [cf. (15)]:

P(I . , ~) I( -1). , &)) = . gi ~ I'~. (E,-. )
= n~ g (1+ Ip» I ) ~, (@,~A,. ),

P(ln~, 4) ~ l(n —1)P, , ~)) =o
(52)

(53)

k' is thereby derived &om (12). A&A, is the energy of the
Rindler mode equivalent to the ingoing Minkowski mode
(k. , m. ).

The results (52) and (53) show that for the process in
question the ingoing mode must intersect the path of the
detector [cf. Fig. 2(a)]. There is no further restriction of
the Minkowski particle trajectory. For a given trajectory
the Minkowski energy must satisfy the resonance condi-
tion at the intersection point P of Fig. 2(a) [cf. (47)].
This means that the respective Doppler shifted energy

as registered by the accelerated observer in P must
agree with the level spacing E of the detector. The re-
sulting transition probability is then proportional to the
number nP of ingoing particles and to Ini, I

All this is well known for the special case of an inertial
detector (a = 0), where we have Iag I

= 1 and IPq I

= 0.
Then the process reduces to the usual absorption process.
In the general case (a g 0), the only difference is that the
acceleration a causes a modi6ed absorption probability,
because In~ I

is different from its inertial value.

2. Es.citation oiith emission of a Minkowski particle

We now' turn to a process which happens for acceler-
ated detectors only. We ask for the probability that a
detector excitation is accompanied by an increase of the
Minkowski particle number by one. Equation (48) leads
to

P(lnr, s &) ~ l(n+1)~ s t)) =(nx +1)g IP»I ~"(E ~»)

P(I . &) I( +1). , t)) =o

(54)

(55)

with (12) and (13).
From the appearance of the Bogoliubov coeKcient

IPI, I
that gives rise to the thermal spectrum, we see

that the process (54) is inertially forbidden. In the case
nP = 0 (detector accelerating through the Minkowski

vacuum), (54) reduces to the Unruh effect, which can be
interpreted as spontaneous detector excitation accompa-
nied by particle emission, as has been discussed by Un-
ruh and Wald [8]. Equations (54) and (55) show that in
addition a corresponding stimulated detector excitation
with emission of Minkowski particles is possible if parti-
cles are going in in the mode (kp, mp) with trajectory of
the packet maximum traversing I See Fig. 2(b) for. a
right-moving packet mode (kp ) O, mp). A packet with
trajectory crossing R does not cause such an effect.

For the stimulated effect the resonance factor
b, (E, A&I, ) demands that the Doppler-shifted energy of
the inducing particles matches the detector energy at the
intersection point of the empty mirror mode with the de-
tector trajectory [cf. Fig. 2(b)).

This clearly reflects again the pair structure and its
nonlocal correlations which we have seen above in Sec.
III for example in connection with amplification effects
which refer to the detection of particles. For a heuris-

tic illustration one could say: If the detector is initially
prepared in its ground state, the presence of Minkowski
particles in a mode (kp, mp) with trajectory crossing R
induces, as compared with the spontaneous effect, an ad-
ditional appearance of Rindler particle pairs in the equiv-
alent and its mirror mode. If thereby the Minkowski par-
ticles on the trajectory mp have the energy demanded by
the resonance condition, the Rindler particle in the mir-

ror mode is absorbed by the detector and its pair partner
appears as additional real particle in the mode (kp, mp)
in the out-region. This process may be understood as a
stimulated amplification of a corresponding noninertial
spontaneous process (Unruh efFect) based on the same

pair structure.

g. Deescitation with emission of a Minkowski particle

With regard to detector deexcitation we firstly discuss

again the modification of the well-known inertially al-

lowed process. With (50) we obtain, for the probability
that the deexcitation is accompanied by the emission of
a Minkowski particle,
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P(lnÃ . &) ~ I(n+1). &)) = (nÃ .+1)~]~~ ['&"(E ~')
= (nx, + 1)g (1+ [Pg ] ) 6, (E, erg ),

&(Inx„, &) ~ l(n+1)x„, &)) = o

(56)

(57)

with (12). It is only nonvanishing for particles with tra-
jectories passing the right wedge [cf. Fig. 2(c)]. The non-
inertial modification consists as for the absorption pro-
cess (52) again in the appearance of [Ps ] . The factor
(nsM +1) shows that spontaneous as well as stixnulated
emission is possible.

g. Dec@citation tvith disappearance of a Minlsoaveki
pat'ticle

P(lnÃ, ~) ~ l(n —1)Ã,g)) = 0, (59)

with (12) and (13).
The process is typically nonlocal and stimulated be-

cause it is proportional to n& and needs incident par-
ticles with trajectories of the packet maximum passing
the left wedge L and not R [cf. Fig. 2(d)]. The resonance
condition refering to the Rindler mirror mode and its in-
tersection point P has again to be satisfied. This reveals
once more an underlying pair structure. In this case, in
a naive picture, a particle pair consisting of an emitted
and an incident particle seems to disappear because of

A characteristic noninertial process which is struc-
turally new is the stimulated detector deexcitation ac-
companied not with the appearance of an additional par-
ticle but with the disappearance of a Minkowski particle.
Equation (50) gives, for the respective probabilities,

P(] M
g) ~ ]( 1)M g))

M
[P [zg

x (E, ~x,(). (58)

the detector acceleration. The factor ]Ps ]
shows that

this axnazing effect is inertially (a = 0) forbidden.

V. CONCLUSIONS

The presence of particles in specific Minkowski wave

packet modes enlarges the expectation value of the
Rindler particle number for particular Rindler wave pack-
ets. This stimulated amplification and the decomposi-
tion of a Minkowski state in EPR-type entangled Rindler
states reveal the nonlocal pair structure specified above.

This has consequences for quantum optics in nonin-
ertial situations. Accelerated detectors, as compared to
inertial detectors show a richer structure of the physics
of excitation and deexcitation. (i) The processes of stixn-

ulated excitation with absorption and spontaneous and
stimulated deexcitation with emission are known &om
the inertial detector. The difFerence here is the appear-
ance of the Bogoliubov coeKcient [nl, [z g 1. (ii) The
processes (2) and (4) on the other hand depend on the
Bogoliubov parameters Ps and are inertially forbidden.
Excitation with emission happens spontaneously (Unruh
effect [2]) and furthermore in a stimulated way. In ad-
dition stimulated deexcitation with disappearance of a
particle becomes possible. (iii) These P~l processes are
nonlocal and the pair structure can be recovered.
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