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Another positivity proof and gravitational energy localizations
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Two locally positive expressions for the gravitational Hamiltonian, one using four-spinors and the
other special orthonormal frames, are reviewed. A new quadratic three-spinor-curvature identity
is used to obtain another positive expression for the Hamiltonian and thereby a localization of
gravitational energy and positive energy proof. These new results provide a link between the other
two methods. Localization and prospects for quasilocalization are discussed.

PACS number(s): 04.20.Cv, 04.20.Fy

I. INTRODUCTION

For asymptotically flat gravitating systems total energy
is well defined and must be non-negative. Each new posi-
tive total energy proof (e.g., [1]) offers some more insight.
Concerning the localization of the total energy, although
the equivalence principle forbids a true local gravitational
energy density, a suitable “quasilocalization” is desirable
[2]. A good candidate for a gravitational energy den-
sity is the Hamiltonian density. For asymptotically flat
Einstein gravity the Hamiltonian density has the general
form [3]

H(N) = /d% 2N*GS, + fB

:/d% N’H+N"’Hk+}{B, (1.1)
which includes a boundary term at spatial infinity. On
a solution the spatial integral vanishes; the value of the
Hamiltonian —167GN*p,, comes from the integral of the
boundary term over the two-sphere at spatial infinity and
determines the total four-energy-momentum p,. The in-
tegrand of the boundary term B is only well defined up
to O(r~2); moreover, we have the freedom to choose the
lapse N and shift N*. Together these allow a certain
latitude which can be exploited to obtain a locally non-
negative Hamiltonian density. Indeed, such a form can
be achieved in more than one way.

II. THE FOUR-COVARIANT QUADRATIC
SPINOR HAMILTONIAN

The first constructions of this type [4] were done in the
wake of the Witten positive-energy proof. It was shown
that the Hamiltonian density for Einstein gravity could
be expressed as a four-covariant quadratic spinor three-
form:
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H(y) :=2{D($ys7) A DY — DY A D(ysy9)} . (2.1)

This remarkable result follows from (i) the identity

H(p) = 2N*GY,n, + d{¥vsy A DY + D(Pys7)¢
~ D (vs7¢P) + DY A (vsy¥)} (2.2)

where N# = 1y#9 (for conventions see the appendix)
revealing that # (1) contains the appropriate projected
components of the Einstein tensor (needed to gener-
ate the equations of motion) up to an exact differential
(which does not change the variational derivatives), and
(ii) the observation that & [ #(¢) has an asymptotically
vanishing boundary integral since H(v) is asymptotically
of order O(r™%).

The Hamiltonian density (2.1) can be decomposed,
with respect to the normal to any spacelike hypersurface,
into positive and negative definite parts,

H($) = 4(9°° Doy " Dyt~ | ¥*Dap |*) 1m0 (2.3)
and is locally non-negative if 1 satisfies the Witten equa-
tion (or certain modifications thereof)

’YaDa'(vb =0,

thereby permitting a non-negative “localization” of grav-
itational energy.

This mathematically elegant form of the gravitational
Hamiltonian has several virtues: in particular it (i)
is manifestly four-covariant, (ii) shows that total four-
momentum is future timelike, and (iii) can be evaluated
on a spacelike surface extending to future null infinity
thereby showing that the Bondi four-momentum also is
future timelike. However it also has some liabilities: in
particular (a) the spinor field is physically mysterious,
(b) there is no direct relation to the customary variables,
and (c) it yields an unintuitive energy localization. [For
the Schwarzschild solution in isotropic Cartesian frames
¥ = (1 + m/2r) " %1g,., solves the Witten equation; us-
ing this result in the boundary integral yields 1/8 of the
total mass-energy inside the horizon and 7/8 outside.]
Consequently other Hamiltonian-based positivity proofs
and/or localizations were sought and found.

(2.4)

3958 © 1994 The American Physical Society



49 ANOTHER POSITIVITY PROOF AND GRAVITATIONAL ... 3959

III. THE SPECIAL ORTHONORMAL FRAME
APPROACH

Another approach [5] used orthonormal frames and ex-
ploited their rotational gauge freedom. The Arnowitt-
Deser-Misner (ADM) Hamiltonian (1.1) in an asymptot-
ically Cartesian frame has the form

H(N) = / Bz N(g™ (1™ 1y — 172) — g} R)
+2n™ Y, N* + }{ dSy NokeTeb, . (3.1)

We choose N* = 0, use the divergence theorem to elim-
inate the boundary term, parametrize the metric with
orthonormal frames, split the connection coefficients al-
gebraically into a symmetric tensor g3, a vector g, :=
—TI'®,, and a scalar ¢ := €3*T;., and use the special
orthonormal frame (SOF') [6] rotational gauge conditions

qr = 40;1n®, q = const, (3.2)

to obtain the Einstein Hamiltonian (i.e., energy) density
in the form

H(N) = 8g%g"™0,(N® )3, ®

+N{g™ 3 (1%®map — 172) + g7 (¢%qas — 147)} .
(3.3)

This expression is good for both compact spatial sur-
faces (in which case ¢ is a nonvanishing constant) and
for asymptotically flat spatial surfaces (in which case ¢
vanishes). For the latter case total energy is well defined;
a suitable choice of the lapse gives a positive total energy
proof.

Many choices for the lapse give a positive local energy
density, in particular N = &2, (a > 1). An especially at-
tractive choice is N = ®, which leads to the gravitational
energy density

H(®) = D{g™ (n%map — 172) + 9% (¢°°qas — 2¢7)} ,
(3.4)

and the value
E = (167rG)—1/ H(®)d%z = (2wG)—1}{g%v’=<1>dsk ,
1% s

(3.5)

for the amount of energy localized within a volume V'
bounded by a surface S. The value is non-negative for
asymptotically flat maximal spatial hypersurfaces. The
gravitational potential ® (generalized Newtonian poten-
tial) satisfies the generalized Poisson equation

891 A® = H(®) + 167®g:Gp . (3.6)

(This is just the Hamiltonian constraint and is essentially
the scale equation of the usual conformal approach to
the Einstein initial value constraints, see, e.g., Choquet-
Bruhat and York [7]).

This SOF Hamiltonian has certain virtues, especially

(i) the gauge conditions are conformally invariant so
SOF’s are closely related to the usual variables of the
standard initial value constraints, (ii) the oscillating
physical modes are apparent in the SOF gravitational
energy density, and (iii) the energy localization is phys-
ically reasonable; in particular, all of the mass of the
Schwarzschild solution [note: & = (1 + m/2r)~! for the
isotropic cartesian frame] is within the horizon. (More-
over there is some freedom here; the choice N = &%
produces the same 1/8 inside the horizon as the four-
covariant spinor Hamiltonian for the Schwarzschild so-
lution.) However the SOF approach also has certain li-
abilities: in particular (a) the expression concerns only
energy, it gives no restraint on the momentum, (b) the
energy is guaranteed to be locally non-negative only
for maximal spacelike hypersurfaces, and (c) a maximal
spacelike hypersurface cannot be extended to future null
infinity so this approach cannot give the Bondi mass en-

ergy.

IV. A NEW THREE-SPINOR PROOF AND
LOCALIZATION

A link between the special orthonormal frame ap-
proach and the four-covariant quadratic spinor form of
the Hamiltonian has now been found in terms of a new
Hamiltonian-based gravitational energy positivity proof
and localization which uses three-dimensional spinors.

The key is a new spinor identity (see Appendix)

2[V(plic) A Vo — Vel A V(iap)]

=dB — (¢'0)2% Al (4.1)
where
B := plic AVp — ¢!V (iagy)
+V(ptia)p + (Vo) Aiap . (4.2)

Using this identity we replace the scalar curvature term
NRg'/2d3z = NQ A (3 and the boundary term in the
ADM Hamiltonian (3.1) with the left-hand side of (4.1) .
The Einstein Hamiltonian (with N = ¢tp, N*¥ = 0) can
then be written as

HV) = [ (o'o)g™ (™" mn - )

+2[V(plio) A — Vol AV(iop)] . (4.3)

An important property of the three-spinor Hamilto-
nian (4.3) is that no additional boundary term at infin-
ity is needed. As Regge and Teitelboim [8] have nicely
explained, it is necessary that the boundary terms in the
variation of the Hamiltonian vanish asymptotically. To
verify this property for (4.3) we need only check the vari-
ation of the quadratic spinor terms (see Appendix):

§[V(ptio) A Vo — Vel A V(iay)]
= —Q% A 6((0)Cas] — 26 A V[(7)Car]
+d{6(plic) AV — 80tV (ioy)

+V(ptio)sp + (Vol) Adliop)).  (4.4)
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Since ¢ = const+O(1/r) and ¢ = O(1/r) the boundary
term falls off as O(r~3), therefore vanishing at spatial
infinity for aymptotically flat initial data.

On a maximal hypersurface 7 = 0, the kinetic terms in
the Hamiltonian (4.3) are non-negative. The quadratic
spinor terms can also be made non-negative. Since the
torsion vanishes the spinor terms reduce to

2[V(plio) A Vo — Vel A V(ioy))
= _4[Va@1icabcacvb¢]c

= 4[g*Vap'Vip — Vap'o®0"Viel(. (4.5)
Hence the spinor terms are non-negative for any asymp-
totically constant ¢ satisfying the three-dimensional
Dirac equation
0?Vap=0. (4.6)
This is a linear elliptic equation similar to the Wit-
ten equation; essentially the same arguments show that
unique solutions exist. Hence the local energy density is
non-negative on asymptotically spacelike maximal slices.
This three-spinor Hamiltonian approach by itself has
most of the liabilities of the other two approaches: (a)
it yields the same sort of unintuitive energy localization
as the four-covariant spinor expression (indeed they have
identical values for the Schwarzschild solution, but differ
when K, # 0 # ¥7%%); (b) the expression concerns only
energy, it gives no restraint on the momentum; (c) the
energy is guaranteed to be locally non-negative only for
mazimal spacelike hypersurfaces; (d) the maximal space-
like hypersurface cannot be extended to future null in-
finity so it cannot give the Bondi mass-energy. However,
for the three-spinor Hamiltonian some of the other four-
spinor liabilities are not so severe since in this case (i)
the spinor field is not so mysterious, for (i) there is a re-
lation to the customary variables via the SOF variables
as we shall show below. Indeed the principal virtue of
this approach is that it relates the other two methods we
have discussed.

V. RELATIONS BETWEEN THE METHODS

The three-spinor Hamiltonian expression (4.3) is inter-
mediate between the four-covariant spinor Hamiltonian
(2.1) discussed above and the SOF Hamiltonian (3.3).

On the one hand it can be extracted as a piece of the
3+1 decomposition of the four-covariant spinor Hamil-
tonian. The orthonormal frame components of the met-
ric compatible four-connection project into the compo-
nents of the three-connection and the extrinsic curvature
K*, = —T'%%,; hence,

Doy = 0ctp — %Paﬂc')/[a'yﬁ]w
=0 — %Fabc'y[a')/b]w - %FObc'Y[O’Yb]"/)
= Vet + LK oy (5.1)

Consequently the quadratic in D1 Hamiltonian de-
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composes into (a) quadratic terms in K%, along with
quadratic terms in V1, which are essentially the three-
spinor Hamiltonian density (4.3), and (b) linear terms
in K%, (they are of the form 27™.V,,N¢ where N¢ =
1y°9), which represent the momentum constraint. (Note
that the three-spinor method decouples the spinor field
from N*; this has both advantages and disadvantages.)

On the other hand the three-spinor Hamiltonian not
only resembles the SOF approach in (i) using a vanish-
ing shift, (ii) considering the kinetic terms separately,
(iii) relying on maximal slices, and (iv) replacing the po-
tential terms by an expression using different variables,
but, moreover, there is a close relation between the SOF
variables and spinor fields via solutions to the three-
dimensional Dirac equation (4.6).

Indeed the three-dimensional Dirac equation explicitly
depends only on the parts of the connection which appear
in the gauge conditions (3.2):

Ucvc(p = Uc(‘P,c + %Fabcg{aab](p)

=0 — a0l + Lige . (5.2)
An asymptotically constant solution to 0®V,p = 0 can
be factored into a magnitude and a unitary transfor-
mation which determines an SOF [9] . Conversely, ex-
pressed in terms of an SOF, the Dirac equation reduces

to Uaaa¢—2<p = 0, hence P = (I)zﬂoconst‘

VI. LOCALIZATION AND
QUASILOCALIZATION

Our considerations have been concerned with obtain-
ing a positive localization of the total energy by finding a
good expression for the Hamiltonian density. Each local-
ization depends on the solution to an elliptic equation,
which, in turn, depends on the values on the boundary
of the region. Since the boundary is at spatial infinity we
can simply choose suitable constant values as the physi-
cally appropriate boundary conditions.

Beyond distributing the total gravitational energy,
there is considerable interest in “quasilocalization,” i.e.,
determining the amount of energy in a finite region with-
out reference to what is outside. The expressions we have
discussed could also be used for a finite region. Then each
of the (locally positive) Hamiltonian densities provides a
quasilocal energy. The value of the positive quasilocal
energy can be obtained from the associated boundary in-
tegral. The quasilocalization will depend on the choice
of boundary values on the finite two-surface bounding the
region. We, however, do not know how to decide which
values on a finite boundary are a physically good choice.
Several “quasilocalizations” based upon four-covariant
spinor expressions such as (2.1) and (2.2) have been in-
vestigated by others [10]. Their methods of choosing
boundary values for the four-spinor field could also be
adapted to our orthonormal frame or three-spinor fields.
Canonical investigations associated with a finite region,
with particular attention to the possible boundary terms
and their relation to what is held fixed on the bound-
ary, have been done for the standard variables [11]. Such
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a study of the spinor or SOF parametrized Hamiltonian
should provide some guidance for the choice of appropri-
ate boundary values for finite regions.

Nontrivial examples of the localizations produced by
the four-spinor, SOF, and three-spinor techniques, e.g.,
for the Kerr solution, would be instructive. However, as
noted, the localizations depend on solving an elliptic sys-
tem of equations, essentially the Dirac equation. Unfor-
tunately, aside from the aforementioned spherically sym-
metric case, there are hardly any known exact solutions
for the Dirac equation in curved spacetime [12].

Forgoing direct comparisons for actual solutions we can
compare the expressions by considering desirable proper-
ties. We know of no gravitational energy localization
method which is satisfactory. One list [13], for example,
requires (i) zero for flat spacetime, (ii) the standard value
for spherical solutions, (iii) the ADM value for an asymp-
totically flat slice, (iv) the Bondi value for an asymptot-
ically null slice, (v) the irreducible mass for the appar-
ent horizon, and (vi) positivity and monotonicity. Of
the methods considered here, the quadratic four-spinor
expression certainly fails (ii) and (v). The SOF Hamil-
tonian satisfies the positivity requirement (vi) only on
maximal slices, while the maximal slice restriction pre-
cludes satisfying (iv). The new three-spinor technique
has all of these failings.

VII. CONCLUSION

We have presented a new positive total energy proof
for asymptotically flat Einstein gravity. The proof uses a
three-dimensional spinor parametrization of the Hamil-
tonian and a new three-spinor-curvature identity. What
insight has it yielded so far?

As a proof, considered on its own, this method has no
advantages and indeed is less general than some other
known proofs. More interesting is the fact that it pro-
vides another independent method for obtaining a posi-
tive localization of gravitational energy; yet again, as a
localization method, it has no apparent advantages.

Probably the most interesting thing is that it provides

a link between two other Hamiltonian-based proofs and
their associated localizations. At the very least this link
connects the somewhat mysterious Witten spinor field
proof and localization to the more usual type variables.
Perhaps this link will play an essential role in finding a
modification of our expressions into a better Hamiltonian
density—one which permits a positive energy proof and
gravitational energy localization combining the virtues
of the four-covariant spinor Hamiltonian and special or-
thonormal frame approaches without the liabilities. Such
an expression, complimented by a good choice of bound-
ary values for finite regions, would provide a physically
reasonable quasilocalization of gravitational energy.
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APPENDIX: CONVENTIONS AND IDENTITIES

Our four-dimensional conventions are metric signature
(-1,41,41,+1), orthonormal coframe 6*, unit volume
element 7, and unit three-form basis 7, = *0,. The

spinor conventions are v5 = 7°y1vZy3,

VYo + Vo Vu = —29u = 2diag(+1,-1,-1,-1),

v = y,0* and Dy = dyp — %w‘“"y[#'y,,]'d) is the covariant
differential.

The three-dimensional spinor conventions used are o =
o.0°, where

0a0b + 0p0q = 26ab,

with Oab = %[a’aa Ub]’ SO Oc0ab + Oab0c = iCabcv and Cab =
Cabc0°, where (upc is the three-dimensional Levi-Civita
tensor with (123 = +1.

The identity connecting the three-dimensional scalar
curvature to the spinor expression in the Hamiltonian
can be verified as follows:

2[V(ptio) A Vo — Vol A V(iap)] = dB — [—ptiaVip + VZ(plio)p — ot V2(iop) + (Vie)ioy]
=dB — %Q“b A [—(p*iaaab(p — pligoap — pliocaop — go*iaabatp]

= dB + Q% A [p! (10045 + 10060) 9] = dB — (01 0)Q% A Cas,

(A1)

where B := ptic A Vo — ¢tV (iop) + V(ptio)p + (Vel) Adoep.
Similarly, we calculate the variation of the quadratic spinor terms:

8[V(plia) A Ve — Vol A V(iop)] = [Vé(plic) A Ve — Vip! A V(iap) + V(plia) A Vip — (Vl) A Vi(iop)]
+(6V)(p1io) A Ve — (V)61 A V(iow) + V(ptio) A (8%)p — Ve A (89) (i)
= d[§(plio) A Ve — 8otV (iop) + V(plio)dp + (Vo) Ad(ioy)]
—[=8(ptio) A V2o — 89tV (iop) + VE(plia)dp + V! A §(iop)]
+%5w“b A [=(p1i0)0as A Vo + 010,V (i09) + V(plio)oasp + Velaas Adoy]

1% A [—6(plio)oasp — 80t oas(iog) — (01io)oasde — loasd(iop)]

+16w A V(o' (i00as + 0abio) ]
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=d[-- ]+ 0 A 6[<p1(iacrab + oabio)p] + %&u“b A V[(pT(iO'O'ab + 04pi0) )
=d[-- ] - Q% A 8[(p'9)Cab) — 300 A V(1 0)Cap)]- (A2)

We have recently discovered [14] that there are many identities such as (2.2) and (4.1) in Riemannian and Riemann-

Cartan spaces of any dimension.
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