
PHYSICAL REVIEW 0 VOLUME 49, NUMBER 8 15 APRIL 1994

Gravitational waves from a point particle in circular orbit around a black hole:
Logarithmic terms in the post-Newtonian expansion
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We find logarithmic terms in a post-Newtonian expansion of gravitational radiation induced by a par-

ticle traveling a circular orbit of radius ro around a Schwarzschild black hole of mass M. We calculate

the gravitational wave luminosity using the Teukolsky equation to high accuracy (-20 figures) and

determine the coefficients of the post-Newtonian expansion by means of least squares fitting. We find

that there are terms proportional to x lnx and x'lnx where x =(M/ro)' '. We also examine the accu-

mulated phase of coalescing compact star binaries by means of the post-Newtonian expansion as it

sweeps through the bandwidth at which the future laser interferometric detectors have good sensitivity.

PACS number(s): 04.25.Nx, 04.30.Nk

One of the promising sources of gravitational waves for
the planned laser interferometer detectors [1] is the last
stage of inspiral of compact binaries. Accurate theoreti-
cal models of waveforms are needed to extract physical
information from gravitational waves [2]. Much theoreti-
cal effort has already been directed towards this purpose
[3—11]. In the case when one of the stars in a binary is
much more massive than the other, a linear perturbation
theory is available. To investigate the effectiveness of a
post-Newtonian method, Cutler et al. [4] numerically in-

tegrated the Teukolsky equation to high accuracy and
fitted their numerical data for the gravitational wave

luminosity to the post-Newtonian expansion form by
means of least squares fitting up to sixth order.

In this paper, we try to extend the post-Newtonian ex-
pansion to the eighth order by using the fitting method.
To do this it is essential to calculate the gravitational
wave luminosity in higher accuracy than Cutler et al. 's

work in which numerical integrations were used to obtain
a solution of the Teukolsky equation. In this paper we

adopt a method which was originally proposed by Leaver

[12] to obtain higher accuracy. In this method, solutions
of the Teukolsky equations are represented in an analytic
manner.

and

L =QMro/Ql 3M/ro, —

where ro is orbital radius. The angular frequency is given

by Q=(M/ro)'~ . To calculate the gravitational wave

luminosity we use the Teukolsky equation [13,14]

~21 1 d
dr 6 dr

—U(r) R( „=T(~~(r) )

where

U(r)= [to2r~ 4ito(r 3M)] (—I —1)(&—+2), —
r —2M

(2)

and b, =r(r 2M). T( is gi—ven by

%e consider the case when a test particle of mass p
travels a circular orbit around a Schwarzschild black hole
of mass M &)p. Then the specific energy E and the an-

gular momentum L of the particle is given by

E = (ro 2M )/Q—ro(ro —3M )

I

(T( /m)/is= —2ob( (ro 2M) 5(r —ro) — &—b( 2iro[(ro —2M) 5'(r ro) —(ro —2M)(2 ito—ro)5(r r—o)]—
+ 2b( [r&&(ro 2M) 5"(r—r—o)+ [2itoro(ro 2M) —2r&&(3r& ——SMr&+4M )]5'(r —ro)

+ [4ro 8M co —ro —6i—toro(ro —M) ]5(r —ro)],
where 5(r) is the usual 5 function and co=mQ. ,b( are given by

(3)

ob, =-,'[(l —1)l(1+l)(1+2)]'~ 0 Y( —,0 Eral(ro —2M),0 Im

—ib( [(1 1)(1+2) ] & Y( —,0 L /ro,2'
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and

2bIm 1YIm 2
'0 LQ,

This expansion is a power-series expansion in variable
u =1 2—M/r around a regular singular point u =0. a„'s
are determined by a three-term recurrence relation

where, YI are the spin-weighted spherical harmonics
[14].

We solve Eq. (1) under the outgoing boundary condi-
tion at infinity and the ingoing boundary condition at the
horizon. Then gravitational wave luminosity is given by

dE = y y Izi'"'I'/2~~', (4)
1=2 m =1

R;„(r)= . he ' ', r'~ —00,

r B e' ' +r 'B e
™~r ~+00out in

(6)

Z&'"'= f dr R;„(r)T& (r)/b,
2iCOB;n 2M

where l and m are the spherical harmonic degree and or-
der. R;„(r) is a solution of the homogeneous Teukolsky
equation and has a boundary condition

l(l+ 1)—3(n+1 4—iMco)a„+, = 2n+ a„n+1
2 4 a„, (n ~ 1), (11)n+1

a i
=[l(l+ 1)—3]ao/(1 4—iMto) .

From the boundary condition (9), we must set ao = l.
For convergence of (10},we need a summation only up

to n —10 for rp(10 M. As R;„ is expressed by X;n and
their derivatives, it also converges for rp(10 M. Thus,
Z&'"' can be calculated almost analytically for ro & 10 M
except for the term B;n. To obtain B;n, we need to deter-
mine A;„. However, since r = 00 is an irregular singular
point, a power-series expansion with variable r con-
verges only asymptotically. So it is hard to obtain an ac-
curate value of A;„using (10). To overcome this, we ex-
pand X;„using a series of Coulomb wave functions dis-
cussed by Leaver [12]. That is

(7)

the homogeneous Teukolsky equation becomes

n2
+a) —V(r) X (r)=0in (8)

and

2MV(r)= 1— l(l+ 1) 6M
2 r3

The asymptotic form of X;„, after being normalized ap-
propriately, is given by

where r'=r+2M ln(r/2M —1). In the case of the cir-
cular orbit, TI „contains only the terms which are pro-
portional to a 5 function and its derivatives. So Z&'"' can
be evaluated using R;„(ro) and its derivatives.

It is often convenient to use a Regge-Wheeler (RW)
equation [15] instead of the Teukolsky equation. If we
transform R;„as [16—18]

d . r2 d
R (r) =b +iso — +iso rXin d n ~ d n in ~

X;„= A,„, g bt uti +'„(z)
L, = —oo

+ A;„g bt uti+'„(z)
L, = —oo

r
r —2M

2iMco

(12)

where u'*' are a certain kind of Coulomb wave function.
In Eq. (12},v is real and is determined so that a series of
Coulomb wave functions converges. We show the details
in the Appendix.

Numerical results of dE/dt are shown in Table I.
These data contain multipoles from l=2 to 6. All nu-
merical calculations are done with precision of 32 figures.
Checking the convergence, we confirmed that the accura-
cy of the summation in Eqs. (10), (12), and (5) has at least
20 figures. We compared our numerical data with those
by Cutler et al. [4] and .found that their data agree with
ours up to 8-9 figures which seems to be consistent with
their error estimates.

Using these data, we perform the post-Newtonian ex-
pansion. First we assume that dE/dt can be expanded in
powers of x [= (M /ra )

'~ ], that is, we assume that

X;„(r)=
e l COP r

A e''+A eout in
r*—++Oo .

(9)

dE dE

N k=0
kakx (13)

where (dE /dt )N is derived from a quadrupole formula:

To solve X;„we put Leaver's procedure [12] into prac-
tice. The Teukolsky equation is classified into general-
ized spheroidal wave equations which can be computed
by means of a power-series expansion around the horizon
or a series of Coulomb wave functions.

First, X;„can be represented as

dE
dt

32 pM
r,'

The first four terms are known analytically [3,20]:

ao=1, a, =0, a2= —'"', a3=4~ .

The next three terms are known approximately [4]:

(14}

(15)

X; =exp( i cur ~ ) g a„1——2M

n=0 r
(10) a4 —4. 89(2%%uo ), a 5

——38(10%%uo ), a 6
—135(50%%uo ),

(16}
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TABLE I. Numerical value of dE/dt including multipoles
up to I=6. This table is not intended to indicate the accuracy
of these values over 30 figures. However accuracy is at least 20
figures.

TABLE II. The results of the least squares fitting. The mod-
el functions of (top) are power in x, (middle) contains an x lnx
term, and (bottom) contains both x lnx and x 'lnx terms.

an

ro /M (M/p) dE/dt

100.00000 6.238 203 398 978 509412 124 176 192 704 334X 10- '
300.00000 2.607 338 426 816 527 765 774966086 335 620X 10
400.00000 6.201 576481 329 383 382 603 167 326 567 270 X 10
500.00000 2.035 048 609 173431 022 305 459 014285 948 X 10
600.00000 8.186438 196960483 600 132 340003 588 864 X 10
700.00000 3.790284023 911361 535 919647 135042 982 X 10
800.00000 1.945 130336 339 855 005 289 216 166030 152 X 10
900.00000 1.079 872 581297 294600 591999349 334023 X 10- '4

1 000.0000 6.378 752 660479 986 315456 777 531 270 354 X 10
1 200.0000 2.564 828 833 240 345 107029 159 654956498 X 10
1 400.0000 1.187 107 733 351 135 240943 577415 669 260 X 10
1 600.0000 6.090 542 750440027 869 703 840 948 937 458 X 10
1 800.000 Q 3.380 585 421 529 206 602 594 378 236 237 482 X 10
2000.0000 1.996 566 834 529090273 039 578 847096921 X 10
2 200.0000 1.239 897486733 535 981491638 714 136 889 X 10
2 400.0000 8.025 973 521 482 039 884440 516 887 789 591 X 10
2 600.0000 5.379 398 644465 723 875 822 126 316487 929 X 10- "
2 800.0000 3.714072 389 983 293 585 415 708 907 420 717X 10
3 000.0000 2.630 686432040 147 798 074 361 413 233 360 X 10
3 200.000 0 1.905 267 894 555 250 203 290 888 243 178 670 X 10
3 400.0000 1.407 143 600435 670 282 337 691 474 289 615 X 10
3 600.0000 1.057412945 896035 827263 146787254939X 10
3 800.0000 8.069 762 995 913967 648 059 791 767 590 368 X 10
4000.0000 6.244509 390 803 978 517 372 128 153 303 494X 10- '"

4200.0000 4.892 935 859 814708 021 886 566 563 356 111X 10
4000.0000 3.877 650922 832 691 958 929 296005 872 690X 10

0
1

2

3

4
5

6
x'lnx

7
8

0
1

2

3

4
5

6
x "lnx

7

8

x 'lnx

0.999 999 999999 567 370 32
2.5540107268919450071X10 '"

—3.711 309 596 750 765 212 0
12.566 384 350 926 089 206

—4.930481 640 323 767 992 9
—37.999 982 610 332 799 195
179.273 234 265 923 125 902

—817.510 801 390 776 742 99

0.999 999 999 999 999 718 56
1.926 112 189023 945 531 28 X 10

—3.711 309 523 874 391 092 1

12.566 370 629 097 184 200 5
—4.928 463 902 822 523 863 3

—38.292 319775 967 105 066
115.913907 630 116282 263

—16.262 941 934 716 8517 92
—104.972 507 345 727 096 16
—259.250 929 833 168 860 42

1.000 000 000 000 000 005 303 0
—4.115960 526 368 818 532 705 X 10
—3.711 309 523 807 923 530949
12.566 370 613929 664 016796

—4.928 461 103 278 450 962 933
—38.292 858 801 057 043 217 67
115.719471 267 127 908 783 61

—16.307 354 957 551 625 440 55
—101.173 170 530 364 872 684 5
—72.608 762 809 630 517 67049

64.218 530 396 595 549 400 97
where numbers in the parentheses denote the error. We
calculated multipoles from I =2 to 6. Then we can deter-
mine the coefficients up to the order x because the I =7
multipole contributes from order x ' .

We determine the coefficients a„by means of least
squares fitting implemented with the method of singular
value decomposition [19]. We used 120 data of dE/dt in
the fitting. The results are shown in Table II (top). Using
these results we plot in Fig. 1 the residual g„of dE/dt
which is defined by

the accuracy of the determination of first four values is
improved about 3 orders. The residual of dE/dt includ-

ing the x lnx term also becomes better. From the value
in Table II (middle), we can understand the behavior of
~g6~ in Fig. 1. Since b6x lnx+a7x becomes zero near
r-20, g6 change sign near this point. All of these facts
are consistent with the existence of the term proportional

dE dE
dt dt

dE g a„x
dt

(17)
1O',

We see that, at n =6,
~ g„~ shows a strange behavior. In

general, it is argued that the post-Newtonian expansion
may contain terms proportional to x "{lnx )~ {k,p = non-
negative integers) [3,4,21]. Cutler et al. said in their pa-
per [4] that Ori suggested in a private communication
that there is a term proportional to x 1nx. To take this
into account, we add the b6x 1nx term to the model func-
tions. That is,

10

10 6--

10 '.—

n=4
t1=5
nW

dE
dt

dE y a„x +I,x I~k 6

dt
(18)

"'10 100 1000 r, lM

The result is shown in Table II (middle). It is clear that
FIG. 1. The plot of the residual ~g„~ of dE/dt using the

coefficients in Table II (top).
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to x lnx in the post-Newtonian expansion. From the
analysis of the data dE/dt of each modes (l, m ), we find
that this term comes from the I =m =2 mode. We also
tried model functions with x (lnx)" (n )2) and found
that the coefficients of these terms are less than 10
This fact suggests that the terms proportional to x (lnx )"
(n )2) do not exist.

In a similar way, we examine the coefficients at the or-
der x and x . We find that there seem to exist no

I

x (lnx }"(n ) 1) terms but there is a bsx lnx term. This
term comes from both 1 =m =2 and I =rn =3 modes.
Fitting results are shown in Table II (bottom). We see
that the accuracy of the determination of the first four
values is improved about 2 orders compared with Table
II (middle).

We also performed the fitting to the data in which the
first four terms are subtracted analytically and found that
the post-Newtonian expansion has the form

1 — x +4' —4.928461 1990x4—38.292 835x
dt dt N 336

+ 115.730x —16.3049x lnx —101.450x —93x +57x lnx (19)

To investigate the accuracy of these coefficients, we com-
pare these results to the value in Table II (bottom) and
count the number of figures at which the value is not
changed. We adopt these numbers as significant figures
of the coefficients and the accuracy of these values are es-
timated as a4, 10 %; as, 10 %; a&, 0. 1'%; bs, 0.1%;
a7, 1%;as, 30%; and bs, 20%.

Using these data and log terms, we plot in Fig. 2 the
residual g'„which is defined by

dE , dE
dt dt

dE g (akx +bkx lnx),
d N k=0

(20)

I 0'„&

10

10

10

10

1O '-.

1 0-11-

1O"-'
10

. , I . . . I

100 ro/M

FKx. 2. The plot of the residual ig'„i of dE/dt using the
coefficients in Eq. (19}.

1000

where bk%0 for k =6 and 8. We see all g'„except g'7

show a power-law behavior. g7 changes sign around
ro-15M. This may suggest that the coefficients of x
may be very large (about 650). However, for n )9, more
detailed analysis is needed.

Finally, we estimate the accuracy of the post-
Newtonian expansion to construct the template
waveform from an inspiraling compact binary. Consider
that a binary starts to inspiral from orbital separation ro
and that there are two template waveforms. One is con-
structed using correct the E and the other is constructed
using an approximate form for E (the overdot denotes a
time derivative}. Then at the end of the inspiraling, the
accumulated phase difference h4 between two template

waveforms is given by [4]

b4/4-EE(ro)/E(ro), (21)

where 4 is the total phase and the right-hand side refers
to the relative error in E.

The planned ground-based laser interferometer detec-
tors [1] will observe inspiraling compact binaries in the
wave frequency f -10—1000 Hz. In the case of a 1.4MD
neutron star binary, when the wave frequency is 10 Hz,
ro is about 723 km (175M} and the total accumulated
phase from 10 to 10 Hz is 4=10 . We assume that the
expansions for non-negligible mass p/M will be subject to
the same convergence problems as for negligible p/M.
Then, from Fig. 2, we can estimate the accumulated
phase error (b,4)„when we include the post-Newtonian
expansion of order x": (64)3-20, (b@}4-7,(b@)5-3,
(b@)&-0.2, (54)7-0.02. This suggests that if we con-
struct the template waveform which includes the post-
Newtonian effect up to n =7, we will obtain an accuracy
-3X10 cycle after —1.5X10 cycles. Note that the
b&x lnx term contributes to bE(ro}/E(ro) one-third of
the a6x term at rp —175M. This shows the importance
of the bsx lnx term in constructing the template wave
form.

In this appendix, we explain the details of the expan-
sion in a series of Coulomb wave functions and the nu-
merical method to calculate A;„. We set M =1. The
Teukolsky equation is classified into generalized
spheroidal wave equations. Leaver [12] showed that gen-
eralized spheroidal wave equations can be calculated by

One of the authors (H.T.) thanks Professor M. Sasaki
for useful discussions and Professor H. Sato for continu-
ous encouragement. We also thank Y. Yamada and K.
Oohara for useful comments on the numerical calcula-
tions. This work was supported by the Grant-in-Aid for
Scientific Research on Priority Area of the Ministry of
Education (04234104). Numerical calculations were per-
formed at the Data Processing Center of Kyoto Universi-
ty.
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means of a power-series expansion in variable u = 1 —2/r
around a black hole horizon r=2 and a series of the
Coulomb wave functions. If we convert X;„(r) as

X,„=r (r —2) ' y(r), the Regge-Wheeler (RW) equa-
tion becomes a general form of the generalized spheroidal
wave equations:

—B~/2
With the substitution y=r ' h(r) and z=rco, this
equation becomes

z(z —2')[h „+(1—2g/z)h ]

+C&coh, +(Cz+C3co/z)h =0, (A2)

where

r(r —2) +(B&+B&r)
dr

+ [co r(r 2) Z—rico(r——2)+B,]=0, (Al)

where

C) =B)+2B2=2—8ico,

Cq =B3—
—,'Bz( —,'Bz —1)=12' —l(1+1),

C3 = ——'B~(B)+Bq+2)=6+So) +Sic' .

(A3)

7/
— 2'

B)= —10,

B2 =6—4ico,

B3
=8co +6 —l ( l + 1 }—10i a) .

The relation between X;„and h(z) is

2l M

X;„= h(z) . (A4)

According to Leaver, h (z) can be expanded in a series of
Coulomb wave functions:

h(z) = A,«g bLur +'„(z)+A;„g bl. uL+'„(z)
r —2

2l tt)

(A5)

uz+', = g bzexp +i 2coln4co — (L+v)+—oL
L = —oo 2

[GL+ y(7/y z )+i+I + y( rii z ) ], (A6)

where FI +„(ri,z ) and Gr +„(g,z) are the regular and ir-
regular Coulomb wave functions, respectively [22], and v
is defined later. The Coulomb wave functions are solu-
tions of the differential equations

d + 1
2ri (L+v)(L+v+1)

2 ~L+v 2 uL+ —0
dz z

(A7)

and

l

They have asymptotic forms such as

GL+v —~~L+ v

~exp +i z —riln2z — (L+v)+o—l2

where

crI =argI (L +v+ I +i 71 ) .

(A10)

(Al 1)

d L+v
z +' 2L+2v+1 L +~+

From this equation, we can see that h (z) has the desired
asymptotic property. The coefficients bL in the expan-
sion (A5) are defined by the recurrence relation

L+v+1
QL I +y 2L+2 +I L L+y —

1

where

Ql =ri/[(L+v)(L+v+ I )],
Rl =[(L+v) +r) ]' /(L+v) .

They satisfy the recurrence relation

1 1
L+1 L +1y+QL L+y

+ 1

2L +2v+ 1

(A8)

(A9}

+LbL+1+I LbL + YLbL —I

where

CORL + ~

CXL— [2(L+v+1)(L+v+2)
2L +2v+3

(L +v+2)C, —C—
3 ],

PL =(L+v)(L+v+ I }+Cq

+a)QL [2(L +v)(L +v+1)—Ci —C3 ],
CHURL

y [2(L+v)(L+v —1)
2L +2v —1

+(L+v—1)Ci —C3] .

(A12)

FL+ and GL+ are normalized such that the %'ronskian
becomes

+L+, GL+ +L+ GL+, 1

It is necessary that expansion (A5) converges. The re-
currence relation (A12) has two independent solutions
which have the asymptotic property
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YL+1 L+1YL+2 L+2YL+3
L+1 L

PL+1 ~L+2 ~L+3

L —1 L —2FL —1 L —3VL —2
bL —1/bL

IL —1 ~L —2 IL —3

(A13)

(A14)

From the theory of the three-term recurrence relation, we
can show that the continued fraction (A13) and (A14}
converges if and only if t(bL ] is a minimal solution of the
recurrence relation (A12) as L~kac. When [bL j is
minimal, from (A12), (A13), and (A14) and by setting
L =0, we obtain

—170 —2V —1 —3 V —2

P 1 P -2--
+ 0r1 1r2 273

4—
&2

—4— (A15)

This equation can be satisfied by appropriately choosing
v. Conversely [bL] is minimal as L~kac if vis a solu-
tion of an implicit equation (A15).

If we have a solution v of Eq. (A15},v+ n (n = integer)
are also solutions. When co~0, the difFerential equation
(A2) has the limiting form

dh+
1

221+ 2
h (}

2 C

dz2 z z2

This equation has solutions h(z) =G~(O, z) and F~(O,z),
where

bL+1/bL -L/to or to/L as L ~ cc .

It is also known that FL+„and GL+„have asymptotic
properties such as

FL+„-z/(2L ), GL+„-2L lz as L ~~ .

If we chose expansion coeScients which have the asymp-
totic property bL+, IbL -1o/L, the series gL —pbLuL+„
is absolutely convergent for r & 2. In this case coefFicients
bL are said to be the minimal solution of the three-term
recurrence relation (A12) [23]. The proof of the conver-
gent property as L ~—00 can be shown in the same way.

From recurrence relation (A12), we can formally derive
continued fractions:

X,„= A,„, g bL uL+'„(z)
L= —oo

+A;„g bL uL+'„(z)
L= —oo

2

2l isJ

(A16)

and its derivatives at some point z =cor.
Next we explain the details of numerical calculations.

First we calculate a homogeneous solution of the RW
equation X;„ from Eqs. (11) and (10}. Since a„ is not the
minimal solution of the recurrence relation, there are no
difBculties in calculating a„. When the orbital radius r0
is large, the convergence of expansion (10) is slow.

To evaluate the series of Coulomb wave functions, we
first determine a parameter v as a solution of (A15) using
Brent's algorithm [19]. In our case, (A15) is a real func-
tion. We did not have any trouble in finding this solu-
tion. v must approach v0 when co approaches zero and
this property can be checked directly. Second, the
minimal solution [bL ] must be determined. It is known
that a minimal solution cannot be calculated numerically
by the forward recursion of the recurrence relation from
L =0 to infinity. So we use the property (A13) and (A14)
to evaluate bL from L=O to infinity. We always set
b0 = 1. The continued fractions are determined by
Steed's algorithm [24]. The Coulomb wave functions are
also determined by the method shown in Barnett et al.
[24]. The convergence of the series of Coulomb wave
functions are usually very rapid and we have to add only
the first several ten terms. To determine A;„and A,„„
we must evaluate (A16) and its derivative at some point r.
We must choose appropriately the point r where we
evaluate Eq. (A16) because when r is small, irregular
Coulomb wave functions GL+„(1l,z) diverge. This prop-
erty is enhanced when to is small because GL+ (ri, z ) have
an asymptotic property such as z as L —+~. We
choose r around —1/co.

vo= —
—,'(I+Ql —4C2)=l or —(1+1}.

We must determine v and bL such that they reproduce
the above solutions when co approaches 0.

In this way, we obtain the solutions which behave as
purely ingoing and purely outgoing solutions at infinity
and we can calculate A;„and A,„, from
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