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Low-energy theorems in nontopological soliton models
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Three probes of the dynamical response of the nucleon are considered in the framework of nontopo-
logical soliton models: Compton scattering, pion scattering, and photoproduction. It is shown that
low-energy theorems, based on gauge and chiral symmetries, are satisfied in such models. Crucial to this
result is the use of a model and a framework (RPA) for calculating the response to external probes which
treat the translational zero mode correctly. Processes such as the static polarizabilities and threshold
pion scattering which are not constrained by low-energy theorems are also considered.

PACS number(s): 12.39.Ki, 11.30.Rd, 13.60.Fz, 13.75.6x

I. INTRODUCTION

Nontopological soliton models have been used success-
fully to describe static baryon properties [1,2]. Excited
baryon states have also been studied in such models using
the random phase approximation (RPA) [3,4]. One of the
advantages of these models over other relativistic quark
models, in particular, bag models [5,6], is the fact that
quarks are bound or confined by their interactions with
fields which have their own dynamics. This should per-
mit the calculation of dynamical processes such as the ex-
citation of baryon resonances by photon- or pion-nucleon
interactions. However, in such calculations it is impor-
tant to ensure that the approximations respect the sym-
metries of the model, satisfying, for example, the con-
straints of gauge invariance. Low-energy theorems [7—9]
based on gauge invariance and chiral symmetry can pro-
vide necessary tests of the approximations used in con-
nection with such models. The standard treatments of
center-of-mass motion in bag models fail to satisfy these
conditions [10,11].

We study here interactions of nontopological solitons
with photons and pions using a linear response approach.
This is based on a RPA treatment of baryon excitations
and is similar to that developed by Broniowski and
Cohen for hedgehog solitons [12,13]. The version we de-
velop is applicable to solitons with weak pion fields, for
which cranking is not needed in order to generate spin-
isospin eigenstates.

In the R PA, excitations are described as small-
amplitude classical oscillations about the soliton. The
corresponding excited states are mixtures of quark 1p-1h
states and boson one-quantum states [3]. The RPA equa-
tions can be obtained by diagonalizing the Hamiltonian
for small-amplitude fiuctuations about the soliton. In
studying the response of a nucleon to an external current,
the current appears as a source term in the inhomogene-
ous version of these equations. The matrix element of a
second current between this linear response and a
ground-state nucleon yields a two-current amplitude.
Such amplitudes can describe, for example, photon-
nucleon scattering and the electromagnetic polarizabili-
ties of the nucleon [12].

The spectrum of RPA excitations contains zero modes
corresponding to the symmetries of the model which are
broken by the mean-field soliton. There is also a conju-
gate cranking or boost mode for each zero mode [14]. In
the cases studied here, electric dipole and s-wave pion in-
teractions, the zero mode corresponding to motion of the
nucleon as a whole together with its conjugate boost
mode are the relevant ones. It is these modes which are
crucial to the low-energy theorems (LET's). In some
cases these modes contribute directly; in others the form
of the response is constrained by the fact that the physi-
cal excitations must be orthogonal to the zero mode.

In soliton models the low-energy theorems are ob-
tained from a combination of excited states and quark Z
graphs. This is in contrast with models based on point-
like Dirac nucleons. In such models, nucleon Z graphs
play an important role, for example, being responsible for
producing the correct Thomson amplitude. Brodsky [15]
has argued that such diagrams should be suppressed by
form factors for pair creation of composite objects. Our
results support the view that nucleon Z graphs should be
regarded as mocking up the effects of nucleon structure
[16].

The LET's are obtained by considering responses of
the nucleon to static currents. The linear response
method is equally applicable for nonzero frequency co

where it can be used, for example, to calculate pion
scattering. The amplitude for photon scattering in the
limit co —+0 (with the Thomson term removed) can be
used to determine the electric polarizability of the nu-
cleon as in Ref. [12].

The method we describe here is applicable to any
nonhedgehog soliton model. As a specific example we

apply it to a chiral version of the color-dielectric model
[2,17]. These pion fields in this model are sufficiently
weak that the methods of the cloudy bag model [6] are
appropriate. We work directly with states of definite spin
and isospin, rather than having to obtain them by crank-
ing or projection from a hedgehog state. The model em-
bodies the appropriate chiral symmetry of QCD, as well
as electromagnetic gauge invariance. LET's for both
pion- and photon-nucleon interactions can therefore be
studied in it.
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The structure of this paper is as follows. In the rest of
this section we introduce the chiral color-dielectric mod-
el. In Sec. II we briefly review the RPA equations and
the forms of the translational zero mode and boost mode.
The general form of the response to an external current is
given in Sec. III. We study three examples in the static
limit to demonstrate how the method leads to the corre-
sponding low-energy theorems: Thomson scattering, soft
pion-nucleon scattering, and photoproduction of neutral
pions at threshold. In Sec. IV we calculate related quan-
tities which are not constrained by low-energy theorems:
the electric polarizabilities of the nucleons and pion-
nucleon scattering at threshold. We summarize our re-
sults in Sec. V and discuss possible extensions of this ap-
proach.

A. The chiral color-dielectric model

+,'a,~ a~~+,'a„y a~y

,'A, (e +P' v)+—fm o. . —

The Mexican hat potential for the mesons gives the o.

field a vacuum expectation value of f . The parameters
of the potential are related to the meson masses by

in 2 g2(3f 2 2) I 2 $2(f 2 v2) (1.2)

The coefficient of o. in the mesonic symmetry-breaking
term has been chosen to satisfy PCAC (partial conserva-
tion of axial-vector current) in the ineson sector. We will

present results for the model both with and without the
explicit quark mass term. Such terms violate the

The color-dielectric model [2,18] is, in its simplest
form, a dynamical model of quarks which are confined to
a localized region of space by their coupling to a color-
singlet field, g. Its form has been motivated by studies in
which a process of "block-spinning" QCD is carried out
[19]; this leads to an octet of "coarse-grained" gluon
fields, and the singlet g, which represents a glueball or
qq-glueball hybrid, and which presumably incorporates
much of the nonperturbative physics of confinement.

Mesons can be introduced to the model in order to
make it chirally symmetric [17]. In a hedgehog
configuration the pion fields are weak [20] and so a more
convenient scheme is first to solve for the basic solitonic
quark and g fields, using the mean-field approximation,
and then to include mesons perturbatively [21]. This has
much in common with the usual treatment of the
cloudy-bag model, and many techniques developed there
can be used in the color-dielectric model with only slight
modifications. However, a dynamical model has the con-
siderable advantage that the center-of-mass motion can
be treated consistently, something which is not possible
in the cloudy-bag model. The full Lagrangian is

Goldberger-Treiman relation, and since the shift in the o.

vacuum expectation value (VEV) produced by the
symmetry-breaking term in the meson sector feeds
through to the quarks there is also a degree of double
counting. We have discussed elsewhere [22] a possible
modification of the model which goes some way to
remedying this. For the sake of simplicity, however, we
have not included this possibility here.

The basic Lagrangian (with meson fields set to their
vacuum expectation values and in the absence of a quark
mass) has two parameters: Mr and a dimensionless cou-

pling constant P, where M&I3 =g f . For a given P we

find the ground-state solution which is taken to represent
the nucleon and 6, and we fit M& by requiring that the
rms quark radius equal the nucleon isoscalar radius, 0.72
fm, since that will be least affected by mesonic correc-
tions. It is then found that the energy and other proper-
ties are remarkably insensitive to the value of P, and that

Mr scales as /3
~ at least for Mr greater than around 1

GeV. These results have been shown to be exact if the g
kinetic energy can be ignored [23].

The lowest-energy solution to the Euler-Lagrange
equations, with all dimensioned quantities expressed in
terms of the relevant power of Mz, consists of three
quarks in an s-wave orbital and an s-wave mean g field:

qo=
G(r)

F( )
and y=yo(r) . (1.3)

In this paper we have used /=0. 028 which implies
M&=2354 MeV. The soliton profile for this parameter
set is shown in Ref. [2].

II. THE RPA EQUATIONS

The problems that we are considering here have much
in common. In particular, they can all be cast in terms of
the response of the nucleon to a time-varying external
probe. In each case, moreover, the inclusion of the exci-
tation mode corresponding to the translational motion of
the nucleon as a whole is crucial if low-energy theorems
are to be satisfied. The appropriate framework for study
of these responses within the context of a dynamical
model such as the color-dielectric model is the random

phase approximation (RPA), which gives the energies of
the small-amplitude excitations of the soliton [3,4].
Where the ground state breaks a symmetry of the Hamil-
tonian (in this case translational), the RPA equations
have a zero-mode solution [14]. Thus the response due to
intrinsic excitations of the soliton can be distinguished
from that due to the motion of the soliton as a whole, and
both parts are included. This is the major difference from
the treatment of the response to perturbations of the MIT
bag, in which the motion of the center of mass must be
corrected for in a somewhat ad hoc fashion [10,11].

If we write the quark and g fields of the soliton as the
mean field solution plus a small time-dependent perturba-
tion, the linearized equations of motion in the absence of
a source read
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(2.1)

e i ( e—+ ro ) t +q
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—i ( e co )—t
X Y

$y —Ze lcot+Z 0e let)t
(2.2)

The g equation can be made linear in co by introducing
II = icoZ—as another variable, and Eqs. (2.1) can then be
written in the form of an eigenvalue equation:

Mv =coqv,

where

(2.3)

1 0 0 0
0 —1 0 0

v=(q~, q) Z 11) and Q= 0 0 0
T

0 0 —i 0

(2.4)

This equation has two classes of solution. There are
those in which the term g~(5qqo+qo5q) in the equation
for 5y vanishes, and the excitations correspond to excited
states of the quarks in the unchanged mean y field. These
are like the excitations of the NIT bag, and are the analo-
gues of "Goldhaber-Teller" (GT) excitations of nuclei
[24]. The others are full coupled excitations of quark and

g fields in which all quarks move in the same way. We
term these "isoscalar. " In the GT modes there is no cou-
pling between qz and q~, and excitations will be ex-
clusively one or the other, but the isoscalar modes will, in
general, contain both. There is a symmetry of the equa-
tions under the exchange qz~q~, II~ —II, and co~ —co.

These RPA equations have a translational zero mode P
and a conjugate boost mode Q defined by

MP =0 and MQ = i gP, —

with the form

(2.5)

~qo ~qo c)Xo
,0

~XpQ= ( —2a3+iez)qo, ( ,'a3 iez)—q 0—,o—
Z

(2.6)

The solutions corresponding to different eigen values
satisfy the orthogonality relations [14]

v;gv, =s;5,, , Q gP=iMo,

v;gP=O, P gP=O, (2.7)

v;r1Q=O, Q gQ=O,

z g (5qqo+qo5q)=0 .
+p q

These equations have solutions with the time dependence

III. RESPONSE TO EXTERNAL PROBES

We wish to study the response of the soliton to external
probes, in order to explore processes such as pion scatter-
ing, electro-production, and Compton scattering of time-
like photons (the last mentioned process will also give us
the electric polarizability of the soliton). We therefore in-
troduce a source term in the Lagrangian corresponding
to an oscillating electric or ~ field of the form
z(Se '"'+S'e' '). This will give rise to source terms in
the RPA equations, which will in turn drive a response
[12]. The electric dipole moment of the response gives
the induced polarization, and the corresponding overlap
with the pion source gives the pion production ampli-
tude, in each case with energy transfer co. The existence
of the zero mode means that taking co to zero may require
special care. Without the zero mode, however, various
low-energy theorems would not be satisfied.

The response f to a source term j in the RPA equa-
tions can be expanded in terms of the RPA eigenstates:

(M —cog)f=j . (3.1)

The solution f will, in general, have the form

there is no automatic connection between the sign of the
eigenvalue and the norm of the mode. ) In the zero mode
the y field is a p wave and the quarks are in a combina-
tion of x = 1 and v= —2 states (that is, p wave upper com-
ponents and s- or d-wave components, total angular
momentum j=—,

' or —', , respectively). Thus the transla-

tional zero mode does not show up in studies of breathing
mode excitations, but it does contribute in the pion
scattering, electroproduction, and Compton scattering
processes considered in this paper.

The spectrum of excitations in the channel of interest
may be found by expanding the g and j' fields in a
Bessel-function basis, and the quark fields in a basis of
MIT eigenstates with the appropriate values of ~, and di-
agonalizing the resultant matrix. (As the positive and
negative spectra are the same, it is convenient to use a
trick of Broniowski and Cohen which reduces the dimen-
sion of the matrix by a factor of 2 and gives co rather
than co [3].) Above the y mass there are states which cor-
respond to scattering states of the y field.

The lack of positive definiteness of the RPA matrix
shows up in complex eigenvalues above the y threshold.
These correspond to processes in which a quark drops
into a state deep in the unfilled Dirac sea and emits a y
particle. These, of course, represent instabilities of the
soliton which would not arise if the Pauli blocking due to
the Dirac sea were properly accounted for. As discussed
by Broniowski and Cohen (Appendix D of [13]) meson
cloud effects should approximately reproduce the contri-
butions of the sea to the response. However, introducing
boson fields to describe the cloud cannot remove the in-
stabilities. In the present case the y mass is so large (it is
always taken to be above 1 GeV, and in the parameter set
used here it is 2354 MeV) that these complex poles have
no discernable effect on low-energy processes.

where Mp is the energy of the unperturbed soliton and
s, =+1. (The RPA matrix here is not positive definite, so

f=aP+bQ+g c,.V, , (3.2)
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where

1

M.
iQj pj —ipjb=

co Q) Mp Q)

Bqp
P~j,&= N d r zqp N +c.c.

q

(3.&)

s;v~j
Ci

QP; EO

(3.3)

[P and Q are the zero and boost modes as defined in Eq.
(2.5) above. ] From this we see that if the overlap of the
source with the zero or boost modes is not zero, there will
be a divergent piece in the response. This is the situation
with an electromagnetic source term. In the physical
process, Compton scattering, in which this response is
measured, the amplitude has an extra factor of co, so the
final result is not divergent. The contribution from the
zero mode is just the Thomson term, as will be detailed
below.

Numerically, results for finite co can be obtained either
explicitly from Eq. (3.1), using the results of the diagonal-
ization of the RPA matrix, or by solving the differential
equations (2.1) with source terms directly with the use of
a differential equation solver such as coLsYs [25]. How-
ever, since we know the analytic form of the zero mode
we can demonstrate that low-energy theorems are
satisfied without resorting to numerics, as we show
below.

The processes in which we are interested are those in
which one sort of particle (pion or photon) is absorbed on
a nucleon, and the same or another sort of particle is
emitted. If H& and Hz are the respective interaction
Hamiltonians between these particles and the field of the
soliton, the scattering amplitude has the form

F=&N, 2IH (E Ho) 'H)IN—, 1&, (3.4)

A. The Thomson term

In the calculation of the electric polarizability of the
soliton, we calculate the induced dipole moment of the
soliton in response to an oscillating electric field. Such a
field gives an extra term in the Lagrangian

5X=(Ee ' '+E'e' ') g (5q Qzqo+qtoQz5q)
q

(3.6)

and generates a source term on the right-hand side (RHS)
of Eq. (3.1) of the form

j,)=(Qzqo, Qzq0, 0,0} (3.7)

where Q is the charge operator. This source is orthogo-
nal to the boost mode Q, but not to the zero mode P:

where ~N, 1) is a state consisting of a nucleon and a
quantum of the first field. In terms of the RPA matrix,
this is proportional to the matrix element

M, 2
=jzf, , (3.5)

where f, is the response of the soliton generated by j,,
and j& and j2 are the appropriate currents coupled to os-
cillating classical fields.

where QN is the charge on the nucleon, and so from Eqs.
(3.2) and (3.3) the response is of the form

f„=f„+ P .
co Mp

(3.9)

The Compton scattering amplitude is ~ times the matrix
element in Eq. (3.5) with the source and response ap-
propriate to the electric field. At zero energy transfer,
therefore, only the divergent part of the response will
contribute in the scattering amplitude. Thus we have

je& e
ct)~p

= —QxIMO (3.10)

which is the Thomson scattering term for a nucleon of
charge QN and mass Mo [7].

B. Pion-nucleon scattering

In deriving this relation, it is essential that the off-shell
amplitude be defined using the divergence of the axial-
vector current, d„A/'If m„, as the interpolating pion
field. In a model, the off-shell scattering amplitude calcu-
lated using the model pion field will satisfy (3.11}only if
that field and the interpolating one are identical. Such
ambiguities disappear for on-shell amplitudes.

In the color-dielectric model with a symmetry-
breaking term in the meson sector and a quark mass
term, the cr commutator is

o ~= N dr mqpqp
— m o — N

q

(3.12)

(Note that all masses and decay constants are in units of
Mz. ) Here qo is the ground-state solution in the presence
of the quark mass term. The o. field may be replaced by
its source current, defined by

( —7 +m }(0 f )=j = — g q—oqo
m+0 q

giving

(3.13}

m
0 N

= N d 1 qpqp+mqpqp N
~ p

q
m

(3.14)

Now the scattering amplitude has three contributions,

The relevant low-energy theorem in the case of neutral
pion-nucleon scattering relates the isospin-averaged am-
plitude F'+' at the soft point (zero four-momentum for
both pions) to the 0 commutator [9]:

(3.11}
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F'+'(q ) = 1—1

f

as shown in Fig. 1. One, with an exchanged cr and
momentum transfer q, contributes

2 2m~ q2+ 2m~ m~

amplitude

F(+)(0)
r

1 N d rX qpqp
—

mqpqp N) .f2
q m&

2

X N dre'' qpqp N
, f.X0

'' (3.15) (3.20}

ip(t)p5X = —g 5qy573qo+c c. ,
q qq+0

giving a source term for unit field strength:

(3.16)

where we have used the relation m —m =2k, f, and
the matrix element is the nucleon-0. coupling constant.

The other two contributions are direct scattering with
an intermediate excited nucleon. In the presence of a
neutral pion field P(t) the perturbing term in the La-
grangian is

The first term is just —lif times the corresponding
term in o )v, Eq. (3.14), and so the LET (3.11) is satisfied

in the absence of explicit quark mass terms. If such
masses are included, the second term has the wrong side
for the LET; this is because the model pion field differs
from the interpolating one.

The scattering amplitude calculated with the interpo-
lating pion field does satisfy the LET, whether or not ex-

plicit mass terms are present in the Lagrangian. For the
interpolating field, at zero four-momentum, the perturba-
tion (3.16) should be replaced by

p2
P

T
qp qp qpl ps7 3qp

~ror5r3 } }'0~53 X
XQ q Xp

p 2

5X= —pi f Xo
+m 5qy5r3qo+c. c. , (3.21)

1

2f
m

'Ys+ XQXs &3qP

p

r

Xi ys+ —
ypys ~3q Q, O, O

E'
(3.18)

Using this form in Eq. (3.5), we obtain the direct scatter-
ing amplitude for zero-momentum transfer:

F(+ )(())—
2

N f d'r J qpqp
——

qpqp N)
qr q Xp

N f d r X qpqp
—mqpqp N),

p2

f2
q XQ

(3.19)

where we have used the equations of motion for qp and
dropped a term of order m .

Setting the two contributions to F'+', Eqs. (3.15) and
(3.19},together we obtain the soft point (q =0) scattering

(3.17)

This time we know the analytic form of the response,
which is

F'+'(0) =—1 3 PN f d rX qpqp+mqpqp N)f q XQ

(3.22)

Combining this with (3.15), we see that the LET is
satisfied.

The analogous results also hold in a linear or nonlinear
nucleon-level cr model with the corresponding
symmetry-breaking terms, providing the interpolating
pion field is used. In models with pseudoscalar pion cou-
pling to Dirac nucleons the soft-pion scattering ampli-
tude involves nucleon Z graphs. Like Thomson scatter-
ing, the amplitude (3.22) is an example of a calculation in
which a sum over excited states of the soliton and quark
Z graphs reproduces a result obtained at a nucleon level
using Z graphs.

C. Pion photoproduction

where the addition term comes from the contribution of
the quark mass to the divergence of the axial-vector
current. This term cancels the part of the response (3.18)
which is proportional to m, leaving a pure chiral rotation
of qp. The scattering amplitude at zero-momentum
transfer calculated using this source and response is

I
/

/
/

I
I

/
I

/
/

/ g/

I

l~
I
I
L

(a) (b)

FIG. 1. The three diagrams which contribute to pion-
nucleon scattering: (a) and (b) direct Fd+' and (c) cr exchange
F'+ ', defined in Eqs. (3.16) and (3.20).

The process in which absorption of a photon is accom-
panied by emission of a neutral pion can be explored in
this model through a hybrid of the two processes dis-
cussed above: either an electric field [Eq. (3.6)] or a neu-
tral pion field [Eq. (3.16)] is imposed on the soliton, and
the electroproduction amplitude is related to the pionic
response or the induced dipole moment, respectively.
Numerically, the latter combination is preferable, since
the pionic source term j~ is orthogonal to the zero mode
P, and so there is no divergent part to the response.

We have used here the time component of the elec-
tromagnetic current, and so the matrix element which we
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compute corresponds to the longitudinal multipole I.o+,
observable in electroproduction. To the order considered
here it is equivalent to the photoproduction amplitude
Eo+ [26].

Even though the overlaps of the pionic source with the
zero and boost modes, j&P and j&Q, both vanish, we can-
not conclude that the response to a pion field has no
zero-mode piece; provided the energy transfer co is zero
such a piece may be present, although it will not have a
divergent coefficient. The response may be written

fp=fp+aP, (3.23)

where fp is orthogonal to P and Q with respect to the
RPA metric, and

a =Q rifp/Q riP

= —g„/2f Mo . (3.24)

je]fp a jef (3.25)

However, for any finite energy transfer, however small,
the coeffi.cient a of the zero mode in the response vanishes
(Eq. 3.3). Thus for infinitesimal co the matrix element
[Eq. (3.5)] is

In the absence of explicit quark mass terms, of course,
the electroproduction amplitude at zero energy transfer
vanishes, since the response jp is simply a chiral rotation
of the soliton fields, and the electromagnetic coupling is
chirally invariant. It is easy to verify that j,&fp=0, and
hence

mode directly, but pion electroproduction and soft pion
scattering are equally dependent on it, as obtaining the
correct results requires that the rest of the excitation
spectrum be orthogonal to the zero mode. This is why
the cloudy-bag model cannot reproduce the LET's in
these cases [26].

IV. NUMERICAL RESULTS

In obtaining the results of the last section, we relied
heavily on the RPA formulation of the response to an
external stimulus, but our results were analytic. There
are other problems, however, to which there is no analyt-
ic answer, and for which we must actually solve the RPA
equations numerically. One example of this is the proton
and neutron polarizability, which is the finite part of the
response left over when the zero mode is subtracted;
another is pion scattering at threshold.

We have chosen to solve the differential equations (2.1)

for the fields of the response qz, qz, and Z directly, vary-

ing co as required, rather than diagonalizing the RPA ma-

trix in an appropriate basis. With the source terms in

which we are interested, the quark response is a mixture
of x = 1 and —2 states (negative parity; p-wave upper and
s- or d-wave lower component) and the y response is p
wave; the y momentum H need not be introduced as a
separate field. Thus we can write

~
~o ro 3 Ar (r) (z —„' o'ro3)&&(r)

io,C~(r) i (zo"r ', o 3)Dr (r)——

M= j,)fp Z=zH(r), (4.1)

g ~ Qx/2f. Mo (3.26)

The (off-shell) longitudinal multipole response Lo+ is

defined in terms of the spatial components of the elec-
tromagnetic current. However, by gauge invariance we

can use the time component which gives the matrix ele-
ment M instead (see Appendix A for a proof that this is
valid in the RPA framework):

Lo+ (co) =coM(u)/4n(1+p), . (3.27)

where p —I /M~ ~

The low-energy theorem for electroproduction gives
the O(m ) contributions to this quantity at the physical
pion threshold, co =m . The predictions for the process-
es }p ~per and yn ~net are [8]

1
Lo+(m )=-

4m. 2f
( —'p, +—'p) .

Thus our model exactly reproduces the low-energy
theorem to O(m ). The next corrections in this frame-
work are O(m ), since finite photon momentum, which

gives O(m ) corrections, has not been incorporated. Ex-
plicit quark mass terms, with m ~ m „, again contribute
only at O(m' }.

Crucial to obtaining the correct LET's in all three pro-
cesses considered is the proper treatment of the zero
mode. The Thomson scattering result requires the zero

and q~ is defined analogously to q~ in terms of the four
radial functions Az, Bz, C~, and Dz. The inclusion of
an extra 0-3 in the definition of the ~= 1 piece ensures that
the zero mode is the same for both spin-up and spin-
down quarks.

In general, the source term will be spin or isospin
dependent; in fact, both ~3 and ~30.3 dependencies arise in

the problems considered. Suppose the dependence be on
a diagonal operator 0, and quarks in the proton or neu-

tron fall into two classes, those with eigenvalue of 0 o„
and those with oz. Now the coupling between the quark
and y fields in the RPA equations is spin and isospin in-

dependent. It is, therefore, convenient to consider two
separate collective excitations of the quarks, one in which
each type is represented according to its abundance in the
nucleon (an isoscalar excitation) and one in which the
two types have opposite signs (a "Goldhaber-Teller" exci-
tation). The first represents the combination which cou-
ples to the y excitation in the second of Eq. (2.1},while

the coupling of the second to the g excitation in the first

of Eq. (2.1), vanishes. Since there are no direct couplings
between the two quark excitations, the equations decou-

ple into one set of nine equations involving the g and iso-
scalar quark excitations, and another involving only the
GT excitation. Furthermore, in the second set, there is

no coupling between the qz and qz pieces, giving two sets

of four equations. The zero mode is confined to the iso-

scalar set.
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The nine isoscalar equations are

C ~ E+co A ~ zHG=j„(NIOIN)
dr tY~ Xo ~Y~ X02

+—A g)
— a+co+ C g)

— HG
dr r tY~ Xo tY~

=js (N I
0 IN ),

3P'HG
2

Xo

=J, (NIOIN),

d 3 P+—D &
— @+co— 8 &-

dr r ~ Y~ XO ~y~

(4.2)

+—8(~)
— @+co+ D(~) + HF

dr r (r)

=jD(NIOIN),

d 2d 2 z 6P+——co+1+ (G —F ) H
diaz r dr r XQ

TABLE I. The source terms in the RPA equations for elec-
tric and pionic sources in Eq. (4.2). The radial fields G, F, and g
are the unperturbed soliton fields.

Source

Electric

Pion

—,
' rG
P2F

f.Xo

rG

Jc

—,
' rF

p2G

f.Xo

rF 0
2' GF

f.Xo

{6[Ax+dr+ —,'(Bx+Br)]
Xp

F[CX+C—r+ ', (Dz+D),—) ]]=jH (N IO IN )

where G(r), F(r), and yo(r) are the static soliton fields

defined in Eq. (1.3), and we are working in units in which
M&=1. The source terms depend on the problem under
study and are listed in Table I. The GT equations differ
in two respects: first, the H field is deleted, and second,
(N

I
0 IN ) in the source term is replaced by o, —oz.

Finally, we wish to calculate the overlap of the
response with a second current, which can be reduced to
radial integrals and a second spin-isospin operator 0
with eigenvalues o, , and o, . (We deal with cases in

which the two operators 0 and 0 ' commute. ) The full
response for a nucleon containing n;. quarks with eigen-
values o, and o', respectively (gn;J =3), is

—,
' (NIO 'IN)Mz+ ,'(n&&nzz —n&znz,—)(o', —oz )Mor,

(4.3)

where (NIO 'IN) =(n»+nz&)o', (+n& z+n )zzzo. (If the
first and second currents are the same, n&z=nz, =0.)
The subscripts "GT" and "E' on the matrix elements M
indicate "Goldhaber-Teller" and isoscalar, respectively.
A glance at the coeScients of the source terms in Eq.
(4.2) confirms that the result is independent of the order
of the currents (that is, jtfz =jz f, ).

For the case of an electric source, the operator is sim-

ply the charge, —,'+ —,'~3, with eigenvalues —', and —
—,', while

for the pion source it is o 3v.3 with eigenvalues 1 and —1.
For a spin-up proton, the numbers of quarks n,- are

3 3,
—,and

A. Electric polarizability

1 Qxa =lim —M +
N Mo

I
2 =2+—MGT ~ &.=—MgT
3

(4.5)

Since the zero mode is confined to the isoscalar response
which does not contribute to the neutron polarizability,
there is, of course, no Thomson term for the neutron.
Numerically, the subtraction of the zero mode is not as
simple as Eq. (4.4) would suggest; the numerical "zero
mode" is not exactly at co=0, nor is its strength precisely
as predicted. From the raw results giving the dipole mo-
ment as a function of co, however, it is possible to sub-
tract the zero mode almost exactly by allowing minor al-
terations in these two parameters; the results are shown
in Fig. 2(a). The residue in the isoscalar channel, of
—0.13M&, is very small, and can be seen to be almost
exclusively due to one very strong pole at co =0.449. This
happens to be the one mode for which the analytic form
is known. If the Dirac equation has only scalar potentials
and qo is a solution with eigenvalue e, yoysqo is another
solution with eigenvalue —e. This pole corresponds to
such a solution, based on the ground state of the unper-
turbed soliton, and with no change in the X field. The
value of co is just 2e, and the response is exclusively q~.
This GT-type pole can occur in the isoscalar channel be-
cause its coupling to 5y vanishes (qoyoysq&=0). Since
the analytic form is known we can check its contribution
at co=0, confirming that it contributes more than 95% of
the subtracted isoscalar response.

The GT response is dominated by the lowest excita-
tions of the system, at around 0.1M& or 235 MeV. The
lowest observed excitation in this channel is the N (1520),
with an excitation energy of 580 MeV. The unphysically
low excitation of this model, which is shared by the MIT

The intrinsic polarizabilities of the proton and neutron
are simply the dipole moments of the response to an
external electric field, with (in the case of the proton) the
divergent Thomson piece subtracted off. The pion cloud
will make substantial contributions to these quantities
which cannot be calculated in our current framework.
Even though they should not be directly compared with
experiment, the valence-quark polarizabilities are of in-

terest since they may also contribute significantly to the
observed values.

The valence quark polarizabilities are given by

~~=»m j.if.)+ (4.4)
co Mo

In terms of the isoscalar and GT responses described
above we have the following expressions for the proton
and neutron polarizabilities:
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bag (AE=230R ' MeV), is a significant problem which
precludes realistic results. The GT response at co=0 is
3.32M&, [Fig. 2(b)] so our final results for the polariza-
bilities are

The experimental polarizabilities are [27]

a„=(12.0+1.5+2.0) X 10 fm

a =(7.0+2.2+1.3) X10 fm
(4.7)

The apparent agreement with experiment is probably
illusory, since we have completely ignored the effects of
the pion cloud. The full polarizabilities will almost cer-
tainly be too large, a result which can be traced to the

(aj
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(4.6)

low-lying excitations in this class of model. The experi-
ments currently suggest a significant difference between
the proton and neutron polarizabilities, which is not seen
here. Again, pions are likely to remedy this. Such a
difference has been seen in studies of elementary nucleons
coupled to pions [28], and so may not be a property of
the quark core. Broniowski, Banerjee, and Cohen also
reproduced this splitting in a linear 0. model of quarks
and pions, and found that the quarks provided —5% of it
[12].

B. Threshold pion scattering

Here we consider pion scattering at threshold, that is,
with on-shell neutral pions and zero-momentum transfer.
As with for soft pions, the scattering amplitude at thresh-
old is O(m „). However, it is not fixed by any low-energy
theorem. The threshold amplitude is much smaller than
the soft-pion one, even though both are formally of the
same order in m [29], but in the context of models this
seems to be a contingent fact and not a consequence of
any symmetry. (This was noted in Ref. [30].)

In Sec. III B we saw that the pion nucleon scattering
amplitude is composed of two terms of O(1) (Fig. 1),
which cancel to leave terms of O(m„). Since our model
Lagrangian has pointlike m-0. coupling, the o.-exchange
term will not depend on the momentum squared of the
pions, as long as the momentum transfer is zero. Howev-
er, the direct scattering term will change, being equal to
the matrix element Eq. (3.5) at ni =m . (The full
response is —,'MI+ —,",MoT. ) The lowest-order variation of
this amplitude with co is quadratic in m „;as can be seen
from Fig. 3 the change is positive. If a quark mass term
is present, for example, m =7 MeV, and with m =1200
MeV, the soft scattering amplitude is already slightly
positive and the amplitude at threshold is still larger. If
one takes this as an argument against including explicit
quark mass terms (the wrong-sign violation of the

F
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FIG. 2. {a)The isoscalar and (b) the Goldhaber-Teller contri-
butions to the energy-dependent polarizabilities of the proton
and neutron [Eq. (4.S)] in units of M ~

'.
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FIG. 3. The variation of the direct pion-nucleon scattering
amplitude with energy, expressed as a fraction of ~F„'+ '(0) ~.
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Goldberger-Treiman relation is another') one might hope
that the increase as co goes from 0 to m would cause
cancellation and a small scattering length at threshold.
Unfortunately, since m =0.059M& the influence of the
poles at 0. 1M& is strong. As a fraction of the direct con-
tribution to the soft point amplitude, the total soft point
amplitude in the absence of quark mass terms is
—0.0134, while the change in the direct contribution be-
tween co=0 and m is 0.083. Thus the magnitude of the
scattering amplitude at threshold is six times the soft am-
plitude, and the near vanishing of the physical amplitude
cannot be explained in this model.

V. CONCLUSIONS

We have studied the interaction of pions and photons
with nucleons using the chiral color dielectric model and
a linear response approach (RPA). In this framework we
have been able to explore the validity of low-energy
theorems for Compton scattering, pion-nucleon scatter-
ing and pion photoproduction in this or any similar non-
topological soliton model. Since these LET's depend on
gauge invariance and chiral symmetry, they are impor-
tant tests of the approximations used. In models with
fixed boundaries, such as the cloudy bag, they are not
satisfied but dynamical models can overcome these disad-
vantages.

We have shown that two of the three LET's are uncon-
ditionally satisfied, namely, the Thomson term in Comp-
ton scattering and the O(m /Mz) prediction for the
photoproduction amplitude Eo+. The third, namely, the
relation between the soft-point isospin-averaged pion-
nucleon scattering amplitude and the o. commutator, is
trivially satisfied in the chirally symmetric limit by our
model. For finite pion mass, however, the relation in-
volves off-shell amplitudes, and relies on the use of the
divergence of the axial-vector current as an interpolating
pion field. The latter is not equal to the elementary pion
field in any model which includes both that and explicit
quark mass terms. Such a model does not satisfy the
Goldberger-Treiman relation either. If quark mass terms
are excluded, however, the color dielectric model incor-
porating the linear cr model for the meson sector does
satisfy the LET. Even with quark mass terms the scatter-
ing amplitude and the o. commutator at the Cheng-
Dashen point are correctly related, up to form factor
effects.

In all three cases the presence in the excitation spec-
trum of a translational zero mode is crucial to satisfying
the LET's. The Thomson term is due to the presence of
the zero mode in the response, while the other two re-
quire an uncontaminated spectrum of finite energy excita-
tions. We have written down analytic forms for the zero
mode and its conjugate boost mode which were used in

~In Ref. [22] we have discussed a third possibility which
remedies the Goldberger- Treiman problem without excluding
explicit quark mass terms, but the conclusions of this section
would remain unchanged if that model were used.

the demonstrations of the validity of the LET's.
In models with pointlike Dirac nucleons, nucleon Z

graphs are essential to obtaining the LET for Compton
scattering and also, at least for pseudoscalar m.-X cou-
pling, those for pionic processes. For soliton models
treated in the RPA approximation, we find that a com-
bination of quark Z graphs and excitations lead to the
same results. This supports the idea that the role of nu-
cleon Z graphs is to mock up effects of compositeness.

We have also looked at effects not constrained by sym-
metries, such as the electric polarizabilities of the proton
and neutron, and the threshold pion-nucleon scattering
amplitude. In neither case have we included pion loop
effects. As in other models, we find that the observed
difference between the proton and neutron polarizabilities
cannot be ascribed to the quark core. Unphysically low-
lying excitations mean that our polarizabilities are al-
ready as large as the experimental ones without including
pions, and we fail to reproduce the experimentally ob-
served near vanishing of the threshold scattering length.

In this paper we have looked only at probes which
transfer zero-momentum to the nucleon. It is obviously
important to try to extend the approach to finite momen-
tum transfers by including recoil of the final nucleon.
This would allow calculation of Compton scattering for
nonzero photon energies and exploration of the order-m
contributions to the LET for pion photoproduction.
Another necessary extension is the inclusion of contribu-
tions from the pion cloud to the responses. The long tail
of the pion cloud is likely to make important contribu-
tions to the quantities calculated here; in particular, the
electric polarizabilities of the nucleon.
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APPENDIX: GAUGE INVARIANCE

In Sec. IIIC we calculated the threshold electropro-
duction amplitude for neutral pions. The matrix element
which entered could be regarded as the dipole moment
induced by a neutral pion field oscillating with frequency
co. Up to a factor of the photon momentum, it is just the
dipole piece of the matrix element of the time component
of the electromagnetic current:

J"=—f d x P(x)gy"g(x)e'q' (A 1)

Current conservation requires that cd =q;J' and so the
electroproduction amplitude should equally be calculable
using the spatial components. Indeed, the longitudinal
response is defined in terms of these, and we assumed
current conservation in using cd instead. The correct
result can in fact be obtained from J directly, as we
show here.

Since we do not consider processes which flip the
nucleon's spin, only J and J have nonvanishing matrix
elements. Let j" be the sources in the RPA equations
generated by the above currents. To leading order in q3,
the time component is given in terms of the source
defined in Eq. (3.7), j =iq3j „,while j ' is given by
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J =(QttHo QaÃo, 0,0) i Mgj, &=j (A4)

The current conservation equation thus reads

(A3)

Using this, we can rewrite the left-hand side of Eq. (A3):

i—toJ, ifp(to) =ij t, [rl(M q—to) g—M )fp(to)

=ij,",rlj p+ j' fp(co ) .

where fp(to) is the response to the pion source.
The zero-frequency response to j can be shown analyt-

ically to beigj, ~, that is,

The first term vanishes since jz is derived from a Hermi-
tian current. Thus Eq. (A3) is satisfied, and our approxi-
mations preserve gauge invariance.
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