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Finding black holes in numerical syacetimes
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%e have constructed a numerical code that finds black hole event horizons in an axisymmetric rotat-
ing spacetime. The spacetime is specified numerically by giving metric coefficients on a spatial grid for a
series of time slices. The code solves the geodesic equation for light rays emitted from a suitable sample
of points in the evolving spacetime. The algorithm for finding the event horizon employs the apparent
horizon, which can form much later than the event horizon, to distinguish between light rays that escape
to infinity and light rays that are captured. Simple geometries can be diagnosed on a workstation, ' more
complicated cases are computationally intensive. However, the code is easily parallelized and has been
efficiently run on the IBM SP-1 parallel machine. %e have illustrated the use of the event horizon code
on two cases. One is the head-on collision of two black holes that form from the collapse of collisionless
matter, coalescing to a single Schwarzschild black hole. The other is the collapse of a rotating toroid to
form a Kerr black hole. In this case the horizon initially appears with a toroidal topology. This is the
first known example of this phenomenon.

PACS number(s): 04.25.Dm, 97.60.Lf

I. INTRODUCTION

A major effort is underway to develop computer codes
that can solve Einstein's equations of general relativity
for physically realistic systems. The spherical problem,
where the field is nondynamical and no gravitational
waves are produced, is essentially solved. Current work
focuses on multidimensional systems with dynamical
gravitational fields.

Some of the most interesting questions in numerical re-
lativity concern the formation of black holes from gravi-
tational collapse or collisions. A curious paradox, how-
ever, is that the appearance and growth of a black hole
cannot be determined in a numerical simulation until
after the complete spacetime has been constructed. The
reason is that there is no instantaneous criterion for de-
ciding whether a particular event is inside or outside a
black hole. Rather, it is necessary to determine the fate
of all possible light rays emitted from that event. If any
light ray can escape to infinity, the event is outside the
black hole. If no light ray can reach infinity, the event is
inside the black hole.
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fPresent address: Department of Physics, University of Illinois

at Urbana-Champaign, Urbana, IL 61801.
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The event horizon, or surface of the black hole, is the
boundary between events that can send light rays to
infinity and those that cannot. Thus light rays have to be
tracked arbitrarily far into the future to identify this
boundary. As one evolves a spacetime numerically from
one time slice to the next, it is thus impossible to locate
the surface of the black hole on each slice concurrently.
One must go back after one has determined the fate of
light rays to mark the event horizon on any given slice.

In some cases, an apparent horizon signals the existence
of a black hole. An apparent horizon is also determined
by the fate of beams of light, but in this case it is the in-
stantaneous fate of the rays that counts. In a weak gravi-
tational field about a central source, an outward beam of
light diverges, and its cross-sectional area increases.
However, a sufficiently strong gravitational field actually
focuses the light so that the area of the beam immediately
decreases. Such a strong field defines a region of closed
trapped surfaces, from which all outgoing beams of light
converge. The apparent horizon is the outer boundary of
the region of closed trapped surfaces. If an apparent hor-
izon is present on any given time slice, then there must be
a black hole on that slice, and the apparent horizon must
lie inside the hole s event horizon [1]. At late times,
when the gravitational field has settled down to a station-
ary state, the event horizon and the apparent horizon
coincide.

An apparent horizon is readily identified from the
computed metric on each time slice as it is produced in a
numerical code. %'hile its appearance guarantees the
presence of a black hole, there are two problems with us-
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ing an apparent horizon as a diagnostic for black holes.
First, a black hole may be present on the slice without an
apparent horizon. Second, even when the apparent hor-
izon exists, the event horizon does not coincide with it,
especially in the early stages of black hole formation.

In this paper we present a code that maps out the event
horizon given a numerical spacetime and the apparent
horizon. It takes an input numerically generated metric
coefficients for an axisymmetric spacetime and probes the
geometry using null geodesics. We employ a simple cri-
terion to decide for a simulation that lasts only a finite
time whether a light ray emitted from a given point in
spacetime is "captured" or "escapes. " We apply the cri-
terion to a large number of points in the numerical space-
time, and thereby locate the event horizon. We illustrate
the technique on some examples involving collisions and
collapses of relativistic objects.

II. NUMERICAL TECHNIQUE

A. Tracking the paths of light rays

gOJ 1'ljP
(2)

For nonrotating matter, /=0, g'=0. Although the
software is written to accept data in the quasi-isotropic
gauge of Eq. (1), it is trivial to modify it for other gauge
choices.

The core of the event horizon software is a numerical
routine for solving the geodesic equation for light rays.
Recall that the geodesic equation is

d'x" +rp dx dx'
0 (3)

where A, is an affine parameter. The photon four-
momentum p has components

dx
p=d~

0 1p'= V'r"s d—, ,
(4)

where the expression for p enforces p p=0. Using the
3+ 1 form of the metric and Eq. (4), we write the geodesic
equation as two coupled first-order equations:

«,;(P')'+&',;Pa —' 2)",;Pa»—

The code takes as input numerical metric coefficients
for an axisymmetric line element in Arnowitt-Deser-
Mizner (ADM) 3+ 1 form. The spatial part of the metric

y;J in the quasi-isotropic gauge is

' 'ds =y "dx'dx =A (dr +r d8 )IJ

+8 r (gd8+sin8dg)

The remaining parts of the metric are constructed using
the spatial metric y;~, the lapse function a, and the shift
vector P':

dxj; o

dA,
=r"I; (6)

A, =2rA

and difference it as

A;+) —A;
, r )i+1/2 i+1/2

rf+&

In following a light ray, the Runge-Kutta integrator re-
quires field values at spacetime points that do not lie on
the stored mesh points. These are computed by trilinear
interpolation in the variables r, cos0, and t from the mesh
points to the point on the null ray. All of our cases are
axisymmetric, so P is ignorable. Once again, to improve
accuracy we consider the regularity of the fields when in-
terpolating. For example, we interpolate A linearly in r,
rather than in r.

Our code can run on a workstation-class machine with
a graphical user interface, so we can actually watch light
rays be integrated with manually chosen initial condi-
tions. However, the complete file of metric data for a
typical case is too large to fit into the memory of a
workstation. For example, the case described in Sec. IV
8 below has seven metric variables on a 201 radial by 17
angular grid for 240 time slices. These data require about
60 Mb of storage. To accommodate the memory
resources of workstations, we leave the metric file on disk
and do fast indexed searches of the disk file. %'e read in
only the local grid and metric information necessary for
the current integration path. Hence the code runs on a
machine with small internal memory (less than 3 Mb) but
in this case is limited computationally by disk access
speed. However, the code runs very effectively on a

Given an initial photon position and momentum, togeth-
er with a metric, Eqs. (5) and (6) can be integrated to find
the photon trajectory.

The code is designed to receive a numerical metric on a
spatial grid on successive time slices. The grid consists of
radial and angular meshes that can vary from time step
to time step.

The equations are integrated with a fourth-order
Runge-Kutta method with variable step size and fifth-
order error estimation [2]. To integrate the geodesic
equations we need to know the values of the fields and the
field derivatives at each point in spacetime along a null
ray. Thus, we need to differentiate the fields numerically,
and interpolate the field values and derivative values to a
point that is not necessarily a mesh point. Derivatives at
the midpoints of a grid zone are computed by first-order
differencing and then bilinearly interpolated onto the
original mesh points. This scheme becomes second-order
accurate in the limit of uniformly spaced grid points.
Note that the geodesic equations require only first deriva-
tives.

We use the regularity of the various fields near the ori-
gin and axis to improve the accuracy of the differencing.
For example, the metric function A varies like [constant
+ 8(r )] near the origin. Thus we write the radial
derivative as
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parallel machine in which each node has its own local
disk, such as Cornell's IBM SP-1, which was used to
probe rotating spacetimes (see Sec. IV B).

B. Using light rays to locate event horizons

277J(ps), =sin j=0, . . . , N —1 .

We need a criterion to decide whether a light ray prop-
agating in a spacetime that has been constructed for only
a finite time ultimately escapes or is captured. We experi-
mented with a number of different strategies. An obvious
choice is to examine the slope of the null geodesic at the
last time slice to decide whether the ray is ingoing or out-
going. In practice, however, this test is not very effective
unless the simulation has proceeded to very late times
and the geometry has become nearly stationary. A more
reliable criterion takes advantage of the appearance of an
apparent horizon at late times. If at any time a light ray
passes into an apparent horizon, we know with certainty
that it is within an event horizon and has been captured
by a black hole. If all light rays launched from a point in
spacetime, regardless of initial momentum, are captured
in this manner, then that point in spacetime is inside the
black hole. If at least one light ray is not captured but in-
stead "escapes, " the point is not inside the black hole.

The surface separating these "escape" or "capture"
points is the event horizon of the black hole. There are
two possible sources of error in our calculation of this
surface. First, our estimate is conservative; technically,
one must follow a light ray for an infinite time to decide
whether or not it is captured. We have only a finite span
of data; light rays that we label "escape" may in fact
move into the apparent horizon after the simulation has
ended. Thus, the event horizons we calculate could be
smaller than the "true" event horizons. However, this
effect is minimized whenever the simulation proceeds far
enough that the apparent horizon area has grown to the
stationary Schwarzschild or Kerr value. We assume that
at this point the apparent and event horizons coincide,
and our plots automatically reflect this.

A second possible source of error arises from the finite
number of light rays that can be launched from a point.
It is possible that there exists some unexamined direction
that allows light rays to escape. Thus, in principle some
of our "capture" points may be "escape" points, so that
our estimate of the event horizon size could be too large.
To rule out this latter source of error, we experimented
with increasing numbers of photon directions from each
point. For nonrotating spacetimes, where the null path
r =r(9) is independent of p&, we found that 48 photon
launches per point was always adequate to specify the
event horizon at the resolution of a graphical image. For
these spacetimes we integrate N=48 light rays with
p&=0, and the other two components varied uniformly
over the momentum space unit circle:

In axisymmetric, rotating spacetimes, varying p& can
have significant dynamical consequences. For example,
in the Kerr spacetime counterrotating tangential light
rays fall into the black hole from a larger initial radius
than corotating tangential light rays. So now we must in-
clude light rays with nonzero p& in our choice of null

directions. This extra degree of freedom requires a larger
number of light rays. In practice we launch about
X=750 light rays from each point in rotating spacetimes.

We implement our algorithm for finding the event hor-
izon at a given time in two stages. First, we find a rough
approximation to the event horizon. Using the approxi-
mation as a starting point in searching for the actual
event horizon allows us to reduce the number of space-
time points we must examine. The most eScient way of
determining the approximate event horizon on any given
time slice is to adopt the already-determined event hor-
izon on a nearby time slice as our approximation. When
we first start up the code to look for the event horizon,
we know the location of the event horizon on the last
time slice, since by assumption it coincides with the ap-
parent horizon then. We therefore adopt the strategy of
locating the event horizon on successive slices moving
backwards in the spacetime, thereby always having a
good approximation available.

Stage two consists of refining our approximation to
produce an accurate event horizon. First, we launch rays
from a given point on the approximate horizon. If the
point is inside the black hole, then the event horizon is
larger than the approximate horizon, so we step outward
along the vector normal to the approximate surface; if
the point is outside the black hole, the event horizon is
smaller than the approximate horizon, so we step inward
along the normal vector. We then launch another set of
rays from the new point, and step accordingly. When we
find two consecutive points, one of which is inside and
one outside, we bisect the interval and continue testing
until we find two points whose coordinates are less than
some e apart. In practice we have used e jM = 10

III. TEST CALCULATIONS

To test our code, we studied light rays and the horizon
structure in four well-understood spacetimes: flat space in
spherical polar coordinates, the Schwarzschild exterior
and interior geometry in Kruskal-Szekeres coordinates
[3], exterior Kerr in Boyer-l. indquist coordinates [3], and
Oppenheimer-Snyder collapse in maximal slicing and iso-
tropic coordinates [4].

Photons in flat spacetime travel in straight lines. The
major source of numerical difBculty here is that in polar
coordinates the geodesic equations have coordinate
singularities on the z axis (8=0,m) and at the origin
{r=0). Trajectories sufficiently close to the axis were
continued across the axis by setting p~p+vr; trajec-
tories close to the origin require setting O~m —0 as well.
Together with the regularized differencing and interpola-
tion described in Sec. II we were then able to handle
these singularities with no difficulty.

For our next test we studied the behavior of light rays
in the Schwarzschild geometry using Kruskal-Szekeres
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coordinates [3]; recall that the line element in these coor-
dinates is

dS
32M

e
—rl2M( dU 2+de 2)+ r2dQ2 (10)

iV. RESULTS

A. Head-on collision of two black holes

As one application of our code, we studied the event
horizons that form during the collision of boosted spheres

Kruskal-Szekeres coordinates are extremely useful as a
check because light rays, especially radial light rays, ex-
hibit simple behavior: As can be seen from the line ele-
rnent (10), all radial light rays satisfy the equation
u =SU+const. We first allowed the code to evaluate the
analytic expressions for both the Kruskal-Szekeres metric
functions and their derivatives along light rays. We
found that radial light rays traveled along 45' trajectories
in (u, v) space as they should. We also were able to keep
a photon in an orbit at r =3M for many periods. We next
evaluated the metric functions alone analytically and in-
serted their values on grid points into the code. We then
reran the simulation, thereby testing the interpolation
and numerical derivative routines. Our results were vir-
tually identical: radial light rays again moved along pre-
cise 45' trajectories, and we found an unstable orbit very
close to r =3M. We were also able to locate the event
horizon at r =2M to better than a part in 10 .

We next studied the exterior Kerr geometry in Boyer-
Lindquist coordinates. We focused on finding the loca-
tion of the unstable photon orbits in the equatorial plane
for various values of a, since analytic expressions exist for
the locations of these orbits [3]. The grid we used con-
sisted of 301 radial grid points evenly spaced between the
Kerr event horizon, M++M —a, and IOM; it used 21
angular grid points evenly spaced in cos8. For all values
of a that we tested, we were able to identify the location
of critical orbits to a part in 3000.

The final test treated Oppenheimer-Snyder collapse, a
simple analytic spacetime with an event horizon that
grows with time. We used the metric in maximal time-
slicing and isotropic coordinates derived by Petrich et al.
[4] and followed the collapse of a sphere with an initial
areal radius of 10M. This metric was placed on a numeri-
cal grid consisting of 155 radial grid points in the matter
interior and 101 radial grid points in the matter exterior.
Our goal in this test was to locate the time evolving event
horizon. We supplied the code with information about
the apparent horizon (a spherical surface of areal radius
r =2M that first appears at t =45M). We used the code
to map out the event horizon and found good agreement
with the results of Ref. [4]. For example, we found that
the event horizon first appears at the origin at
t =38.43M, which compares well with the value
t =38.4117M quoted in Ref. [4].

of particles. The particles are assumed to obey the rela-
tivistic collisionless Boltzmann equation (Vlasov equa-
tion); the evolution is simulated with an axisymmetric
evolution code and the solution is described in Ref. [5].
We regenerated the solution using 250 radial zones and
32 angular zones, taking about 3.6 CPU hours on the
IBM ES9000 supercomputer. We took the metric and
apparent horizons produced by the evolution code as in-
put for our event horizon finding code.

As described in [5], the spheres each have an initial ra-
dius a =0.8M and are centered at zo =+1.4M. There are
no apparent horizons initially. The nonequilibrium
spheres are boosted toward each other, imploding on
their own centers while approaching each other head-on.
By suitable choice of parameters, we can treat the head-
on collision of two black holes in this manner.

We chose the spheres to have an inward boost velocity
of v =0.15 as measured by the normal observer (an ob-
server whose four-velocity is normal to the t =0 initial
time slice). The evolution code found a common ap-
parent horizon appearing at t=6.5M and disjoint hor-
izons appearing at t=7. 1M. The horizon code found
event horizons appearing much earlier than the apparent
horizons. In particular, we found disjoint event horizons
appearing within the spheres of matter as early as
t =0.13M.

The disjoint event horizons are tidally distorted, grow-
ing toward each other until they coalesce at t =2. 16M,
forming a single event horizon (Fig. 1). The single event
horizon expands along the equator and contracts along
the axis. At time t =6.5M the common apparent horizon
appears, well within the event horizon. At time t =7.1M
the disjoint apparent horizons appear. We terminate the
evolution at t =11.7M.

In Fig. 2 we show cross sections of the collision in a
meridional plane. In the first snapshot, the event horizon
has formed in the interior of each of the spheres but has
not yet coalesced. Coalescence first takes place in the
second snapshot. The last three snapshots in Fig. 2 are at
the same times as the last three in Fig. 1.

In Fig. 3 we show the spacetime diagram for this col-
lision. The formation of the common and disjoint ap-
parent horizons at t =6.5M and t =7.1M, respectively, is
seen as the sudden appearance of a dark surface within
the event horizon. This picture is an actual calculation of
the schematic diagrams first sketched over 20 years ago
[6]

Figure 4 displays the trajectories of outward radial
light rays launched from the axis at t =4M. The dashed
line is the event horizon found by our code. From the
plot, it is clear that light rays initially inside the event
horizon move further within the horizon, while light rays
initially outside the event horizon move further out. This
behavior increases our confidence in the surface we find.

In Fig. 5 we plot the area of the event horizon. We
normalize the area to that of the expected final state, a
single Schwarzschild black hole of mass M. We take M
to be the initial total mass energy, since the energy car-
ried ofF by gravitational waves is small [5]. When the two
event horizons coalesce, their total area is
A/16m. M =0.48. When the common apparent horizon
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B. Collapse of rotating toroids

We have also studied event horizons that form during
the collapse of rotating toroidal configurations of co1-

1.5 —"

t = 1.0

t = 11.7

0 .5 1 15 2
X

FIG. 2. Snapshots at selected times for the collision shown in
Fig. 1. The solid line denotes the event horizon, and the dashed
lines the common and disjoint apparent horizons. The last
three snapshots are at the same times as the last three images in
Fig. 1. t, x, and zare in units of M.

appears, the area of the event horizon is
A/16m. M =0.99, while the area of the common ap-
parent horizon is A/16' =0.85. Both areas grow
monotonically, settling down together to a value close to
unity. By the end of the simulation, the area of both hor-
izons is A /16nM .= l. l. According to the area theorem,
the area must grow monotonically and asymptote to 1

when the radiation is small. The 10% discrepancy that
we find at late times is due to numerical inaccuracies in

following the late time behavior of the black hole with
the evolution code as the central singularity develops.

lisionless matter. The initial data used to generate the
equilibrium clusters and the rotating evolution code used
to evolve the clusters are described in Ref. [7]. We regen-
erated the solution using 200 radial zones and 16 angular
zones. This run took about 8 CPU hours on the IBM
ES9000. Again, the metric and apparent horizons pro-
duced by the evolution code provide the input for the
event horizon finding code.

Here we present the results for case 10 of Ref. [7]. The
cluster in that case is based on a solution for a rotating
toroidal cluster in stable equilibrium. The cluster has an
outer circumferential radius of R, /M=4. 5. In order for
the cluster to collapse, it is necessary to modify it away
from equilibrium. To accomplish this, we cut down the
angular momentum of each partic1e by a factor of 0.5,
producing a nonequilibrium cluster with total angular
momentum J/M =0.70. The toroid initially collapses
along its minor radius to a thin hoop; then, while under-
going oscillations along the minor radius, it collapses in-
wards along the major radius. The matter and the hor-
izons are plotted in Fig. 6.

As discussed in Sec. II B, exploring the geometry of a
rotating spacetime requires integrating many more light
rays than required for a nonrotating spacetime. We gen-
erally integrated 750 light rays per point in the rotating
case, except near the origin where we sometimes needed
3000 light rays to get accurate results. Integrating this
many light rays took far too long to run on a serial com-
puter. We therefore modified the event horizon finding
code to perform parallel computation using the IBM SP-
1 parallel supercomputer, which consists of RS-6000 class
CPU's. The code is very easy to para1lelize because each
light ray moves independently in the same predetermined
spacetime metric. Using 16 processors gave essentially a
16-fold speedup over the serial version. Generating the
event horizon for the toroidal case took approximately 30
CPU hours per processor on the SP-1.

As in the collision case, we found that the event hor-
izon appears much earlier than the apparent horizon
(Figs. 6 and 7). The topology of the event horizon is rath-
er remarkable: it initially develops as a toroid, beginning
at t =13.2M. It first forms entirely within the vacuum,
between the origin and the inner edge of the toroidal clus-
ter. The toroidal event horizon expands along its minor
axis until the central hole of the doughnut pinches oQ' at
t = 13.5M. This time at which the horizon becomes topo-
logically spherical is approximately when the outer edge
of the event horizon reaches the inner edge of the toroid
of matter. The event horizon expands along the axis, and
the apparent horizon appears inside it at t =18.0M. By
the time we terminate the evolution at t =23.2M, the
event horizon and the apparent horizon have settled
down to a quasistationary state.

Figure 8 shows the evolution of the area of the event
and apparent horizons. The black hole approaches a
Kerr black hole, so we have normalized the areas to the
Kerr value

AK„„=8mM[M++M—a ],
(where a =J/M). When the toroidal event horizon be-
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2

FIG. 3. Spacetime diagram for the collision depicted in Fig. 1. The time axis is vertical, the z axis (symmetry axis) points to the
right, while the x axis (equatorial axis) points out of the page. The formation of the common and disjoint apparent horizons at.
t/M =6.5 and 7.1, respectively, is seen as the sudden appearance of darker surfaces inside the event horizon (outermost shaded sur-
face). The final hypersurface t/M = 11.7 is shown as the plane at the top.
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0
0

r/M
FIG. 4. Trajectories of outward radial light rays launched from the axis at t/M =4 for the collision depicted in Fig. 1. The dashed

line indicates the event horizon located by our code. Light rays initially inside the event horizon remain within the event horizon,

while light rays initially outside diverge and remain outside. The dotted line denotes the apparent horizon.
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1.5

FIG. 5. Growth of the horizon area for the
collision depicted in Fig. 1. The area is nor-
malized to the Schwarzschild value 16~M',
where M is the initial total mass. The solid
line is for the total area of the event horizon,
the dashed line for the common apparent hor-
izon.
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FIG. 6. Snapshots at selected times of the collapse of a rotating toroid of collisionless matter (case 10 of Ref. [7]). The left panel
displays meridional slices, the right panel shows the equatorial plane. The solid line denotes the event horizon, the dashed line the
apparent horizon. The earliest times shown are soon after the toroidal event horizon appears. By the 6nal time shown, the event and
apparent horizons coincide. t, x, y, and z are in units of M.
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FIG. 7. Three dimensional views of the collapse of the rotating torold depicted in Fig. 6. The images are viewed from 45 above
the equatorial plane. The first image shows the initial configuration, while the remaining three images are at the same times as the
last three images of Fig. 6. The outermost shaded region is the event horizon, the shaded region inside it is the apparent horizon.
The scale of the last three images has been enlarged by about a factor of 2 over the first image.
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FIG. 7. (Continued).
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FIG. 8. Growth of the horizon area for the
toroidal collapse depicted in Fig. 6. The area
is normalized to the Kerr value, Eq. (11). The
solid line is for the area of the event horizon,
the dashed line for the apparent horizon.
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comes topologically spherical, its area is A lA+„,=0.33.
When the apparent horizon appears, the area of the event
horizon is AiA&„,=1.04, while the area of the ap-
parent horizon is A jA&„,=0.98. At the end of the
simulation, the area of both horizons is A/A~„,=1.2.
As in the colliding case, the deviation of this ratio from
unity at late times is due to numerical error in the evolu-
tion code. Note that the ratio remains roughly constant
near unity for a duration of many M, showing the ap-
proach to a stationary state.

Though the event horizon is toroidal for only a small
amount of time during the evolution, about 0.3M, we be-
lieve we have enough spatial and temporal resolution in
the data to be confident of the toroidal geometry. We are
not aware of any other examples of toroidal event hor-
izons being reported before. We ran the same toroidal
collapse case reported here, but with equal numbers of
co- and counterrotating particles (case of Ref. [7]}. We
found a horizon with spherical topology at all times.

Presumably, toroidal horizons can occur only in space-
times with rotation.
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