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Relativistic effects in systems of three constituent quarks
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We investigate the most general form of the three-body mass operator in the instant form of
relativistic dynamics. It is shown that this operator is de6ned not only by the two-body mass
operators and the three-body interaction operator but also by some three extra unitary operators.
The latter are nontrivial already on the one-gluon-exchange level and, therefore, must be present
in any relativistic constituent quark model. The restrictions imposed by the relativistic invariance
on the form of the two-body energy operator in first order in 1/m are discussed in detail. We
write down the explicit expression for the three-quark mass operator in this order and discuss the
dependence of this operator on the total momenta of each pair of quarks in the c.m. frame of three
quar ks.

PACS number(s): 12.39.Ki, 11.10.St, 1]..SO.Cp

I. INTRODUCTION [P~, P"] = 0, [M"",P ] = i(g" P"——g"~P~),

The present status of constituent quark models
(CQM's) is such that they by no means can be considered
"naive" and "nonrelativistic" [1-3]. Relativistic effects,
especially in systems of light quarks, must be important
since, as follows from the results of calculations in the
CQM's framework, the quark velocities are comparable
with the velocity of light.

It is generally accepted that the relativistic descrip-
tion of any bound system must be based on the Bethe-
Salpeter equation (BSE) or its modifications. Then one
should take into account that, according to the notion of
constituent quarks, all degrees of &eedom different from
those related to constituent quarks must be integrated
out. This corresponds to some reduction of the BSE (for
example, the equal time or null plane reduction). How-

ever, in practice it is difficult to control the validity of ap-
proximations used in reducing the BSE, and, as we shall
see in Sec. IV, even the crucial property of relativistic
invariance may be lost in the reduction procedure.

Of course, the description of hadrons in terms of con-
stituent quarks can be only approximate, but if we as-
sume this approximation then, in our opinion, the most
suitable approach consistent with the notion of relativis-
tic constituent quarks is relativistic quantum mechan-
ics (RQM), i.e., the relativistic theory of systems with a
given number of degrees of &eedom.

The main notions of RQM are those of relativistic in-

variance and cluster separability. The relativistic invari-
ance implies that the system under consideration is de-
scribed by a unitary representation of the Poincare group,
and, therefore, the generators of this representation sat-
isfy the commutation relations

*Electronic address: levOnusun. jinr. dubna. su

[M"",M ] = i( g" M" —+ g" M" —g" M"
—g"~M" ), (1)

where p, v, p, o = 0, 1, 2, 3; P" are the four-momentum
operators, M"" are the four-dimensional angular momen-
tum operators, the metric tensor in Minkowski space has
the nonzero components g = —g = —g = —g = 1)
and we choose the system of units with h = c = 1.

The notion of cluster separability can be formulated
in different ways [4-7]. In the context of CQM's, taking
into account the con6nement, it seems natural to use the
cluster separability in its weakest form, i.e., only alge-
braically. This implies that if all interactions between
any subsystems comprising our system are turned oK,
then the generators for the whole system become sums
of the corresponding generators for these subsystems.

In the literature the term "relativistic invariance"
means often not only the conditions (1), but also some
"dynamical" conditions which can be formulated only
in the given relativistic model. In this study, speak-
ing about relativistic invariance, we shall mean only the
"kinematical" restrictions imposed by (1).

Let us consider, for example, a system, consisting of
a quark and antiquark. Equations (1) impose consider-
able restrictions on the form of corresponding generators
(see Secs. II—IV), and this is important, for example, in
calculating the matrix elements of the electromagnetic
or weak current for our system. However, if we are in-
terested only in 6nding the spectrum, we can restrict
ourselves to the consideration of the mass operator in
the c.m. kame of the quark and antiquark. Then Eqs.
(1) reduce to the restriction that the mass operator must
commute with the system spin operator (see Sec. III),
and, therefore, in this instance we have the same restric-
tion as in the nonrelativistic theory (though in concrete
relativistic models the form of the mass operator differs
from that in the nonrelativistic theory). However, in the
case of three quarks, the relativistic invariance and clus-
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ter separability impose considerable restrictions already
on the mass operator level (see Sec. V).

Let us make a few remarks about the role of relativity
in three-quark systems.

In the nonrelativistic approach the mass operator of a
three-quark system is written as

M"' = T"'+) v,, + vizs,
i&j

(2)

where T"' is the nonrelativistic kinetic-energy operator,
v,~ (i,j = 1, 2, 3) is the interaction operator for quarks i
and j, vq23 is the three-quark-interaction operator, and
the tilde over T"' and v,z shows that we consider the re-
duction of these operators on the states describing the
three quarks in their c.m. frame (see Sec. V). The op-
erator v;~ contains the dependence on the relative dis-
tance between particles i and j but it does not depend
on the momentum of the pair ij in the c.m. frame of
the three quarks. In order to reproduce the experimental
data, the operators v,~ must contain the dependence on
the spin-orbit, spin-spin, and, possibly other interactions.
This dependence is usually considered only phenomeno-
logically and the corresponding models are still called
"nonrelativistic. " Meanwhile, it is easy to see that the
spin-orbit and spin-spin terms in v;~ have the relativistic
origin since they contain the factor 1/c in comparison
with the Coulomb-like interaction. Therefore the the-
ory becomes partially relativistic, and, as we shall see
in Sec. VII, such a simple composition of interactions
as in (2) contradicts the relativistic invariance already in
first order in 1/c2. This is clear also from the fact that
the order-(1/c ) corrections to the Coulomb-like poten-
tial contain not only the spin-orbit and spin-spin terms,
but also the terms depending on the total momentum of
the given pair in the c.m. frame of three quarks.

Some authors consider relativistic effects in three-
quark systems in the framework of the so-called semirela-
tivistic approach [8]. This implies that the kinetic-energy
operator is chosen in the fully relativistic form, while the
pair potentials remain as in Eq. (2). Such an approach is
also unjustified since there are no reasons for the relativis-
tic corrections (RC's) to the kinetic energy to be more
considerable than to the potential energy. For example,
calculating the RC's to the triton binding energy (when
the triton is considered as the bound state of three nucle-

ons), different authors observed that the RC's to the ki-
netic and potential energies were separately substantial,
but, owing to strong cancellation of these contributions
the resulting effect appeared to be small [9]. In addition,
as in the above case of the "nonrelativistic" approach,
there is no reason to neglect the terms containing the
dependence of the interaction on the total momentum of
each pair in comparison with the spin-orbit and spin-spin
terms depending on the interquark distances.

To the best of our knowledge, the most detailed calcu-
lations of the baryonic spectra have been carried out in
Ref. [2] where a good agreement with the experimental
data was achieved by using almost the same parameters
as in the calculation of mesonic spectra in Ref. [10]. The
kinetic-energy operator in Ref. [2] was taken in the fully

relativistic form and the importance of the relativiza-
tion of interaction operators was demonstrated. How-

ever, some terms in the interaction operators depend-
ing on the total momentum of the corresponding pair
of quarks were not taken into account. Therefore the
problem arises whether the remaining discrepancy with
the data can be explained by the contribution of these
terms.

Since- the quark velocities in systems of light quarks
are comparable with the velocity of light, then one of
the main difficulties in solving the relativistic three-quark
problem is that the results of calculations are expected to
be reliable only if relativity is taken into account exactly,
i.e. , an expansion in powers of 1/c is not used. Therefore
not only the kinetic-energy operator but the interaction
operators as well should be taken in the fully relativis-
tic form. In view of the above discussion, this can be
naturally done in RQM.

The first results in this theory were obtained by Dirac
[11],and since that time major efforts of physicists work-

ing on RQM were devoted to the solution of the prob-
lem whether it is possible to introduce interactions into
a system of X particles (where W is arbitrary but fixed),
preserving the relativistic invariance and cluster separa-
bility. For this purpose Sokolov has developed the so-
called method of packing operators and partially solved
the problem [5,12]. The complete solution with the use
of this method was first given by Coester and Polyzou [6]
and Mutze [7] (see also Ref. [13]).It has turned out that
the solution not only exists but is not unique. A detailed
review of RQM can be found in Refs. [14,15].

In the case X = 3 the explicit form of the mass opera-
tors was given by several authors in different forms of rel-
ativistic dynamics [16—20,5—7], and some authors applied
the results to CQM's [21,22]. The most general investi-
gation has been carried out in Ref. [6], and the results of
this work, along with the results of Refs. [5,17—20] and

[7] give grounds to state that in principle the three-body
problem in RQM is solved. However, since the solution
is not unique, the problem remains what is the physical
choice of the three-body mass operator in three-quark
systems.

Several authors argue that relativistic CQM's can be
consistent only in the front form (or null plane) dynamics,
since, in their opinion, only in this form it is possible to
ensure the cluster separability, to separate the motion of
the system as a whole and the internal motion, and to
truncate the Fock space leaving only the states with a
given X. However, as shown by Sokolov and Shatny [23],
the front, instant, and point forms of RQM are physically
equivalent for any ¹

In the present work we use the instant form, since,
in our opinion, it is technically more convenient, and
the known corrections to the Coulomb-like potentials can
easily be obtained in this form. We suppose to discuss
elsewhere the most general form of the three-body mass
operator in the front form and to show that the results are
fully equivalent to those in the instant form. Therefore,
the choice of the form is only the matter of convenience
but not the matter of principle.

The main result of the present work is that the most
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general form of the relativistic three-body mass operator
is derived explicitly. Namely, we show that it depends
not only on the two-body interaction operators v;~ and
the three-body interaction operator v/23 (as usual), but
also on three extra unitary operators A,~. , and in @CD in-
spired models the latter dependence must be necessarily
taken into account. We also discuss the choice of the solu-
tion for the relativistic three-body mass operator. For the
convenience of readers we brieQy summarize our results
in Sec. VI, where we give an algorithm of constructing
the three-body mass operator when the v,~, vq23, and A;~
are taken as input. Then in Sec. VII we discuss what
additional difficulties arise in the relativistic three-body
problem in comparison with the nonrelativistic one and
roughly estimate the size of the relativistic correction to
the nucleon mass in the 1/m approximation.

N= —i(m +p) ~ (m +p) ~

|9p
sxp

m+ (m'+ p')'&' (4)

where P is the momentum operator, p is the operator of
multiplication by p, E is the energy operator,

8
l(p) = ip x-

(t9p

jection ((r = +1/2). Then the generators of the UIR,
which satisfy the commutation relations (1) can be real-
ized in the form (see, for example, Ref. [24])

P = p, E = (m +p )'~, M = L(p)+s,

II. REALIZATION OF THE REPRESENTATION
OF THE POINCARE GROUP FOR A SYSTEM

OF TWO FREE PARTICLES

To describe a relativistic system of interacting particles
it is necessary to choose first the explicit form of the
unitary irreducible representation (UIR) of the Poincare
group describing an elementary particle of mass m and
spin 1/2. There are many equivalent ways to construct
an explicit realization of such a representation [24]. For
our purposes it is convenient to choose the realization in
the space of functions &p(p, o) such that

):fIP(r )I
~'

cr

where p is the particle momentum and cr is the spin pro-

).f lP(Pi, ~l P2 ~2) l' A» & P2
CT1 C72

(5)

and each of the representation generator is equal to the
sum of the corresponding one-particle generators (4).

Instead of the variables pq and p2 describing the sepa-
rate particle momenta, we introduce the variables P and
k:

is the orbital angular-momentum operator, s is the
spin operator and M = (M23, M3~, M~2), N
(M M M )

Let us now consider a system of two &ee particles of
spin 1/2 and the masses mq and m2. The representation
describing this system is realized in the space of functions
()()(pq, (rq, p2, 0'2) such that

Peri (pz) (P pi) P
M M(M+ E)'

u), (p) = (m, + p')'), E = u)g(pg) + ur2(p2), M = (E —P')'~'.

Conversely, pq and p2 are expressed in terms of P and k as

P(up (k) (P k) P P(u2 (k) (P k) P
M M(M+E)' M M(M+E)'

M = M(k) = erg(k) +(u2(k), E = E(P, k) = [M(k) + P ]
) (7)

Then, instead of the realization of the representation in the space of functions satisfying (5), we obtain the realization
in the space K, in the space of functions p(P, k, o), o2) such that

) i(p(P, k, og)0.2)i d kd P ( oo,
E(dg(k)(u2(k)

where M, E, pq, and p2 are expressed in terms of P and k according to (7).
We introduce the operator

E(dg(k)u)2(k)
M(dy (py)(L)2 (p2)

Uq2 ——Uqz(P, k) = p(P/M, aq, k/mq) p(P/M, o'2, —k/m2),

where
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(E+ M)(~, (k) + m, ) + (P k) +i cr, (P x k)
(2(E + M) [ui(k) + mi][Eui(k) + Mmi + P k]) &

j = 1, 2 and the Pauli matrices cr~ act only on the corresponding variable 0.~.
Let H be the space of functions P(P, k, Oz, cr2) such that

(10)

~p(p, k, o.z, 02)i d kd P ( oo.

Then it is easy to see that u is a unitary operator from B to H, and by direct calculation it can be veri6ed that
the action of the generators of this two-particle representation in H has the form

P = P, E = (M'+ P')'~', M = l(p) + S,

2 2 1/4 2 2 ~j4 S X P
N = —z(M +P ) gp( +P ) + M+(M2+P2)z/2I (12)

where P = P implies that the momentum operator is
equal to the operator of multiplication by the variable
P defined in (6), S = L(k) + sz + s2, and si is the spin
operator of the corresponding particle. This calculation
is rather complicated, and a simpler (and more general)
method of deriving (12) is to use the direct-integral for-
malism (see, for example, Ref. [13]).

Comparing Eqs. (3) and (4) on the one hand, and
Eqs. (11) and (12) on the other, we can conclude that
the transformation to the space H in the two-particle
case can be interpreted as a splitting of the variables
into external and internal ones: the role of the external
variables is played by P, and that of the internal vari-
ables is played by k, oz, o2. Here M is the mass opera-
tor of the compound system, and S is its spin operator.
These operators act only in H;„t, in the space of functions
y(k, o z, o2) such that

~y(k, 0„0.2)~ d k ( oo. (13)

Returning to the space H we End that the action of
the representation generators I", (i = 1, 2, . . . , 10) in this
space has the form

(14)

where I" are the generators (12) in H.
In the nonrelativistic limit the operator u obviously

becomes unity, and the relativistic relative momentum
k becomes the vector g, which is defined by the usual
expression

m2pz —mzp2
Mo

When the particle velocities are small compared with
the velocity of light, we can expand physical quantities
in powers of (v/c)2 where v means the particle veloci-
ties. In our system of units the leading terms in such an
expansion contain the quantities ~pz/mz~, ~p2/mq~, or

~pz~ ~p2~ /mzm2. For brevity, speaking below about the
expansion in powers of 1/m we shall always mean the
expansion of such a type. In particular, in first order in
1 m,

Pq' f 1 1 ) P(Pq)k=q-
2Mo (mz m2 ) 2Mo

(16)

Let us note however that the 1/m2 expansion is used in
the present work only with auxiliary purposes while, as
noted above, the physical three-quark problem should be
solved not using such an expansion.

III. RELATIVISTICALLY INVARIANT
INTRODUCTION OF THE INTERACTION

INTO THE TWO-PARTICLE SYSTEM

A

1' =uI'u

We can write u = Au and if we wish to stay in the instant

Let us now suppose that we wish to describe the inter-
action between the two particles only in terms of variables
relating to these particles. Then we have to introduce
the interaction into the operators r and- the relativis-
tic invariance implies that such an obtained system of
generators I" (i = 1, 2, . . . , 10), as well as the system
I satisfies the commutation relations (1). In principle,
all ten generators I" may contain the interaction but in
practice it is convenient to introduce the interaction into
the least possible number of generators. It is clear that,
the generators which do not contain the interaction (i.e. ,

the generators for which I" = I") form a subalgebra of
the Poincare group Lie algebra. In this study we shall
work in the so-called instant form when P = P, M = M
and thus, the interaction can be present only in E and
N.

As follows from (12) and (14), the simplest way to in-
A

troduce the interaction into (I") is to replace (I") by (I' )
A

where the set (I' ) is obtained from (12) by replacing M
by some operator M which depends on the interaction
and acts only in H;„&. In order to preserve the commu-
tation relations (1) it is necessary and sufficient that M
commutes with S. As it is clear from (12) and (14), in
such a way we obtain the system of generators in the
instant form. However, in the general case, the interac-
tion can also be introduced into the operator u, i.e. , the
operators (I'*) can be written as
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form, we must obviously require that A commutes with
P and M.

Let us assume that M = M + v where the operator v

in H;„t is the integral operator, such that [see (13)]

vk(k) = f v(k, k')k(k')d k'.

It is assumed in this expression that g(k) is the spinor in
the variables 0 i, (r2 and the kernel v(k, k') is the operator

[

y' —A[(M+ IV)'+ Pz]x&'A-x

where the operator W has the kernel

(i9)

in these variables. Then the condition [M, S] = 0 implies
that, as in the usual case, the kernel v(k, k') can contain
the dependence only on the scalar and mixed products
of the quantities k, k' and the operators si, s2.

As follows from (9), (12), (14), and (17), the energy
operator in the space H can be written as

- X/2M'E
IV(»k P'k') =~"'(P-P') ' ' ' ' ' ' U„(P k).(kk')U (P k')-'

ME'~x (pi) ~2(p2) ~x (k') ~2(k') (20)

Here M, E, p~, and p2 are expressed in terms of P and
k, while M', E', pz, and p2 are expressed analogously in
terms of P and k'.

If two particles are considered in their c.m. kame then
we can set P = 0 in (19) and (20). Let Ao be the ac-
tion of A when P = 0 (the rigorous definition of Ao
can be given in the direct-integral formalism [13]).Then
P = Ao(M + v)AO . When P = 0 the energy operator

vvv

becomes the mass operator and (since M = M + v), not
losing generality, we can set Ap ——1 since otherwise this
condition can be achieved by a redefinition of v. There-
fore, taking into account the commutation of A with P
and M, we can conclude that the most general form of
A is

I

potential. In /CD the similar statexnent is correct at
least for the one-gluon-exchange potential. Therefore, to
make contact with /CD, we must expand the Hamilto-
nian in powers of 1/m and find the first term in such
an expansion. However, it is clear, that in order to com-
pare the result with the nonrelativistic Hamiltonian we

must work in the same space in which the nonrelativistic
Hamiltonian is defined, i.e., H"', in the space of functions

p(P, q, 0 i, 0 2) such that

) f ly(P, ~, vi, vv)~l' d'Pd'« ~
dI d)

As follows from (16), the Jacobian of the transforma-
tion &om the variables k to the variables q in order 1/m
is equal to

A = exp(P B),

where B is some anti-Hermitian vector operator commut-
ing with P. Therefore, the action of B can be written
as Bk P q(1

Bsq Mo ( mi

By(P, k) = f B(P;k, k')y(P, k')dvk',
In this approximation we have from (9) and (10) that(22)

where p(P, k) is a spinor over the variables oi and 02
and B(P;k, k') is an operator over these variables. 1 (' sx

Ui2 ——1+ (P x q) ~

2Mp (mx
s, l
mz j (25)

IV. THE SYSTEM OF TWO CONSTITUENT
QUARKS IN +CD INSPIRED MODELS

Above we used only relativistic invariance and did not
use the fact that the particles under consideration are
constituent quarks, and, therefore, the interaction be-
tween thexn must be described in the @CD &amework.

In local quantum field theory a system with a fixed
number of interacting particles cannot be described only
in terms of variables relating to these particles since one
must also take into account the degrees of freedom re-
lating to the creation of other particles. However, in
realistic theories a system of a fixed number of parti-
cles can be described in a self-consistent way not only
in zero, but also in first order in 1/m2 (in general rel-
ativity this can be done even in order 1/m4 since the
gravitational dipole bremsstrahlung is absent). This fact
is well known in /ED where in first order in 1/m the
Coulomb potential must be replaced by the Breit-Fermi

From the definition of the operator A it is clear that it
describes the contribution of the interaction into Q, and
in the nonrelativistic limit A = 1. Therefore, as follows
&oxn (21), in the 1/m approximation,

A = 1+P -B, (26)

pp = E+v,
where E is the &ee Hamiltonian and the kernel of the
operator V in the 1/m approximation has the form

where the operator B is of order 1/m . We now use v to
denote the operator, the action of which in H"' is defined
by the kernel v(q, q') (this operator does not act on the
variable P). Then from (16)—(26) we find that in first
order in 1/m2 the action of the Hamiltonian in H"' can
be written as
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V(P, q; P', q') = b (P —P') V(P, q, q'),

P ( 1 1 ) zOv(q, q), z(9v(q, q)
q +q

2Mp (mi mz j (9q ~q
(P, q+ q') / 1

2Mp (mi

p2
V(P, q, q') = v(q, q') 1—

)
Mp(q' —q' ) P B(P, q, q') + P Bi(P, q, q'),

2mlm2

z I I Sy S2
v(q, q')(P x q')

2Mp (mi mz)
(28)

mz )
P Ov(q q), dv(qq)

( )» sz (,)

where Bi(P, q, q') is the kernel of the operator Bi
[B,v].

This expression can also be obtained directly (not us-

ing the vector k in intermediate calculations) in the
framework of approach developed by Foldy and Kraj-
cik [25]. However, their approach is convenient only in
calculations to some order in 1/mz, while if we are going
to perform calculations exactly (not using the expansion
in powers of 1/m ) then we must use as the internal mo-
mentum variable the quantity k but not q. In this case
the latter quantity is needed only to make contact be-
tween the exact expression for the interaction operator
and its expression in the 1/m approximation.

If the system of two particles is considered in their c.m.
frame, then, as follows from (28), V = v in this reference
frame. The operator v contains not only the pure non-
relativistic contribution v"', but also the corrections of
order 1/mz to v"': spin-orbit, spin-spin, and other rel-
ativistic corrections. In particular, the contribution to
v(q, q') is given by the annihilation graphs if they exist.

It is clear that in the 1/mz approximation we can re-
place v(q, q') by v"'(q, q') in all terms with P in (28). It
is usually supposed that the kernel of v"' does not depend
on spins and depends only on Q = ~Q~ where Q = q —q'.
With this assumption we can replace v"'(q, q') by v"'(Q)
and then Eq. (28) can be written as

1, „,
( )

P Q(q —q'z) I 1

mz 2MpQ (mi
V(P q q') = v(q, q')— P (P q+q') 1

Mo 2MO ml, + '
(

(P Q)
z dv"'(Q) i ( s, s, )

2M, q dq +2M (

Mp (qz —q'z)
P B(P,q, q') + P Bi(P, q, q').

1 ) dv"'(Q)

mz) dQ

(29)

Our nearest aim is to compare Eq. (29) with the one-gluon-exchange potential in the 1/m approximation. In turn,
this potential can easily be derived from the well-known result in @ED: if the particles have the electric charges ei
and ez then (see, for example, Eq. (83.9) in Ref. [26])

P'
Mp Mp 2Mpmlmz

z /s s(Pxg).
2M()

(30)

It is important that this expression is valid for the particle-particle interaction as well as for the particle-antiparticle
interaction [the annihilation graphs contribute only to v(q, q ) but not to the terms with P]. For the case of the one-
gluon exchange Eq. (30) must be modified as follows. First, eiez must be replaced by the strong interaction running
coupling constant n, (Q). Then we must take into account the retardation in n„ i.e. , the fact that n, depends actually
on Q —w where a is the energy transfer. It is easily seen that this results in the additional term —uzn', (Q)/2qn, (Q)
in the figure brackets in (30), where the prime stands for the diIferentiation in Q. Finally, as is well known [27], if we

consider mesons and baryons as color singlets then we must introduce the multiplier )9 which is equal to —4/3 for the
quark-antiquark and —2/3 for the quark-quark interaction. Therefore, the one-gluon-exchange potential in the 1/m
approximation can be written as

&(P, ~, ~') = (~, ~')+ "'(Q)I —, ' + M, , —
M, +,M, IP (i(~' —~") —Q'(P, ~+~')I

(P xQ).
2 0 ml

(31)
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where we use v '(Q) to denote 4nPo.', (Q)/Q .
Now we are faced with the problem which for a long

time is discussed in the literature: what expression for
as the function of P, q, q' should be used in deriving

the potential to order 1/m ? A detailed review of this
problem is given in Ref. [28]. The most popular choice
1s

—-(» —» ) (p2 —p. )/4m~m' (32)

For the scattering in the physical region, the energy con-
servation implies that ~q~

= ~q ~, and, taking into account
that P = P', we have from (32) that

~'=(P )'/Mo. (32')

Although both expressions (32) and (32') lead to the
same scattering amplitude in the physical region, the po-
tentials obtained with the use of (32) and (32') differ each
other.

It is well known that in /ED and /CD the problem of
choosing the explicit expression for u can be evaded by
taking the expression for the photon or gluon propagator
in the Coulomb gauge, and the result is equivalent to the
choice (32). Therefore, comparing (29) and (31) for such
a choice we find that B(P,q, q') depends actually only
on Q and

mg —m2 Ov '(Q)
M2 OQ

where I(; = 1/2. However, in the general case the uni-

versal prescription for choosing the expression for cu does
not exist, and, as we shall see below, in the case of scalar
interaction the choice (32) leads to (33) where again

1/2, while the choice (32') leads to the same ex-
pression with r = 1 [in addition, the results for v(q, q')
also differ each other].

We see that the interaction corresponding to the one-
gluon exchange in the 1/m approximation indeed can be
described in the instant form, and, in the general case,
the interaction must be present not only in the mass op-
erator but also in the operator M. The fact that M is not
equal to M does not play a role for mesons since B does
not contribute to 9 when P = 0 and, as noted above,
Ap = 1. But in the case of baryons the operators M

for each pair of quarks enter into the three-quark mass
operator (see Sec. V) and thus in the general case we
cannot neglect the dependence of Q on the quark-quark
interaction.

Let rq2 ——r = rq —r2 be the relative distance between
particles 1 and 2. The operator r is canonically conju-
gated with q, i.e., in the r representation q = iO/O—r
The q and r representations are connected by the usual
Fourier transformation. We note that since we assume
that the volume element in the r space is chosen as d r
then the volume element in the q space must be chosen
as dsq/(2vr)3. Taking into account this remark, it is easy
to show that the operator with the kernel (29) has the
following form in the r representation:

P2 (P . r)2 dvnr
V = v — v"'(r) +

i f 1 1 l (P r)rdv"' O

2M() ), mg m2) r dr '
Or

Pxr t'sq s2') dv' Mo O
+ +

2Mor (mx m2) dr 2mqm2 Or
+P Bg (34)

(36)

where u '(r) is some function which, as follows from the
above discussion, can be written, for ex~mple, as

u"'(r) = &vvv'(r) + &svs'(r) (37)

and the subscript V or S shows that the corresponding
quantity is related to the vector or scalar coupling (the
pseudoscalar, axial vector, and antisymmetric tensor cou-

where we use curly brackets to denote the anticommuta-
tor, square brackets to denote the commutator, and the
operator v"' in the r representation is the operator of
multiplication by the function

., dsg
v '(r) = J v '(Q)e'~'

(2') 3

It is also easy to see that if the kernel of the operator B
depends only on Q, then, in the r representation,

d3

plings are of no interest for us since they do not contain
terms with P [29,28]).

The problem of determining the order-(1/m ) correc-
tions to the nonrelativistic potential is intensively dis-
cussed in the literature and the most often used reduc-
tion to the potential description is such that the system
of two particles is described in the instant form. There-
fore, we can compare our results with those existing in
the literature. Reviewing several results on the vector
and scalar coupling Gromes considers Eqs. (2.48) and
(2.49) in his review [28] as the ultimately correct ones.
For the case of the vector coupling Eq. (2.48) in Ref. [28]
can be written as

Pxr (s, s, ) dv"'

2Mor (mq m2 ) dr

1 r dv"'

2m] m2
Pl" (")P& Pl ~P&) ) (~8)r dr

where we use large parentheses to denote some con-
tribution not depending on P, and the double-curly
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brackets notation introduced in Ref. [29] implies that

(jp, Fp~H = (p, Fp~ + p~ Fp, + p,p~F + Fp~p, )/4 where
F is some function of r. Expressing pi and p2 in (38)
in terms of P and q it is easy to show that (38) can be
written as

p2
V = v —,v"'(r)

2M02

(1
mg m2

(P . r)2 dv"' i
2M2r dr 4M0

v"'(r), P-
(P r)r dv"' 0

dr 'Br (39)

(r x p2) s21 dv"'
m2

2 J7

Comparing Eqs. (34) and (39), it is easy to see that
they are compatible with each other if B is given by (36)
with [see (37)] r~ = 1/2 what agrees with the result
for the one-gluon-exchange potential. This was expected
since in fact difFerent calculations (see, for example Refs.
[30—35]) were based either on the assumption that it is
possible to eliminate the w dependence from the tem-
poral component of the propagator by appropriate gauge
transformation or on the prescription (32). Meanwhile in
the general case of vector coupling this is not always clear
(for example, if the particle transferring the interaction
has the nonzero mass).

Let us now consider the scalar coupling. Equation
(2.49) in Ref. [28] has the form

1 (1' x pi) si
V = v"'(r) ——

i

2r 7D)

1 (rxpi) si
2

(r x p2) s2 l dv"'

m dr

(P . r)2 dvnr P2

M d 2M
(42)

and this result was then obtained from another consider-
ations in Refs. [34,35]. It is easy to show that Eq. (41)
can be written in the form (39) and, therefore the corre-
sponding result for B is also given by (36) and (37) with
KS = 1/2.

We see that Eq. (41) is more reasonable than Eq. (40)
since Eq. (41) satisfies relativistic invariance at least at a
particular choice of B. The question is whether Eq. (41)
is Inost general. This expression was in turn criticized
by Barnes and Ghandour [30] because it did not give
the correct limit for v"' = const (& mq, m2. We shall
not discuss this question but note that it is not obvious
since in the given case the kernel of v"' in momentum
representation depends not only on Q. On the other
hand we can correct Eq. (40) as

—
2

—,((p, v"'(r) p, ) )
1

—,.((p""'() p )) (40)
2

It is obvious that the term quadratic in P in (40) has
the form v"'(r)P /—Mo, and, therefore the kernel of V
in momentum representation contains only the following
term quadratic in P: v"'(Q)P—/Mo Compar. ing this
term with the term quadratic in P in (29) we see that the
compatibility of Eqs. (29) and (40) cannot be ensured by
any choice of B(P,q, q').

Equation (40) was obtained in Refs. [30—32] and other
works but not always in the most general form. In some
partial cases this expression can be correct. For example,
in the c.m. frame (when P = 0) Eq. (40) corresponds to
the prescription (32') [see Eq. (42)]. However, the gen-
eral form (40) is incompatible with relativistic invariance.
This result was also criticized by Miller and Olsson [33].
They obtained the expression for the scalar coupling,

f'(r x pi) . si (r x p2) s21 dv"'V=v"'r
2r my m2 dr

+ pz v r + ~ — ~ p2

(41)

This expression can be obtained using the prescription
(32'), and, comparing (34) and (42) we see that Eq. (42)
implies that es ——1. Therefore, this expression already
satisfies relativistic invariance. At the same time, neither
Eq. (41) nor Eq. (42) describe the very simple case when
v =const not only in the nonrelativistic limit but exactly,
since in this case v = v"' =const. Therefore, neither (32)
nor (32') are the most general prescriptions.

We see that even the problem of correct expression of
v in terms of v"' is open. In addition, if we take into
account that V is determined not only by v but also by
B then the question arises whether a universal (and cor-
rect) expression of V in terms of v"' in first order in 1/m2
exists at all if we require that V is obtained from some
Lagrangian. In other words, is this the case that in first
order in 1/m v = fi(v"'), B = f2(v"') where the func-
tions fi and fz are the same for all possible Lagrangians?
In view of the above discussion such a possibility seems
very unlikely. For this reason in the case of the one-gluon-
exchange potential we can use the well known expression
of v in terms of v"' and put vv = 1/2, but in the scalar
case it is reasonable to find the explicit expression of v in
terms of v"' and the value of rs from the point of view
of the best description of experimental data.

Summarizing our discussion, we see that the expression
for V (in the 1/m approximation) describing the contri-
bution of vector and scalar couplings can be written as
[see (34) and (36)]
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P2 „, (P. r)2dv"' P xr (siV= v — 2v"'r +
2MO2 2MO r dr 2Mor (mi

s2 l dv"'

m2) dr

i(mg —m~) ( 8 „, (P ~ r)rd(u '(r) —v '(r))

j2Momim2 Br ' r dr
(43)

where v"'(r) = vP(r) + v&'(r).
It is important to note that though the condition of relativistic invariance imposes direct restrictions only on the

terms with P in V, this condition can also be useful in investigating the dynamics of two particles in the c.m. frame.
For the illustration of this point let us consider the following example. In Ref. [36] Eichten and Feinberg obtained
the following expression for the qq confining potential in the 1/m approximation:

(r x pi) ' siV=sr +-
27 m]

-""'" ["()+2V,'()]
m2 j

(r xp2) si,
( )

1l
V2'~ +

m1m2

1 ((r x pi) s2+— sy r'' s2 sy ' s2

r 3p m]m2

Sl. ' S2+ V4(r) + spin-independent corrections .
3m/ m2

(EF1)

Expressing this potential as vacuum expectation value
of insertions into a Wilson loop, belonging to the quark
at r~ and antiquark at r2 and a time interval between

T/2 and —T/2 Gromes [37] has proved that there exists
the relation between s(r), Vi(r), and V2(r):

s'(r) + V,'(r) —V2(r) = 0.

()2(pi, o i, p2, o 2, ps, o.s) such that

&. f ~,(p»-»ps -s p3 -3)l' &'pi d'p. &'ps &-
CT1 C72 CJS

(44)

This result follows from (43) in a much more simple way.
Indeed, let us consider in (EF1) only the terms with P.
They obviously have the form

Pxr &s,V=
Mo& (mi

'(") + v,'(r) —V,'(r) .
m2) I

2

(EF2)

It is also obvious that s(r) in (EF1) is just the nonrela-
tivistic potential v"'(r) Therefor. e, comparing the terms
depending on P and spins in (EF2) and (43) we can see
that Eq. (G) is indeed satisfied.

V. THE SYSTEM OF THREE INTERACTING
PARTICLES

The system of three particles of spin 1/2 and masses
mq, m2, and m3 can be described by the wave function

Now we use P = pq + p2 + p3 to denote the total mo-
mentum of the three-particle system and k~ (j = 1, 2, 3)
to denote the particle momenta in the c.m. frame, i.e., in
the reference frame where P = 0. By analogy with Eq.
(6) we set

P~~(p&) (P p~)P
M M(M+ E) ' (45)

where now M stands for the free mass operator of the
three-particle system and E is the corresponding en-
ergy operator: E = &ui(pi) + ur2(p2) + ups(ps), M =
(E —P ) ~ = ui(ki) + ur2(k2) + ups(ks). From (45)
it follows that kq + k2 + k3 ——0 as expected. In the
variables P, k~ the three-particle Hilbert space H( ~ of
functions satisfying (44) is realized as the space of func-
tions y(P, ki, k2, ks, o i, o2, os) such that

) !y(P,ki, k2, ks, o.i, o.2, os)! b (ki+k2+ks)d kid k2d ksd P ( oo,
2 M~1(pl)~2(P2)~3(P3) (3) 3 3 3 3

E'cup kg (u2 k2 ~3 k3~1~2~S
(46)

where p~, p2, and p3, are expressed in terms of P, k~,
k2, and k3. The role of the "internal" three-particle
space H,.„t is now played by the space of functions(3) ~

y(ki, o i, k2, o 2, ks, o'2) such that

&. fix(&i -i&2.2 ~3-3)l*,
~1.~2 ~S

x b( l(ki + k2+ ks)d k, d k2d ks & oo. (47)
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Let us consider the pair of particles i and j in the c.m.
frame of three particles. By analogy with Eq. (6) we

introduce the quantities

Kj~, (k;) (K,, k, )K,,

ables sn H-,„t and realize H,.„t as the space of functions
~ (3) .(3)

y(K,j, k,j, cri, o 2, os) such that

2
l&(K'j k'j oi o2 o.)l

(48)

where E,~ = io, (k;) + i'(kj), M~ = (E2 —K2.)i~2.
We can choose these quantities as two independent vari-

M, ~; (k, )~, (k, ). „s.

where [compare with (7)]

M,, = M,, (k;, ) = ~;(kj) + ioj(k;j), E~ = E,, (K...kj) = [M,, (k,, ) + K,,]'~2,

K;jism, (k,j) (K,, k,, )K,,
M;, M,, (M,~ + E;~)

'

Kijuj (kij ) (Kij ' kij)Kijkj = —k,j+
M,, M,, (M,, +E,, )

(50)

Now we need two formal but simple notions, the sense
of which will be clear soon. First we introduce the op-

erator of reduction from H( ) onto H,„,. This operator
I is defined as follows. If p(pi, o i, p2, o2, ps 03) Q H
then

V'(Pl~ oi P2 &2~ Ps~ os) = P(ki &ii) k2, &2) ks, &s) E H;„t.(3)

Suppose also that 0 is some operator in H( ) commuting

with P. Then we can define the reduction of 0 onto H;„,(3)

which we denote as 0: if y g H( ), y g H;„t, Iy = y then

the action of 0 is defined as 0y = I0y. As follows &om
the von Neumann theorem (see, for example, Ref. [38]),
if 0 is self-adjoint in H( ) then 0 is self-adjoint in H,-„t .

The sense of reducing some operator 0 from H( )

onto H,.„t is that we consider the action of 0 only in
the subspace of functions with P = 0. Let V,j be the
interaction-energy operator for the pair ij [see Eq. (27)].
The action of Vj in H( ) is defined as in Secs. III and
IV assuming that V;j does not act through the variables

Aij = exp(Kij ' Bij ), Bij g(Kij, kij )

B, j( K, j;k; j, k';,.)y( K; j,
k', )d k,', . (51)

Then, as follows from (19) and (27)

V,, = A;, [(M,, + W,,)'+ K,', ]'~'A, ,' —(M,', + K,', )'~',

where, as follows from (20), the operator W,j acts in H;„t
(3)

I

pi„ai, (k g i g j P k) Then. , as is easily seen, the ac-

tion of Vj in the variables k;, o;, kj, 0j is defined by the
same expressions, as the action of V;j in the variables

Pi)oi) Pj) Oj.
Let A,j be the operator A for pair ij. We can analo-

gously consider the action of A,j in H( ) and obtain A;j

by reducing A,.j onto H,.„~. Namely, if the action of A,j
is defined by Eqs. (21) and (22) then

E,~M iu, (k,j)(uj(k;j)ur;(k', )u)j(k,')
MjE,', (u, (k;) j(~okj)io, (k', .)ioj(k,',-)j j U,, (K;, , k,j)v,j(k,j.k,', )U,, (K...k',, ) 'y(K.j.k',, )dsk,', ,

(53)

where [see (50)]

Mij ™ij(kij) & Eij =
Ei j (Kij, kij) &

M,
' = M,j(k', ), E,' = E,j(K,j,k,' ),

and [see (9) and (10)]

Uij (Kij & kij): p(Kij/Mi~ ) o'i
& kij /mi)

xp(K;, /M;, , cr, ,
—k;j/mj).

The problem we are faced in the case of three inter-
acting particles is the following. We must construct the
Poincare group representation generators satisfying (1)
and the cluster separability. The solution of this prob-
lem using the method of Sokolov packing operators [5,12]
was found by different authors [5—7,17—20]. If the oper-
ators v'j and the three-particle interaction operator v/23
are given then the solution is not still unique since the
three-body mass operator can be constructed in differ-
ent ways and the choice of the so-called "symmetrized
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product of packing operators" (see Refs. [5—7] for de-

tails) also has a considerable arbitrariness. However, if
we restrict ourselves to the consideration of the baryon
spectrum and the internal baryon wave functions, then
we can consider our three-body system only in its c.m.
kame. In this case the choice of the "symmetrized prod-
uct" does not play a role (see the detailed discussion in
Ref. [15]) and only the uncertainty in constructing the
mass operator remains. Following Coester [16] we can
choose the relativistic three-body mass operator in the
form

transformed by the Wigner rotations U;~(K;~, k;~). Fi-
nally, to fully determine the operators V~ we must know
not only the interaction of the corresponding two parti-
cles in their c.m. frame but some extra operators A;~
which cannot be determined if we are only in the c.m.
frame of these particles.

VI. ALGORITHM OF CONSTRUCTING
THE RELATIVISTIC THREE-BODY

MASS OPERATOR

M=M+) V;, + v»„ (54)

where v]23 depends only on the internal three-particle
variables, commutes with the system spin operator S =
L(K;~) + l(k;~) + si + s2 + ss, and vanishes if all inter-
actions involving any particle are turned off. As shown
in Ref. [15], though the solutions for the mass operator
in Refs. [5—7,17—20] were found &om different consider-
ations and in different forms of dynamics, all these solu-
tions are unitarily equivalent to (54) and therefore lead
to the same physical consequences. In addition, as shown
in Refs. [13,15], the solution (54) agrees with quantum
field theory in the sense that this solution corresponds to
the linear composition of interaction Lagrangians in the
full system Lagrangian. For these reason we assume that
(54) is the reasonable choice of the relativistic three-body
mass operator and we propose to use just this operator
in relativistic three-quark calculations.

At first sight the impression is that the difference be-
tween (54) and (2) is only in the kinetic energy (since M
can formally be written as mi + m2 + m3 + T where T
is the relativistic kinetic energy of three particles in their
c.m. &arne), and thus we have come to the "semirela-
tivistic" prescription. The role of the operators v/23 in
both expressions is indeed similar, but the operators V~
in (54) considerably difFer &om the operators v;~ in (2).
The main difference is that the operators v;z describing
the interaction of particles i and j in their c.m. kame en-
ter into V~ under the square root [see (52) and (53)]. This
fact was first pointed out by Coester [16] and can be ex-
plained as follows. Since the cluster separability requires
the additivity of the energy operators for noninteracting
systems and not the mass operators, we should construct
the three-particle energy operator from the energy oper-
ators of different pairs. The three-particle mass opera-
tor is the reduction of the three-particle energy operator
onto H,.„t and, therefore, the three-particle mass oper-(3)

ator is determined by reducing the operators E;~ onto

H~„tl. Since E;~ = (M2. + P2.)i~2, then v;z must enter

into M under the square root.
The difference between V~ and v;z is also manifested as

follows. The operator V;~ depends not only on the inter-
nal variables corresponding to pair ij but also on the total
momentum of this pair in the c.m. kame of the three par-
ticles. Secondly, the two-body internal interaction opera-
tor v;~ enters into W,~ [see (52) and (53)] being unitarily

Let us summarize the results concerning the problem
of constructing the relativistic three-body mass operator.
Suppose that for each pair ij the action of the two-body
interaction operator v;~ according to (18) and the action
of the two-body unitary operators A,~ according to (21)
and (22) are known. Then the action of the three-body

mass operator M must be defined in H,„t, in the space.(3)

of functions satisfying Eq. (47). Using Eq. (48), we

also can realize H,.„~ as the space of functions satisfying

Eq. (49) for each ij. We introduce the operator W;~,
the action of which is defined by Eq. (53). We also in-

troduce the operator A;~ the action of which is defined

by Eq. (51). Then we define the operators V~ for each
pair ij according to Eq. (52). Finally, if M is the free
three-body mass operator and v]23 is the three-body in-
teraction operator which is assumed to be known f'rom

some considerations, then the operator M is defined by
Eq. (54).

VII. DISCUSSION: THE SYSTEM OF THREE
CONSTITUENT QUARKS IN +CD-INSPIRED

MODELS

A. On the fully relativistic three-quark problem

In CQM's the same set of phenomenological param-
eters is used for parametrization of the operators v;~
for both quark-antiquark and quark-quark interactions.
In the former case the operators v;~ determine the me-
son spectroscopy. They are defined in the internal two-
particle space of functions y(r;z, o, , o~) where r;~.

r; —r~ is the operator of relative distance between par-
ticles i and j. This operator is canonically conjugated
with the quantity q;~ = (m~p; —m;p~)/(m; + m~).
Therefore, knowing the action of the v,.~ on the functions
g(r;z, o;, o~) we can determine the kernels v, z (q;~. , q';. )
which define the action of the v;~ in momentum repre-
sentation. Now we take into account that, as follows
&om Eq. (6), in the c.m. f'raine of two particles the
quantities q;z and k;z are equal to each other. There-
fore the kernels v;~ (k;~, k,'.) entering into the three-quark
problem should be parametrized in accordance with the
parametrization of the kernels v;~(q;~, q', .) entering into
the quark-antiquark problem (of course, we must also
take into account the dependence of the v,~ on the factor
P see Sec. IV).

In QCD-inspired models v;z. must contain a part cor-
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responding to the one-gluon-exchange (and, possibly, the
second-order corrections to n, [39]) and a part corre-
sponding to the confinement. In Refs. [10,2] it is de-
scribed in detail the process of smearing and relativiza-
tion of v,.j. In the absence of a more elaborated dynamical
scheme such a procedure is admissible. We note only that
different modifications of v,.j are possible only within the
space H;„q for the corresponding pair of particles. Then
in our approach the dependence of TV,.j on K,j is fully
defined by (53). In particular, the dependence of the
Thomas precession on K,j originates from the Wigner
rotations U, ~ in (53).

Let us now discuss the operator A,z in (51). The inves-
tigation carried out in Sec. IV shows that we cannot set
A,~

= 1 since even in first order in 1/m B;~ is not equal
to zero and the reasonable choice of B,j in this order is
[see (36)]

comparison with the nonrelativistic problem. For exam-
ple, in the nonrelativistic theory the sets

(K12 q12) (K13 q13) (K23 'q23)

are related to each other by the simple linear expressions.
In the relativistic case we must relate the sets

(K12, k12), (K13 p k13) ) (K2» k23).

This can be done using (48) and the condition ki + k2 i
k3 ——0, but the resulting expressions are more compli-
cated than in the nonrelativistic case.

One more serious complication in numerical calcula-
tions is that we must explicitly determine the square root
in (52). For this purpose we can first consider the oper-
ator

R,, =A,, (M,, +W,, ) A,,
' —M, , (56)

(m;+ m, )' (55)

(we do not write indices i, j in u"' since in QCD the
gluon field does not act on flavor variables). The appear-
ance of the factor (m, —mz) in (55) can be explained as
follows. If B;j does not act on the variables Kzj & 0] ) f72

then it is the vector operator depending only on r;j. But
r,j changes sign under the interchange of particles i and
j while B;j must be symmetric under this interchange.
Therefore, B;z must contain the factor (m; —m~). How-
ever, in principle we cannot exclude that in higher orders
in 1/m B,~ may depend on spins and, therefore, we can-
not prove that B,~ = 0 in all orders in 1/m if m, = m~.
Nevertheless, this is the reasonable assumption, for ex-
ample, in the few nucleon problem (see Ref. [15] for de-
tails). At the same time we by no means can neglect the
contribution of B,~ in relativistic CQM s when quarks
have different masses. In this case we should choose for
B,z (and therefore for A;~) a model satisfying the con-
dition that in first order in 1/m B,~ is given by (55),
but in higher orders the B;j is arbitrary since we cannot
make contact with QCD in these orders.

Now we shall briefly discuss the operator v123 in (54).
As noted in Sec. V, this operator obeys the same restric-
tions as in the nonrelativistic theory. Therefore, as in
Ref. [2], it is not necessary to subject vi23 to smearing
and relativization though there may exist relativistic dy-
namical corrections to v123 [40]. In Ref. [2] the operator
vz&3 was formally obtained by subtracting a part related
to the two-quark interactions from the string interaction
between three quarks. However, v~23 obtained in such a
way has not the physical sense of the pure three-quark
interaction. This is a problem (see the discussion in Ref.
[2]), but, as pointed out in Ref. [2], the contribution of
v&23 was always small. Another version of v]23 has been
proposed in Ref. [41] for the nonrelativistic CQM, and
this has turned out to be important in considering the
"Roper puzzle. "

We have described all the operators entering into (51)—
(54) and, therefore, the relativistic three-quark problem
is fully de6ned by the algorithm given in Sec. VI. How-
ever there are considerable technical complications in

and, since A,~ commutes with K;~, we can write (52) as

V,, = (M, iK;, i. RU)'~ —(M, + K,, )'~ . (57)

Using the standard technique we can calculate the oper-
ator

T, (s) = R,, —R,,G;, (s)R;,

M,, iK,. is) (58)

where G,z (s) = (M; + K, + R,~ + s) 1 is the resolvent

of the operator (M, +K; +R,2). Let us use the familiar
expression for the square root of a positive operator,

(M,, iK,, +R,, )'~ ds
,( [1 —sG,, (s)] (59)

G,, (s) —G,, (s) = G,, (s)T, (s)G,,—(s)

we find from (57)—(60) that

(60)

V,,- = — s'i (M, +K,, is) 'T,, (s).(M;, iK, is) 'ds.

(61)

It is easy to see that the kernel of the operator T;z (s) has
the form

T,, (K... k;, ; K'... k',, ; s)

= $~3l(K,, —K,', )T;,.(K,, ;k;, , k',, ; s)

and, therefore, as follows from (61), the kernel of V~ is
expressed in terms of the kernel of T,~ as

(the integral is understood as the strong limit of the Rie-
mann integral sums), and the analogous expression for
the square root of the operator M; + K,. -, the resolvent

of which is denoted as G, (s) = (M2 +K2 i s) 1. Using
also the familiar expression
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(), 1 T,j (K,j;k;j, k';. ; s)s ds

[M; (k; )'+K' + s][M; (k'. .)'yK'. . ps] (62)

In Ref. [42] we proposed the similar way of calculating
the square root from the corresponding operator entering
into the relativistic few-nucleon problem.

Having calculated the operators V~ we can numeri-
cally solve the relativistic three-body problem by the
well-elaborated methods used in solving the nonrelativis-
tic three-body problem in momentum representation. In
particular, instead of the eigenvalue problem for the op-
erator M we can solve the system of Faddeev equations.
In this case we have to know the formulas connecting the
angular momentum states in bases (ij)k (when particle
k is the spectator) and (ik)j (when particle j is the spec-
tator). In the relativistic case these formulas are consid-
erably more complicated than in the nonrelativistic case
since we must take into account the Wigner rotations
and more complex kinematics. For the case of particles
with equal masses, all needed transition coeKcients were
explicitly expressed in terms of the Clebsch-Gordan ones
in Ref. [42].

We can conclude that there are no principal obstacles
for performing systematic calculations in the relativis-
tic three-quark problem. However, in view of the above
discussion, we can expect that the full relativistic calcu-
lation will require a much larger amount of machine time
than the calculations made so far.

B. On the three-quark problem
in Srst order in 1/m

As noted above, the relativistic three-quark calcula-
tions in first order in 1/m2 are not expected to be reli-
able for systems of light quarks. Nevertheless the formal
consideration of this case is useful since it sheds light on
some nontrivial aspects of the fully relativistic problem.
Using (54), (55), and (43) we obtain the final result for

M in the 1/m approximation:

M= ) m, +T"'+) vj +T'

ij &~, i (Kij rij) dv (rij) (K;j r,j) ( s;
2(m; + mj) 2(m; + mj)2rj dry 2(m; + mj)r;j qm,

s, ) dv"'(r;z)

mj) dr ~

i(m; —m~)

I
8, (K;~ . r;z)r; d(u '(r; ]

—v"'(r; ))
, K;ju"' r;, + V123

2(m; + mj)m;mj Br,j rij dr
(63)

where

(m, + mj)q2 K2 (m; + mj + m), )U + ~2

2m;mj 2(m, + mj)mi,

T = 2q; (K;j q;j)(m; —mj) (K,.~. . q,.j)
2m'm2 2(m; + mj)m;mj

q,', (1
3+ 38 (ms ms)

2 2K; q,
4(m; + mj)m;mj

( 1 1 l
, +, I (kP PijPk).

8 ( m'+mj mv)
(64)

Note that K;~ is canonically conjugated with

m +m
The operator T' is the order-(1/m2) relativistic cor-

rection to T"'. We recall that v;~ contains not only the
nonrelativistic term v"'(r,j) but also the order-(1/m )
relativistic corrections which depend on the internal vari-
ables r;~) ~,. ) o-~.

Comparing Eqs. (2) and (63) we can conclude that the
correct treatment of the order-(1/m2) relativistic correc-
tions leads to the terzns in (63) depending on K;~ not
only in the kinetic energy, but also in the interaction

operator. For example, it is easy to see that the terms
with K;.v"' in the last sum in (63) emerge from rela-
tivistic kinematics, the terms with K;~ x r;~ describe the
Thomas precession, the terms with (K;j . r;j)2 dv"'/dr'~
emerge &om the difference between the vectors k;~ and
q;~ and the other terms in this sum have partially the
same and partially the dynamical origin.

In Refs. [43,2] the interaction-dependent terms with
K;~ were taken into account only in the Thomas preces-
sion, while a detailed study of such terms in CQM s in
first order in 1/m was carried out in Ref. [35]. As noted
in Sec. IV, the results of Ref. [35] agree with those of
Refs. [33,34] and are based on the prescription (32} for
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both vector and scalar couplings. However, as argued in
Sec. IV, this prescription is not most general. It is im-
portant to note that difFerent prescriptions for choosing
~ will play a role not only when quarks have diferent
masses [as one might think looking at Eq. (63)] but also
for baryons consisting of lightest quarks, since such a
prescription afFects also the operators v,.~.

The interaction-dependent terms with K,~ in first or-
der in 1/m were also taken into account in Ref. [44],
but the spin-independent terms of such a type were taken
into account only for the scalar potential according to Eq.
(40). However, as noted in Sec. IV, Eq. (40) cannot be
correct.

As shown in Refs. [10,2], the unification of mesons and
baryons can be achieved only in fully relativistic models
(note, however, that some authors advocate the oppo-
site point of view [45]). Therefore, we cannot expect
that the expansion in powers of (1/m2) in the model
of Ref. [2] will be correct. Nevertheless, let us esti-
mate the correction to the nucleon mass emerging from
the interaction-dependent terms with K,~ in (63). Ac-
cording to Ref. [2], for a rough estimation we can
choose the simple harmonic-oscillator nucleon wave func-
tion g exp[ —a (p + A )/2] (see the notations in Ref.
[2]) and take the nonrelativistic quark-quark potential in
the form v"' = vcou1+ vo+ vs where

Let us now consider the another example —the Isgur-
Karl model [46] which is mainly nonrelativistic. Here
v"'(r) = Kr /2, and we can find the contribution of the
interaction terms with K,~ in Eq. (63). However, in the
given case we must also take into account the contribu-
tion caused by T' [see Eqs. (63) and (64)]. Using the
same nucleon wave function we find

7071m 9~
+

1024m 3 256m
(67)

where w = (3K/m)i~2. The second term on the right-
hand side of Eq. (67) is rather small: for example, if we
take the values ~ = 250 MeV and m = 350 MeV used in
Ref. (46), then this term is of about 6 MeV. At the same
time the first term (caused by the contribution of T') is
of about —90 MeV if o. corresponds to the proton mean
square charge radius. Note however that the results given
by Eqs. (66) and (67) crucially depend on the choice of o.
and become much greater for the values of o, which were
actually used in Refs. [46,2].

Of course, these results can be regarded only as a rough
estimation but one can expect that taking into account
the interaction-dependent terms with K,~ in realistic cal-
culations can considerably alter some theoretical predic-
tions in baryon spectroscopy.

2 o.s 1
vg i(r) = ———,vp: ——

C&&, vi —fbr
3 '

2
(65) VIII. CONCLUSIONS

27o',

32 ~

5
vcoul vo v1

3
"

3

—nn, (2/vr)'~ + —C — ——fb(2/ir)'~
32m 9 2 3o!

(66)

where m is the mass of the u and d quarks and we use

(A) to denote the average value of the operator A over
the nucleon wave function. Equation (66) shows that in
comparison with the nonrelativistic problem the order-
(1/m ) correction to the nucleon mass is determined in
more extent by the Coulomb-like contribution [the factor
5/3 in (66)] and in less extent by the terms linear in

r;~ [the factor 1/3 in (66)]. If we assume further that
a is determined from the nonrelativistic expression for
the proton mean square charge radius and a, = 0.4 [the
average value between n, (0) = 0.6 and a, (2 GeV) = 0.2]
then with the parameters of Ref. [2] we obtain from (66)
that AM = 60 MeV. The fact that AM ) 0 means
that the correction under consideration diminishes the
nucleon mass.

(the parameters are given in Ref. [2]). For simplicity
we work not with the running coupling constant, but
with some its average value 6, . Let us note also that
we interpret the constant Czzq in Ref. [2] as Czzz
3Cv4/2+ Cs where 3C~&/2 corresponds to the two-body
interactions and C3—to the three-body ones. Calculating
the correction to the nucleon mass AM as the average
value of the interaction-dependent terms with K;i in (63)
over the nucleon wave function we And

Let us briefly discuss the results of the present work.
In Sec. III we have shown that the relativistically in-
variant introduction of the interaction into the system of
two particles is determined in the general case not only
by replacing M -+ M + v in Eq. (12) but also by some
unitary operator A = exp(P B). For the purpose of
understanding the structure of the operators B,~ for dif-
ferent pairs ij in the three-particle system we investigate
in Sec. IV the two-body energy operator in erst order in
1/m . It is shown that the condition of relativistic invari-
ance imposes considerable restrictions on the dependence
of the two-particle energy operator on the total momen-
tum, and we explicitly write down this dependence in
different cases. We also argue that there is no universal
expression for V in terms of v"' in this order. Owing to
the gauge invariance, it is possible to obtain the unique
Breit-Fermi Hamiltonian in @ED, /CD, and general rel-
ativity but there are no reasons to believe that this is
also the case in the scalar theories. As for the operators
B;&, we show that in the general case they are not equal
to zero. This fact was taken into account only by some
authors in first order in 1/m (see the discussion in the
preceding section) while in fully relativistic calculations
these operators were not taken into account.

In Secs. V and VI we have explicitly defined all quan-
tities entering into the relativistic three-body mass op-
erator. From the discussion in Sec. VII it is clear that
the relativistic three-quark problem is much more com-
plicated than the nonrelativistic one, but in principle,
full relativistic calculations can. be carried out, and their
results will undoubtedly be very important for under-
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standing the quark structure of hadrons.
Relativistic models for the three-quark system are now

used not only in spectroscopic calculations but also in in-

vestigating some electromagnetic processes (see, for ex-
ample, Refs. [14,21,35,44,47]). For this reason it is in-

teresting to investigate the role of the operators B,~ not
only in the c.m. kame of three quarks but also in cases
when the three-quark system has a nonzero total mo-
mentum. We suppose to consider this problem in future
publications.
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