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We study how bubbles grow after the initial nucleation event in generic first-order cosmological phase
transitions characterized by the values of the latent heat L, interface tension o, and correlation length (,
and driven by a scalar order parameter ((. Equations coupling P(t, x} and the fluid variables

v(t, x), T(t, x) and depending on a dissipative constant I are derived and solved numerically in the
(1+1}-dimensional case starting from a slight1y deformed critical bubble configuration P(0,x}. The pa-
rameters 1., o, g corresponding to QCD and electroweak phase transitions are chosen and the whole

history of the bubble with the formation of combustion and shock fronts is computed as a function of I .
Both deAagrations and detonations can appear depending on the values of the parameters. Reheating
due to collisions of bubbles is also computed.
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The bubble nucleation in cosmological first-order phase
transitions as well as the propagation and stability of pla-
nar interfaces have been discussed extensively in the
literature [1—19]. The purpose of this paper is to join
these two ends of the life of a bubble by giving a dynami-
cal model which describes the entire history of the bubble
from the initial configuration via initial acceleration into
a large bubble growing with constant velocity.

The stage for the events in this paper is the cosmic
fluid with a first-order phase transition at T=T,—in
practice either the QCD or the electroweak (EW) phase
transition. For physical quark masses, there is no sym-
metry associated with the former one and its order is not
definitely confirmed [20]. The latter is a symmetry-
breaking transition, and at least for not too large Higgs
boson masses, it is of first order both on the basis of per-
turbative [21—26] and nonperturbative lattice Monte
Carlo [27—29] work. Inflationary transitions are essen-
tially vacuum ones, and the considerations here do not
apply.

The main quantity characterizing the cosmic fluid is its
energy-momentum tensor T"'=(e+p)u "u"—pg"". The
first-order nature implies that there are two phases, a
high-temperature phase (symmetric, quark-gluon plasma
phase) with pressure p (T) and a low-temperature phase
(broken symmetry, hadron phase) with pressure pt, (T),
which can coexist at T, : p {T,)=pI, (T, ), but
p~(T, }&pt', (T, ). We shall describe the transition by a
scalar order parameter field P(t, x). This is obvious for a

symmetry-breaking transition, but we shall use the same
description also if no symmetry is involved: The order pa-
rameter could then be, for example, the energy or entro-

py density. The bubbles are configurations of P(t, x).
The problem now is to derive equations of motion for

the total cosmic-fluid —order-parameter-field system. We
carry this out in analogy with the reheating problem in

inflation [30]. The total energy-momentum tensor of the
system is conserved (B„Tt' =0), but those of the fluid and

order parameter field subsystems are not. Physically, en-

tropy produced at the bubble interface couples the
behavior of P with the fluid. The strength of this cou-

pling is described by a dissipative constant I . It has been
related by a fluctuation-dissipation formula to equilibri-
um averages in Refs. [31,32], but we use I as a phenome-
nological parameter. Estimates for it in the EW theory
have been given in Refs. [11,33].

Given the equations of motion, one can solve them nu-

merically and study how bubbles corresponding to given
initial supercooling (which follows from nucleation
analysis), given parameters of the transition (latent heat,
interface tension, correlation lengths), and given dissipa-
tive constant I evolve. Collisions of bubbles can be simi-

larly studied. In this first discussion, we shall solve the
equations in 1+1 (one time, one space) dimensions,
which contains the main qualitative features. For com-
plete quantitative results, one must go to 1+2 or 1+3 di-

mensions.
The initial stages of bubble growth have also been com-

puted by integrating spherically symmetric (1+3)-
dimensional hydrodynamic equations in Ref. [34]. The
velocity is taken as a free parameter, electively
parametrized by the magnitude of energy flux. Our work
divers in one essential aspect from this: the dissipative
constant I is at least in principle calculable from the
theory.

The paper is organized as follows. In Sec. II we intro-
duce our model for the first-order phase transitions. In
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Sec. III we review the general hydrodynamic conditions
for the bubbles and describe the two kinds of solutions:
detonations and deflagrations. In Sec. IV we describe our
results for different time-dependent phenomena such as
the initial stages of bubble formation, the sharpening of
shock fronts, and the collisions between expanding bub-
bles. In Sec. V we give an account of the different
steady-state variables for deflagrations (temperatures and
velocities} as a function of I . The conclusions are in Sec.
VI.

II. EQUATIONS OF MOTION
FOR THE COSMIC FLUID

AND THE ORDER PARAMETER FIELD

p~(T)=aT, pi, (T)=aT +B(T), (2)

where B(T)=—V(P,.„,T) is the difference between the
free energy densities of the symmetric and broken sym-
metry phases. The number of effective degrees of free-
dom of the high-temperature phase is denoted by g „and
a =(m /90)g, .

Summarizing, our dynamical variables are the four-
velocity of the fiuid u "(t,x), the scalar field P(t, x), and
the local temperature T(t, x}. We use the notation

The system we consider contains the cosmic fluid
which has supercooled in the metastable high-T phase
(call it by convention q) to some temperature Tf. At this
temperature nucleation of bubbles of the low-T phase
(call it by convention h) becomes sufficiently frequent for
the phase transition to efFectively take place. We shall
first define the quantities appearing in the equations of
motion.

The bubbles are defined as configurations P(t, x) of a
scalar order parameter P. The (meta)stable states of the
system are defined by the minima of the efFective poten-
tial V(P, T) of the order parameter P. The equations will
be formulated for a general V, but for numerical calcula-
tions we shall use a quartic parametrization [3,12,14]:

V(P, T)= ,'y(T T)—P 'a—TP'+ ,'—AP——
The full functional form of the ring-summation-improved
effective potential [22—26] deviates somewhat from this
and even more does the effective potential containing
nonperturbative effects [29]. The methods developed
here can be straightforwardly extended to these improved
potentials.

The physical quantities corresponding to the parame-
ters a, y, A, , and To in Eq. (1) are the latent heat L, the
interface tension cr, the critical temperature T„and the
correlation length g(T, )—=g, [15]. The quartic parame-
trization in Eq. (1) implies that the correlation lengths in
the two phases at T, are equal, but actually they are
different [29].

The primary physical quantities characterizing the
transition are T„L, cr, and g„and given these, we can
always solve for the parameters a, y, A, , and To in Eq. (1).
In this way we can use Eq. (1) also for @CD. Its use for a
symmetry-breaking transition is, of course, obvious.

For the equation of state of the system, we shall take

,'y—T—op + ,'A,p—
V(P, T)=

Vo(p)

&

y T2$2 —' aT$3

V, (P, T}
(3)

The part Vo(P} is related strictly to the scalar field,

whereas the part V, (P, T) includes the interaction of the
field with the thermal bath. The total energy-momentum
tensor is

z'"=a~pa"y g"[-,'a.ya-y v, (y-)] (4)

av, (p, T)
+ ia„T — u "u" g""—[p„V,(—P, T}],

and it is of course conserved:

a T""=0 .
P (6)

The idea now is to bring in a dissipative term which
acts as a friction force for the scalar field and accounts
for the entropy production at the phase transition sur-
face. This is done by splitting Eq. (6) in two:

o=a T~"=[a T~ ],+[a T""] d=5"—5". (7)

The form of the Lorentz-covariant dissipative term 5" is

adopted from the context of inflation [30]. Because of the
temperature dependence of the effective potential, the
choice of the terms [a„T""]&and [a„T""]„zin Eq. (7) is
not unique. It seems most natural to make the splitting
in the following way:

a„[a ya"4 g~"[ ,'a.4—a y v-, (y)])—
av, (p, T)

a"p = ——u "a $a"p,r
(8)

av, (p, T)a„w„—T u "u —g" p„'

av, (p, T)
+ ' a"T=+ u~a ya"y . —

aT r
After ail, if V&(p, T) could have been written in the form

V, (p, T)= V&(p)+VT(T), there would be no ambiguity
iil the splitting, and exactly Eqs. (8) would result. Our
final equations are then

a ai'p+ = ——u "a p,BV
ay r

av
a ia —T u "u —g""[p —V] .

BT
(9)

= —u~a y+ a"y,1 av
r ~ ay

where a common factor has been dropped.

m, =4aT and p, =aT for the pure radiative enthalpy
and pressure, respectively.

To motivate and to write down the equations of
motion, we first write the effective potential of Eq. (1) in
two parts:
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Contracting both sides of the lower of Eqs. (9) with the
fluid four-velocity u, one gets

(10)

where s, =4aT is the radiative entropy and —BV/BT
the entropy associated with the order parameter. This
equation relates entropy production and the gradients of
P via the constant I'. Note that in a weak-coupling
theory [11,33] 1/I -1/r, n-ucr -gzT.

In this paper we study Eqs. (9) in 1+1 dimensions,
which corresponds to planar symmetry. While this is a
drastic simpli6cation, it nevertheless should correctly de-
scribe the late stages of the bubble growth in the (1+3)-
dimensional world. Planar symmetry also allows us to
compare our results with analytical calculations.

In the planar-symmetry case, it is also illuminating to
write down the equations for the steady-state solution.
At large times the system should evolve to a solution con-
taining a combustion front moving at constant velocity.
In the rest frame of the front, all time derivatives then
vanish and Eqs. (9) become

P"(x)=- + P'(x),

4aT —T y v =const4 ~V z

T
(12)

4aT Ty v—+aT +—P'(x) —V=const . (13)
BT 2

Equations (12) and (13) actually also follow from the
steady-state energy-momentum conservation:

B,T""=0 . (14)

Similarly, the entropy production equation (10) becomes

The standard analysis of deflagration and detonation
bubbles [7] is a study of what solutions Eqs. (12) and (13)
allow. For given initial Tf, this leaves a one-parameter
family of solutions. For detonations there are four quan-
tities T, vq, T&, v&, constrained by two equations and by
the boundary value T = Tf. For deflagrations the shock
front has to be taken into account, and there are two
more quantities but also two more equations. This is dis-
cussed in Sec. III. Equation (11) is the new one which
gives the new physics permitting one to choose the
correct solution within the one-parameter family.

III. DKFLAGRATIONS vs DETONATIONS

There are two kinds of bubbles allowed by the hydro-
dynamics. These are called deflagration and detonation
bubbles [7] according to the nature of the phase transi-
tion front.

Consider fluid flow in the rest frame of the phase tran-
sition front. The incoming flow velocity is denoted by v,

V]

FIG. 1. Velocities in the rest frames of the phase transition
and shock fronts.

and the outgoing velocity is denoted by Uz (see Fig. 1). In
a deflagration the incoming flow is subsonic, v, & c„and
the fluid is accelerated by the phase transition, v 2 & v, ,
whereas for a detonation the opposite is true: v

&
& c, and

v2 & v &. Depending on whether the outflow is sub- or su-

personic, these processes are further divided into weak
(Uz & c, ), Jouguet (Uz =c, ), and strong (Uz & c, )

deflagrations, and strong (Uz &c, ), Jouguet (Uz =c, ), and
weak ( U z & c, ) detonations [5].

Consider then the structure of the bubble in the rest
frame of the ambient fluid. When the bubble has grown
large enough, any memory of the initial shape of the nu-
cleated bubble should be lost. The bubble can then be de-
scribed as a similarity solution of the hydrodynamical
equations; i.e., it expands linearly with time, otherwise
maintaining its shape and profile. The fluid has to be at
rest both at the center of the bubble and far away. Thus,
in a deflagration bubble, the phase transition front is pre-
ceded by a shock wave which heats up the fluid and sets
it moving outward. The phase transition front then
brings the fluid back to rest (see Fig. 2). In a detonation
bubble, the fluid is at rest when it is hit by the phase tran-
sition front, which leaves the fluid flowing outward. A
rarefaction wave follows, bringing the fluid at rest (see
Fig. 3). We denote the velocity of the phase transition
front in this frame by v d,f for deflagrations and by v d„ for
detonations. Weak deflagrations have Ud, r & c„whereas
for strong deflagrations vd, f & c, . Detonations always
have Ud„& c, . We can exclude strong detonations [6], be-
cause they leave the fluid flowing too fast: No such simi-
larity flow exists that would bring the fluid at rest at the
center of the bubble [8]. For a deflagration bubble, the

Vfluid

Th

~ def
xjt

FIG. 2. Structure of a deflagration bubble.
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FIG. 3. Structure of a detonation bubble.

velocity U,h k of the shock front is also of interest. In
1+1 dimensions the Quid Qows at a constant velocity

vs«d between the shock and phase transition fronts.
For deQagrations, the velocities vd, f, vz d, and v,h„l,

are related to the velocities v, and U2 by the equations

Ushock ul ~shock t

Udef U2 ~phase wall &

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

3a„Th /L

2.5 3.0

Vl V2

Vauid
=

1 —
V lV2

U2 Ul
Vauld

2 1 phase wall

where the words "shock" and "phase wall" indicate the
front at which U, and vz are measured. For the phase
transition front, we sometimes use the notation v& =vq
and u2 =vh, and T and Th for the temperatures of the in-

coming and outgoing fluids, respectively. The tempera-
ture between the fronts is then T, and the temperature
of the hadron phase is Th (see Fig. 2).

The initial condition, matter at rest in the q phase, at
temperature Tf (T„and the equations of state of both
phases do not fi the rate of bubble growth (vd, t or ud„)
or the temperature inside the bubble. For simplicity, we
illustrate this with the bag equation of state'

Ph( T)=ay, T +L /4, Pq(T) =a T

Eh ( T) = 3ah T L /4, eq ( T)=—3aq T
(16)

which one gets from Eq. (2) by making the small-
supercooling approximation

(17)

Usually, the bag constant 8 =L /4 appears on the q side, with
the opposite sign. This normalization of the zero point of ener-

gy does not affect the hydrodynamics.

Then a =a, ak =a L /4T, —
The conservation of energy and momentum and the

non-negative entropy production at the phase transition
front restrict the possible values of the incoming (e, ) and
outgoing (e2) energy densities [7] (see Fig. 4). Detona-
tions require a certain amount of supercooling. If the la-

FIG. 4. Values of incoming (q) and outgoing (h) energy den-

sities at the phase transition front, corresponding to
deflagrations (upper left triangular region) and detonations

(lower right). This figure is for a bag model with r =—a~ la& =2.
Point A corresponds to T~ = TI, =T, . In deflagrations the fiuid

has been heated by the shock, and so T~ & Tf, whereas for de-

tonations T~ = Tf. For a given initial temperature Tf, there is a
one-dimensional space of solutions, indicated by the dashed
lines. The requirement of non-negative entropy production re-

stricts the solution below the line LS=O. Thus, in this case,
only deflagrations are allowed for Tf =0.9T, . For Tf =0.8T„
both defiagrations and weak detonations are possible. For
Tf =0.7T„Jouguet detonations are allowed, too.

tent heat L is large, the required supercooling can be
quite substantial, and the h matter is then at a highly su-
perheated state immediately behind the phase transition
front. This has led to the conclusion that deQagrations
are the more likely process in the QCD phase transition
in the early Universe [7].

However, if the latent heat is small, detonations re-
quire less supercooling. The nucleation temperature can
be estimated [15]from

(18)
+171—4 ln(171 /A )

where 171=4ln(t, T, ) and A =+16'/3(o/L "t/T, ). .

The values of the parameters o and L are essentially un-
known, although results from lattice calculations can be
employed in giving rough estimates for them. In Fig. 5
we show the region in the (L,o ) parameter plane, where
weak or Jouguet detonations would be allowed.

To choose among the allured solutions (see Fig. 4), the
internal mechanism of the phase transition front needs to
be considered. This is the purpose of our model present-
ed in Sec. II, with the additional parameter I, which mill

pick a single solution. In the next sections, we turn to
numerical results obtained for this model.

For the QCD phase transition, we used the quark-
hadron (qh ) parameters
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10

This corresponds to the nucleation temperature
T/=0. 9957 [12].

For the above qh parameters, the lowest temperature
To where the symmetric minimum /=0 still exists is

Tp =0.8771 . In the EW case, we have Tp =0.9828. That
these numbers are not too low indicates that our use of
the quartic effective potential V(P, T) is justified [12, Eq.
(2.21)].

10

10

I I I I I IIII
10 z s 10

I I I I I I

s 100

L/T,

I I I I I III
z s 10

FIG. 5. For sufficiently small latent heat L, or sufficiently
large surface tension o, detonations are possible in addition to
deAagrations. The precise regions in the (cr, L j plane depend on
the equation of state. This figure is for a bag model with
a, =51.25+/90, a& =a~ L/4T4 (solid —boundaries) or with
a, =a„+L /4T„a„= 17.25+/90 (dashed boundaries).

L =2, cr=0. 1, $, =1, g, =51.25 .

Here and in the following, all quantities are expressed
scaled with powers of T, to make them dimensionless:
L =L /T, , o =o /T, , g, =g, T, . From Eq. (18) these pa-
rameters correspond to the nucleation temperature
Tf =0.9943. The values of the latent heat L and the sur-
face tension o are suggested by pure glue lattice Monte
Carlo simulations [35—37]. The parameter g, shows up
neither when the nucleation temperature is calculated [in
the thin-wall approximation, Eq. (18)] nor when the
steady-state variables are calculated [in Eqs. (30)—(35)].
However, it determines the thickness of the phase transi-
tion surface. Because the transition is only weakly first
order, the actual g, might be larger than our value. Note
that in addition to strongly interacting degrees of free-
dom the parameter g, includes weakly and electromag-
netically interacting degrees of freedom. Because the
mean free paths of these particles are much larger than
those of strongly interacting particles, these degrees of
freedom are actually not active during the early stages of
the phase transition [34,38]. However, since we are most-
ly interested in the final stationary stages of the phase
transition, a11 the degrees of freedom are included. For
these parameters we expect deflagrations only (see Fig. 5).

In the EW case, we assumed that aff 30 mtpp
and mH =40 GeV. The small effective Higgs boson mass
is necessary in order to allow for a generation of the
baryon asymmetry. Using the improved effective poten-
tial [14],we get our electroweak (EW) parameters

a =0.0162, y =0.1309,
X=0.0131, g, =106.75 .

IV. TIME-DEPENDENT PHENOMENA

To integrate Eqs. (9), we wrote a simple (1+1)-
dimensional relativistic hydrodynamics code following
Wilson and co-workers [39,40]. Thus we use explicit
differencing with operator splitting for the hydrodynamic
equations. The code variables are P, ~—:B,P,
E=y[3aT—+V(P, T) T(BV—/BT)], and Z= yu[—4aT
—T(BV/BT)]. The velocity u is solved from E and Z.
The temperature T (for each grid point) is solved from E
and P using the functional form of V(P, T). This value
for T is then used in V(P, T) for evolving P. The trans-
port terms for E and Z are handled with the Qux-

corrected transport (FCT) method [41,42].
We use reflective boundary conditions (see Fig. 6). The

center of the initial "bubble" of new phase is placed at
one end of the grid. Allowing the moving wall to reach
the other end simulates the collision with another similar
bubble. The code corresponds to a planar geometry, and
so these are not true spherical bubbles. In this paper we
study the motion of a planar phase wall.

A. Initial conditions

Before starting the actual integration, the initial condi-
tions have to be specified. The initial configuration or
"bubble" has to be larger than critical to start growing,
but it is not clear to what extent there is a fluctuation in
the temperature associated with the fluctuation in the or-
der parameter. Possibly, the temperature is a bit higher
near the critical bubble than farther away from it, be-
cause latent heat is released in the formation of the criti-
cal bubble. We can estimate typical temperature Auctua-
tions with classical fluctuation theory [43]: For the quark
matter equation of state,

T 12aT V
(19)

the physical grid

FIG. 6. Meaning of the refiective boundary conditions.

For the qh case, with a radius R, =5(, of the critical
bubble, we get ET=0.005 in units of T, . Comparing
with Tf in the previous section, this is very large. For
the EW case, we get b, T=0.001 [28]. However, we think
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that it is most straightforward and in the spirit of the nu-

cleation calculation (e.g., in Ref. [12]) to assume that the
temperature inside the initial bubble is just Tf. What is

most important is that the details of the initial bubble
have no effect on the final steady-state configuration and
the asymptotic variables Tq, Tz, v,h,d„vs„;z, and vd f (or

ud«), if only the nucleated bubble starts growing.
Assuming as initial conditions that the fluid velocity

vanishes everywhere and that the temperature is constant
and equal to Tf, we still have to decide the shape and size
of the initial bubble. These variables have some
significance during the early stages of bubble evolution,
since they affect the initial shape of the shock front and
also its initial acceleration. In 1+1 dimensions, it is pos-
sible to analytically find the extremum bubble of the
effective action by solving the equation P"(x)
=8~V($, Tf ). With M =y(Tf—To), —5:aT&, —and
A, =9k,M /25, the solution is

where

f (x)= (—1 —Xcoth Mx)/(1 —coth Mx) .

This solution is quantitatively quite different from the
physical (1+3)-dimensional critical bubble. A bubble ob-

tained from Eq. (20) by increasing both the amplitude
and diameter by a small factor (by S%%uo) was normally

used as the initial configuration. We experimented also
with the exact extremum bubble and with a bubble small-

er than this one. The exact extremum bubble did not
evolve anywhere, and the subcritical bubble collapsed,
leaving behind a disturbance in the temperature and flow

velocity propagating outward with sound velocity. This
disturbance is caused by the fact that matter has to flow

inward to fill in the area of lower energy density from
where the subcritical bubble has disappeared.

B. Numerical results

25 1 —&1—f(x)—
3A, f (x)

(20) In Fig. 7 the initial stages of bubble formation are
shown for the qh parameters. Immediately after the nu-

0.9975

0.9970/

0.9960/
I-

0.9955/

0.9950/

6g

FIG. 7. Early stages of bubble growth. The

upper picture shows T(t,x), and the lower pic-
ture shows v (t,x) for the qh parameters.

5g
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cleation, a shock front is originated which spreads out in-
formation about the nucleation. At first, the shock front
is not s arp. The temperature starts to rise insid th

u ble, and very soon the phase transition front begins to
get shape. At about the moment r = 100(1/T, ), both the
phase transition front and the shock front are clearly visi-
ble.

To get a more precise picture of the phase transition
surface, we can use Eqs. (11)—(13). [The solution of these
equations is discussed in Sec. V]. In Fig. 8 the order pa-
rameter P(x), the temperature T(x), the velocity U(x),
and the quantity Br V are shown in the rest frame of the
phase transition surface. The hadron phase is on the left
and quark phase on the right. The width of the surface
1ayer is a few correlation lengths. The curves resemble
the tanh(x) function, but for some other parameters the
resemblance is not as clear. Specifically, the temperature
and velocity distributions lose their symmetry and are
shallower on the hadron side where the effective potential
V(P, T) is nonzero. The "center points" of these distri-
butions are not quite at the same place as that of the or-
der parameter, but are shifted toward the hadron phase.
For some parameters the shift can be of the order of g, .

In Fig. 9 the development of the shock front is illus-
trated. The shock front is shown at times t=160 and
3840. A t early times the shape of the initial configuration
strongly affects the shape of the shock front. However,
after some time the shock front sharpens to a discontinui-
ty [g] irrespective of its initial shape. To understand the
physical reason for this, consider yourself moving with
the shock front and looking back toward the heated
quark matter. Particles farther away from the front re-
cede more slowly than particles just at the front. %hen
the shock front is still smooth, it follows from energy-
momentum conservation that entropy is conserved; i.e.,
with the quark matter equation of state,

B,(T y)+B„(T yu)=0.

This means that the temperature has to rise farther away
from the front in order to accommodate the entropy of

().998

0,997-

().996-

(].99&-

0.994
%0

I I I I

60 70 80 90 100 110

FIG. 9. Sharpening of the shock front.

the matter moving with a lower velocity. However, as
another consequence of energy-momentum conservation,
the temperature cannot rise enough to accommodate all
the entropy inside a constant-sized volume, and a "trafBc
jam" phenomenon occurs, causing a discontinuity. An

upper limit to the rate of jamming is clearly given by the
difference of the velocity of the matter going into the jam
and the velocity of the jam. This difference is just vfl

Then the time scale of the sharpening is determined by

v„„;d and on how smooth the shock front was in the be-

ginning. The latter depends on how near the initial
configuration was of the extremum bubble. Because the
shock front can initially be very wide and the flow veloci-

ty is very small, the time scale of the sharpening is ver
large.

s very

In Fig. 10 a collision of two bubbles is shown. Because
of the use of reflective boundary conditions, our grid cor-
responds to a situation in which several bubbles nucleate
simultaneously at equal spacings (twice the grid len th).
R

ng
eflection from the edge of the grid represents a collision

with the neighboring bubble. The distance between the
bubbles is in our picture b,x =640, which is much less
than the actual distances in the early Universe, but this is
not essential for the present analysis. At time t=240,
both the phase transition surface and the shock front are
moving to the right. At t =720 the shock fronts of neigh-

boring bubbles have collided, and the quark matter be-
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I' (see Fig. 13). This results in considerable supercooling,
and the nucleation temperature [Eq. (18)] is

Tf =0.891T,. For small values of I', the bubbles grow as
weak deflagrations. Increasing I increases vz, &, until at
about I =10 it approaches c, . Now vz, f & e, would indi-
cate a strong deflagration. Instead, as I is further in-
creased, the solution shifts to a weak detonation.

V. STEADY-STATE VARIABLES
OF DEFLAGRATION BUBBLES

Very soon after the nucleation, the growing bubbles
reach a configuration where the phase boundary and the
shock front have a constant velocity (see Figs. 2 and 7).
In this steady-state situation, there exists a simple and
very accurate way of finding out the interesting station-
ary variables, Th, usga, g y U fl„jQ p and vie f of the
deflagration bubble apart from the above-presented in-

tegration of Eqs. (9). This method can also be used to
check the accuracy of the above integration. In the rest
frame of the phase transition front, the equations to be
solved were given in Eqs. (11)—(13).

Let us think that with the two conservation equations
(12) and (13) we solve for T(x) and u (x) in terms of P(x)
and P'(x). Substituting these to Eq. (11), we get a
second-order differential equation for the field P alone.
However, there are three boundary conditions: The
derivative P'(x) must vanish asymptotically in both
phases, and we know the value of the field P(x) (only) in
the quark phase. The system is overdetermined, and only
for certain values of the "constants" are there solutions.
This is thus an eigenvalue problem. Assuming that we
are given Tq, we can solve for T» ugef and vflgjQ.

Next, consider the shock front. Because the shock
front is in the quark phase, the field P vanishes every-
where and we are left with very simple energy-
momentum conservation equations. Solving them [4, Sec.
135],we get

A. Analytical approximations

2 = 2
WqVq

—
WhUh ~ Wq q+Pq h h+Ph

From the upper equation, it follows that

(23)

Vq

4
wq aq Tq

ah Th
4

(24)

Thus the fluid velocity is related to the deflagration front
velocity by

uflghi v/f Uq ( 1 1 /P)VQ fe
From the lower of Eqs. (23), we get

pz
—p a&T&+L/4 —a T

U Vh =rU
4a T —4aTh q h h q q

which in the limit Tq, Tz =T, —:1 implies that

1 —Tz =r(1—T )+r(r —1)u

(25)

(26)

(27)

To find the consequences of Eq. (11), multiply it by
P'(x) and integrate over the real axis. Using the equa-
tions

In this section we study what can be said analytically
of the solutions of the steady-state equations (11)-(13).
We use the bag equations of state (16) and (17) and as-
sume that the velocities v and vh are nonrelativistic
(v «1) and that the temperatures T and T& are near

T. (Tq —
Th «T, ). The entropies are sq=4aqTq3 and

sh =4ah Th, and the enthalpy is w =Ts. The one-
parameter family of solutions of the two equations (12)
and (13) has been studied in detail in the literature
[7—9,12,15,18], and the main problem is to find which
solution the new Eq. (11)picks out of this family.

Evaluating Eqs. (12) and (13) in the rest frame of the
phase transition front for x = —ao and (x), one obtains
the usual energy-momentum conservation equations

3T +Tf
3Tf+ T,'

(22)

BV(P, T) dV BV dT
BP dP BTdg '

V( —oo ) = L(1—Tz ), V(—m ) =0, and P'( k 00 ) =0, and

replacing the velocity u(x) by its absolute value (see Fig.
8), one obtains

Therefore, given Tf and T, we can write down

Vsho~k
—V 1 and vs„hi =—', ( u i

—
u2 ).

Now remember that a priori we only know Tf How-
ever, guessing some T, we get both from Eqs. (11)—(13)
and (22) a value for vs„;z. When we manage to guess such
a T that these two numbers agree, the whole problem is
solved. It is easy to make this method of solving the
steady-state variables very accurate. Therefore we can
use this method to check the accuracy of the dynamical
integration with all time derivatives. With a reasonable
number of grid points, the difFerences between the results
of the two methods of integration on the steady-state
variables are much less than 1%. Using this method, we
can also easily calculate the steady-state variables as a
function of I .

L
vz = u =v„=I'—( 1 —T ) .h q b q

(29)

This is the formula for bubble wall velocity derived ear-
lier [11,14—16] for the case of small change in flow veloci-

ty, which may be appropriate for the EW phase transi-
tion.

In the more general case r ) 1, note first that, because
P'(x) is approximately symmetric around x =0, the first
term in Eq. (28) can be approximated by

L(1—Th)= —J [P'(x)] v(x)dx —f dT . (28)r q dT

This is easy to solve in the limit r =vz/uq~l and Tz,
T ~T, since then one can take v (x)= uz = v out of the
first integral (which then gives the interface tension o )

and neglect the last term. The result is
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(o/I )(vq+vb)/2. From Fig. 8 one sees that at x=0,
BV/BT is about L/2 [in the hadron phase, dV/t)T=L,
since V( —oo )= L—(1—

Tb ); see above]. We therefore
approximate the second term by «—(L /2)( Tb —

Tq ),
where a is of order unity. Using Eqs. (24) and (27), Eq.
(28) then becomes

+L(1—T ) r+ —(1 r) —=0 .
K

2
(30)

From this one can solve vde f vQ rvq as a function of
T . If further a = 1, Eq. (30) simplifies into the form

r —1 2
o.

vQ f VQ f+r(1 —T )=0
r+1 (31)

which for small I (small v~,t) again gives the result

vq vb in Eq. (29).
It is worth noting that from Eq. (30} we get a lower

bound for T . Namely, we know that Eq. (30) has a solu-
tion and this gives

o (r+1)
16Lil ~r(r —1)(1 K—/2)[r+(n/2)(1 —r)]

(32)

The numerical value of this formula is useful for large I .
However, even for moderate I it is essential to note the
existence of a lower bound: The temperature T is not a
free physical parameter and when the whole expanding
physical bubble is considered, the shock wave always
heats quark matter just enough to reach the safe T area.

To obtain the result for a true deflagration bubble, one
finally has to eliminate the temperature T from Eq. (31)
by using Eq. (22). Expanding v„„,s in powers of 1 —T
and 1 —TI, one gets

v„„;s=&3[(1—TI) (1—T—q)] . (33}

r —1
def LI 3

+ vs, t+r(1 —T&)=0 . (34)

From this the equation for vd, &
as a function of I is

Using Eq. (25) and substituting 1 —
T» in terms of v~, t

into Eq. (31}gives

a r —1
def

o r —1

L I' v'3

'2
r —1—4r(1 —T ) r+1

1/2

(35)

r(1 —TI)
cr/LI +(r —1)W'3

(36}

In the limit I ~0, Eq. (36} correctly reduces to the ap-
proximation v J f rI'(L/o )(1—TI }.

B. Numerical results for steady-state walls

Quark hadron phase -transition

This is an excellent approximation for nonrelativistic
deflagration front velocities as will be seen in the next
section (see Fig. 15). If I' is not too large, Eq. (35) can be
further simpli6ed to the form

boundary conditions and thus confuse T with T&.
Another is that it has been argued in Refs. [44,45] that a
transition front between quark matter at the temperature
T & T, and hadron matter at the temperature TI, & T, is

impossible, basically because such a front would be
mechanically unstable. However, both arguments are
based on the assumption that at T, there exists a homo-

geneous mixed phase and that in the transition zone be-
tween the quark phase and the hadron phase the state of
the matter is at some point just in this homogeneous
mixed phase. Then the transition front would be equal to
two transition fronts, one from the quark phase to the

In Fig. 14 the temperatures T&, Tq, and T& are shown

as a function of I for qh parameters. Small I means
large friction and small velocities; large I means small
friction and large velocities. When the deflagration front
velocity is small, Eq. (25) tells us that the fluid velocity is
very small (for our present parameters, r =1.1, so that

vs„;z =O. 1vz,&). Then from Eqs. (22) we learn that T has
to be very close to T&. For large I the situation is oppo-
site: The velocities are larger and T is higher. The tem-
peratures Tq and T„satisfy the relation (27) very accu-
rately. Note that entropy production at the shock front
requires the condition T & TI, and obviously one also
has to obey the condition Th & T„but nothing prevents
T from exceeding T, . This fact has been noticed before
(see, e.g., Ref. [7]), but usually it is not taken seriously.
One reason may be that some authors neglect proper

1.000

0.998

0.996

0.994

10
~ I

10
~ I

10 10I"

FIG. 14. Temperatures T&, T„Tq, and Th as a function of I
for the qh parameters.
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final "fluid / shock
py= = &1 .

~initial fluid / def

Therefore we define the entropy production by

sk(Ta )Pv ss(Tf )—S=
sq(Tf )

(37)

(38)

In the quark-hadron phase transition where there is a
conserved baryon number, this is just the relative change
of entropy per baryon. The entropy production in Eq.
(38) is related to the quantity b s pw =ss y fl Us

—
ss y v

(measured in the rest frame of the phase transition sur-

face), which is often (e.g., in Ref. [12]) used to describe

mixed phase and the other from the mixed phase to the
hadron phase. If there is a microscopic order parameter
field, as in our model, the order parameter interpolates
between the two minima of the effective potential in the
transition zone, and there is no homogeneous mixed
phase. The only mechanism by which a phase transition
surface of this kind could in principle split is that a rare-
faction wave detaches from it, and the analysis in Ref.
[45] does not apply to rarefaction waves. Hence there
seems to be no reason why T could not exceed T, if the

phase transition effectively includes an order parameter
field.

In Fig. 15 the propagation velocity of the phase transi-
tion surface, Ud, f, is shown with solid line. With the
dashed line, we have drawn the deflagration front veloci-

ty from Eq. (35). This equation is seen to hold very well

when the velocity vd, f is nonrelativistic. The simple
small-velocity approximation vd, &=rl'(L/o )(1—Tf) is

drawn with a dotted line. In Fig. 16 the Quid velocity
v fl 'd is shown as a function of I' (solid line), and in Fig.
17 the shock velocity v,k„k is drawn (solid line). The
shock velocity is compared to the sound velocity.

In Fig. 16 the dotted line shows the entropy produc-
tion. By entropy production we mean the relative change
of the total entropy of a fluid element as the shock front
and the phase transition surface sweep over it. One must
note that the volume of the fluid element changes in the
course of the process by the relative amount (see Fig. 18)

0.0006 - ~ ---- 0.012

0.0004- 0.008

0.0002- 0.004

0.0000 ~ I s I

10 10 10 10
000

10

FIG 16. Fluid velocity and the entropy production for the qh

parameters.

entropy production, and to the analogously defined quan-

tity hs, h„k measured in the rest frame of the shock front,

by the equation

~ shock ~ PW+ Pv
Vshockc shock ~def def

sq(Tf ) . (39)

The first term in the numerator is vanishingly small in

comparison to the second.
According to Ref. [18], the quantity g= —T, (dvd f/

dT )vd, &
determines the stability of expanding bubbles. If

ri) 1, the bubbles are stable at all length scales; if rI (1,
large-scale fluctuations are unstable. For our qh parame-
ters, the quantity r) is drawn in Fig. 17 with a dotted line.
While the analysis of Ref. [18] is not suited for large 1

where Tq can exceed T„we note, however, that for
I &0.83 our numerical results imply g to be less than
unity and therefore large-scale fluctuations should be un-

stable in that case. It would be interesting to expand the
present code to include more space dimensions to see
whether the expanding bubbles remain stable.

2. Electromeak phase transition

In Figs. 19 and 20 we address the same questions as
above but for the EW parameters. Qualitatively, the
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FICx. 15. Velocity vd, f as a function of I for the qh parame-
ters. The dashed line is the approximation from Eq. (35), and
the dotted line is further approximation vd f=rI (L/o )(1—Tf ).

FIG. 17. Shock velocity and the parameter g for the qh pa-
rameters.
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FIG. 18. Dashed lines indicate the average fiuid flow in a
similarity deflagration solution. The volume of a fiuid element

changes when the shock front and the deflagration front sweep
over it.

FIG. 20. Deflagration front velocity, the fluid velocity, and

the entropy production for the EW parameters.

behavior is rather similar to what it was for the qh case.
However, some differences worth a comment exist. The
most important difference is that the electroweak phase
transition is essentially a massless transition: The number
of effective degrees of freedom changes very little at T, .
Quantitatively, this is expressed by the fact that
r =a l(a L14)=1—.0018 is much closer to unity than in
the qh case. Because of the smallness of r, there is a new

temperature relevant for the phase transition. This is the
reheating temperature T„„„,(in the abrupt reheating
scenario), defined by the equation e~ ( Tf )=ez ( T«„«, ).
For our present EW parameters, T„h„,=0.9965.

Consider the temperatures (Fig. 19) and the
deflagration front velocity (Fig. 20). Because the energy
liberated in the phase transition is traveling in the
compressed region behind the shock front, the tempera-
ture TI, can never reach T d,„,. This keeps TI, low even

for large I . On the other hand, for large I the velocities
U d~f and v flgid grow large (now Uz„;d =0.002U d,& ). Then it
is seen from Eqs. (22} that the temperature T has to rise
considerably when I is large. But with r close to unity
and the difference between T and Tz large, it is seen
from Eq. (27} that the deflagration front velocity has to
be very large indeed for large I . In fact, the velocity vd f

becomes moderately relativistic and Eqs. (23)—(35) are no

longer strictly applicable. Another way to understand
the connection between the high temperature T~ and the
large velocity vde f is to note that the closer v de f is to the
shock front velocity, the thinner is the area between the
shock front and the phase transition surface. Therefore
this thin area has a high temperature in order to accom-
modate all the latent heat released.

Comparing Figs. 14 and 19, we note that for the EW
parameters the values of I where vd, f changes rapidly are

larger than for the qh case. From Eq. (35) we see that the
relevant scale for I' is roughly o(r+1)/L(r —1). For
the qh case, the numerical value of this quantity is 1.1

and for the EW case 96, which explains the difFerence.

Finally, let us compare our results of those of some
other authors. Recently, the velocity of growing
defiagration bubbles in the EW phase transition has been
estimated, for instance, in Refs. [14,16]. In Ref. [16] the
authors note that the relation vd, f ) —,', has to be satisfied

in order not to diffuse away the baryon asymmetry and
that probably yv =1-2, that is, v =0.7—0.9. This corre-
sponds to strong deAagrations, which seem to be an un-

likely mechanism for bubble growth [4,5]. In Ref. [14]
velocities of order 0. 1-0.2 are obtained. Using simple
kinetic theory to estimate the value of I, we get
I =10—100 [11,33], and then from Fig. 20 mildly relativ-

istic velocities appear to be very natural.

1.002- VI. CONCLUSIONS

1.000
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0.996-

10

Tre heat

I

10
~ I

10
I

10 10

FIG. 19. Temperatures Tf, T„Tq, Tz, and T„h„, for the EW
parameters.

We have presented a model for phase transition bub-
bles in the early Universe. In our model an order param-
eter field P with an effective potential V(P, T) is coupled
to a Quid with a dissipative constant I . Starting from an
initial condition of a newly nucleated bubble, we have nu-

merically evolved the coupled hydrodynamical and field

equations to follow the growth of the bubble in 1+1 di-

mensions. After some time the bubble reaches a station-
ary (similarity) state, where it grows at a constant veloci-

ty. We have then also studied the solutions to the corre-
sponding stationary equations, both numerically and in

analytical approximations.
Typically, the bubbles grow as weak deflagrations and,
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therefore, with a subsonic velocity. The growth velocity
is determined by the value of I, a large I' (a weak cou-
pling between (() and the fluid), leading to a large velocity
and vice versa. Thus we have been able to reduce the cal-
culation of the growth velocity to the microscopic calcu-
lation of I . Our results show that the preheating caused
by the shock front plays an essential role in the growth
process and that the temperature T could even exceed
T, . Reheating caused by collisions of expanding bubbles
was also explicitly computed.

If one uses simple kinetic theory to estimate I' for the
EW transition, one is naturally led to mildly relativistic
velocities. For the QCD transition, one would dimen-
sionally expect that I'=1 [15]. Then from Fig. 15 for
L =2T„o.=0.1T„we note that vz, f =0.06. The expec-
tation thus is that the velocities in the QCD case are
smaller than in the E%' case.

In some regions of the parameter space, the solutions
switch from weak deflagrations to weak detonations, as I'
is increased. It has been speculated that instabilities
could turn expanding deflagration bubbles into detona-
tions [17]. We have now found that in some cases the
bubbles could expand as detonations even from the begin-

ning. Often it has been assumed that detonations in these
phase transitions would have to be Jouguet detonations

[6,7], as in chemical burning [4,5], but this appears not to
be the case [46]. In the cosmological context, weak de-
tonations require less extreme conditions than Jouguet
detonations, making detonations more likely.

For the QCD phase transition, there is an interesting
parameter region that cannot presently be ruled out.
Here the latent heat is rather small, say, L =0.1T„and
the surface tension is similar, say, 0 =0.1T,. Then the
average distance between the nucleation centers would be
of the order of 10 m and large-scale hadronic inhomo-
geneities would result. With our model we find that such
bubbles could grow as detonations, leading to a picture of
the phase transition that is rather different from the usual
one.
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