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Information about the physical processes that generate the primordial fluctuations in the early
Universe can be gained by testing the Gaussian nature of the fluctuations through cosmic microwave
background radiation {CBR)temperature anisotropy experiments. One of the crucial aspects of density
perturbations that are produced by the standard inflation scenario is that they are Gaussian, whereas
seeds produced by topological defects left over from an early cosmic phase transition tend to be non-

Gaussian. To carry out this test, sophisticated statistical tools are required. In this paper, we will dis-

cuss several such statistical tools, including multivariant skewness and kurtosis, Euler-Poincare charac-
teristics, the three-point temperature correlation function, and Hotelling's T' statistic defined through
bispectral estimates of a one-dimensional data set. The effect of noise present in the current data is dis-

cussed in detail and the COBE 53 GHz data set is analyzed. Our analysis shows that, on the large angu-

lar scale to which COBE is sensitive, the statistics are probably Gaussian. On the small angular scales,
the importance of Hotelling's T' statistic is stressed, and the minimum sample size required to test Gaus-
sianity is estimated. Although the current data set available from various experiments at half-degree
scales is still too small, improvement of the data set by roughly a factor of 2 will be enough to test the
Gaussianity statistically. On the arc min scale, we analyze the recent RING data through bispectral
analysis, and the result indicates possible deviation from Gaussianity. Effects of point sources are also
discussed. It is pointed out that the Gaussianity problem can be resolved in the near future by ground-
based or balloon-borne experiments.

PACS number{s): 98.80.Bp, 98.70.Vc, 98.80.Hw

I. INTRODUCTION

The cosmic structure formation problem is essentially
an initial value problem: how did the Universe generate
the initial perturbations? In particular, one can divide
the initial condition models into two clear classes?
Gaussian or non-Gaussian. Cosmic infiation [1], on one
hand, provides a natural way to generate Gaussian initial
perturbations [2]; spontaneous symmetry breaking, on
the other hand, will lead to the formation of topological
defects [3] via the Kibble mechanism [4], and the pertur-
bations generated by topological defects can be character-
ized as non-Gaussian. Non-Gaussian perturbations also
arise in various nonstandard infiationary models [5].
Thus, a test of the Gaussian nature of the primordial per-
turbations will not only be helpful in discriminating
different models for structure formation, but could also
shed light on new physics that yield topological defects or
special nonstandard inflations in the early Universe.
Such a test is, therefore, very important and timely in
today's cosmology.

There are two ways to carry out the test. One is from
the statistics of the galaxy counts in a redshift survey [6].
However, since the density field we observe today has al-
ready gone through the "black box" of nonlinear gravita-
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tional evolution, one has to filter out this effect carefully
to get a reliable estimate of primordial quantities [7]. In
this paper, we will concentrate on the other approach,
which is from the cosmic microwave background radia-
tion (CBR) anisotropy experiments. The experiments
measure the primeval density perturbations at redshift
z —1000. The density contrast is fairly small at this
epoch. The Gaussian nature of the microwave back-
ground fluctuation directly reflects the nature of the pri-
mordial perturbations. This approach is promising, espe-
cially after the detection by the Cosmic Background Ex-
plorer (COBE) [8] of the temperature anisotropies at
large angular scales, and the continuing accumulation of
data on smaller angular scales [9].

Prior to COBE's detection, studies on CBR were fo-
cused on determining the level of anisotropies. The
Gaussianity test of the anisotropies are largely considered
as a next-step problem and experimentally intractable.
Few detailed studies [10,11] on the statistics of the CBR
anisotropies have been carried out except for the Gauss-
ian case [12]. Now that the CBR anisotropies are detect-
ed [8,13], this important question should be brought into
focus and we are optimistic that it can be resolved experi-
mentally in the near future. As we will show later, one
does not need a full-sky coverage at high angular resolu-
tion to study the Gaussianity problem statistically.

There are several recent papers on statistical tests for
Gaussianity [14—16]. To carry out the test through CBR
experiments, two important features have to be stressed.
One is the instrumental noise which is present in all
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current experiments. One should have a clear under-

standing of the instruments and associated noise before
attempting to decipher non-Gaussian signals from experi-
ments. The other feature is the smoothing scale 8, each
experiment operates. Note that the angular size of the
comoving horizon at decoupling epoch is 8, -2' by as-
surning standard recombination [17]. Put this charac-
teristic scale in mind, one can divide all CBR experiments
into three categories: large scales (8, »8, ), intermediate
scales (8, —1'), and small scales (8, -arc min). For large
scale experiments [8,13], each measurement is a sum of
anisotropies in several independent horizons, and one
would expect the statistic to be close to a Gaussian sim-

ply by the virtue of central limit theorem [18,19]. For
small scale experiments [20], we will show later that the
data fail the Gaussian statistical tests. However, on arc
min scales, foreground source contaminations are impor-
tant. The statistics of the data may not reflect the statis-
tics of the CBR anisotropies at these scales. Intermediate
scale experiments [21] are ideal for testing Gaussianity.
Although the data set available is still too small, as we
will show in Sec. IV, improvement of the data set by
roughly a factor of 2 wi11 be able to test the Gaussianity
of CBR statistically.

Several statistical tools are discussed in this paper. In
Sec. II, we discuss the simplest tests of Gaussianity
through the skewness and kurtosis of the one-point distri-
bution. Skewness and kurtosis are the normalized third
and fourth moments of the distribution and they vanish
for Gaussian distribution. Several physically motivated
non-Gaussian probability distribution functions (PDF s)
are considered, and effects of noise are discussed. To
consider the possible correlation between the signal and
noise, multivariant skewness and kurtosis are introduced
and their statistics are discussed. In Sec. III, one geome-
trical measure of the random field, the Euler-Poincare
(EP) characteristic, is discussed and used to test Gaussi-
anity. The statistics of the EP characteristic and the
effects of noise are discussed and we show that the EP-
characteristic is hardly a good discriminator between
Gaussian and non-Gaussian fields when the noise is com-
parable to the signal. In Sec. IV, we discuss using the
three-point correlation to test Gaussianity. Theoretical
predictions in various models are discussed and we
present our analysis of COBE 53 GHz data. The result is
in good agreement with Gaussian assumption. In Sec. V,
we discuss using Hotelling's T statistic to test Gaussiani-
ty on intermediate angular scales (8-1 ). The minimum
sample size to carry out the test is estimated and sam-
pling techniques are also discussed. Although the
current data set is still too small to carry out the Gaussi-
anity test, improvement of the sample size by roughly a
factor of 2 will be adequate. In Sec. VI, we use the T
statistic to test RING data set from Owens Valley Radio
Observatory (OVRO) [20] on small angular scales (-arc
min). It is found that the data are not consistent with
Gaussian distribution. However, one cannot conclude
that the CBR anisotropies are non-Gaussian on these
scales because of the foreground source contaminations.
In Sec. VII, we discuss looking for a special non-
Gaussian signal, the pointlike CBR anisotropy, in small

The simplest tests of Gaussianity will be skewness p3
and kurtosis p4 [7] of the distribution of temperature an-

isotropies 5:

Jll3 m 3 /o, p4 =m 4 /cr —33 4

where m3 and m4 are the third and fourth moments of
the distribution, and o is the variance of 5. For Gaussian
distribution, both p3 and p4 vanish. In this section, we
discuss several physically motivated non-Gaussian distri-
butions: exponential, log normal, and g . As we expect,
noise will blur the effects of non-Gaussian distribution.
The skewness and kurtosis for these distributions are cal-
culated both with and without noise. We also discuss the
use of multivariant skewness and kurtosis in cases of
noisy data and show how to estimate them from experi-
mental data.

A. Skewness and kurtosis of non-Gaussian signals

Coles and Barrow [10] have studied the statistics of a
large class of non-Gaussian distributions. We choose the
following distributions based on physical considerations.
To reflect the real experimental setup where the mean of
the distribution is subtracted, we standardize the distri-
bution so that all of them have a zero mean. Further-
more, we normalize the variance of the distribution to be
uniform. Thus, distributions we study below correspond
to the probability distribution functions (PDF's) of
x =(b,T/T)(1/o 0), where o 0 is the observed rms temper-
ature fluctuation.

1. Exponential distribution

This distribution may describe the temperature fluctua-
tion produced from the cosmic string network on arc min
scales [11].The PDF of this distribution is

P(x)= —exp( —~2~x
~
) .l

v'2

The skewness and kurtosis of the distribution are

(2)

(3)

2. Log normal distribution

This distribution is widely used in the statistical studies
of galaxies and clusters. It is tempting to suggest that it
might describe the distribution of temperature anisotropy
from Sunyaev-Zeldovich (SZ) effects [22]. Since the effect
is produced by the hot gas in the rich clusters, it should
relate intrinsically to the distribution of rich clusters,
which is log normal. The simulation of Sz in the cold
dark matter scenario [23] seems to support this connec-
tion. A smail reminder is that the SZ effect always pro-
duces cold spots on the sky; thus, the distribution of the
temperature Quctuation is difFerent from the usual log
normal distribution by a sign. The PDF is given by

scale CBR experiments. The Gaussian nature of pertur-
bations from inflation is shown in the appendix.

II. SKEWNESS AND KURTOSIS OF NOISY DATA
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TABLE I. The skewness and kurtosis of the temperature anisotropies in various non-Gaussian mod-

els.

Non-Gaussian sources
No noise

Skewness Kurtosis
Signal to noise ratio 1:1

Skewness Kurtosls

Soft domain wall'
Cosmic stringb

Global monopole'
Global texture'
O(N) 0 model'
SZ from rich cluster

1.4
0
0.82
0.71

&2/N
—0.66

3.75
1.5
1.25
0.94

15/4N
2.72

0.5
0
0.29
0.25

&1/4N
—0.28

0.94
0.38
0.31
0.25

15/16N
0.22

'Extrapolated from O(N) model.
On scales of several arc min.

'COBE sensitive scale, no beam-smoothing.
On scales of several arc sec to arc min.

tities when the signal and noise are both Gaussian?
In the case where the experimental data are noisy, one

has to deal with two random variables, the signal and the
noise, which have a bivariant joint distribution. Thus, we
have to generalize the usual skewness and kurtosis to
bivariant distributions. Let us 5rst consider the general
multivariant distribution. For a p-dimensional random
vector X=(x„x2, . . . , x ) with zero mean and covari-
ance matrix X, it is helpful to introduce the following
multivariant measures of skewness and kurtosis [25]: For
skewness,

distribution function for X is a multivariant Gaussian,
then P, =0. P, can be estimated from a sample of size

N, where we can replace the ensemble-averaged 1121„and
covariance matrix elements with the simple-averaged
ones. ' If we denote the estimate of P,z by b,~, then un-

der the Gaussian hypothesis the statistic A =Nbl~/6 is

approximately distributed as a X with p(P +1)(p+2)/6
degrees of freedom. For us, the interesting cases are for
p=1,2. When p=1, p» =@3, the usual skewness. If one
denotes b3 as the estimate of skewness p3 from a sample
of size N, then

r, s, t =1 r', s', t'=1

rr' ss' tt'erst +r's't' (12)
N

b, =—+5;,N
1

where 1M',', =(x„x,xt ), o''J is the i, jth element of X
the inverse of covariant matrix X. If the joint-

and A =Nb3/6 is distributed as a X with one degree of
freedom. For p=2,

~12 (1 P ) [Y30+3 03+3(1+2P )(Y12+1 21) 2P'r3r03+6P[( Y30PY12 Y21)+Y03(PY21 Y12) (2+P )1 12Y21)]

(14)

where

0')0 2

(15)

P (x1,x2 ) = 2 exp( —
—,
' gx;M, 'xj ),

(2m. ) detl
(16)

where the correlation matrix between the signal and noise
1S

ll 1& ~22 ~2~ 12 ™21(X1X2 ~ {17)

In the case where signal and noise are both random
Gaussian fields, the joint probability distribution function
is a bivariant Gaussian:

For COBE DifFerential Microwave Radiometer (DMR),
the correlation matrix can be estimated from ( A +8)/2
and ( A —8)/2 maps. The bivariant measure of skewness

p,2=0 if we assume that the signal and noise are both
Gaussian. Let us denote b, 2 as the estimate of p, 2 from a
sample of size N (say, COBE map). Under the Gaussian
hypothesis, A =Nb12/6 is distributed as a X with four
degrees of freedom.

For kurtosis, we have the measure

P2 =[(XX 'X) ] —P (P +2) . (18)

Given a random sample of size N on the random vector
X, we can replace the ensemble average with the sample
average and estimate p22 by

Here, we explicitly assume that the temperature fluctuation is ergodic so that the ensemble average will be identical to the spatial
average (in our case, it is the sample average) in the limit of large spatial coverage. The ergodicity is guaranteed if the power spec-
trum of the fluctuation is continuous. See Adler [26] and Bardeen, Bond, Kaiser, and Szalay [27] for details.
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b2

8p(p+2)/N

1/2

is approximately distributed as normal with zero mean
and variance one.

For p= 1, p2i reduce to p4, the usual kurtosis we
defined before. An estimate of pz from a given sample is

N

b4= —g x;, (20)

and the sample variance is &24/N.
For p=2,

p22 [140 1 04+4P(PY22 Y13l 31)]/(1 —p')'

(21)

where p and y is the same as the ones defined in Eq.
(15}. Under Gaussian assumption, F2=0, and the es-
timation of P22, b2z has zero mean and sample variance
&48/N.

C. COBE data

At present, the only existing complete data set of tem-
perature anisotropies is the COBE data set. Thus, it is
tempting to utilize the statistics we discussed before and
put a constraint on the possible deviations from Gaussi-
anity through COBE data. Unfortunately, the skewness
and kurtosis of the distribution of AT/T cannot be es-
timated directly from the COBE data set because the sig-
nal in each pixel is not an independent measurement of
AT/T. Furthermore, in order to estimate skewness and
kurtosis, we have to assume that the temperature aniso-
tropies are ergodic so that the spatial average is

equivalent to the ensemble average. But, even for Gauss-
ian fluctuations, the ergodic hypothesis is true only if the
power spectrum of the fiuctuations is continuous [26,27].
The observed temperature anisotropies are two-
dimensional (2D} random fields on a two-sphere. The
power spectra CI is discretized and asymptotically ap-
proaching continuity in the large I limit. For the COBE
experiment, which is sensitive only to the low I moments,
the ergodic hypothesis does not hold. Thus, the statistics
estimated from COBE directly will only be the estimates
of the "local" values: they are the measure of deviation
from Gaussianity in our horizon. To estimate the cosmic
skewness and kurtosis, i.e., the skewness and kurtosis
averaged over an ensemble of horizons, one has to treat
the observed value as an N-dimensional random vector,
where N is the sample size (the total number of pixels).
Since we have only one measurement (we have only one
Universe}, in order to calculate the ensemble average of
the quantities equation, the only conceivable way is to use
Monte Carlo simulation. The COBE analysis along this

g [(X;—p)S '(X, —p)] —p (p +2), (19)
1

where p=(1/N) QNiX;, and S, =(1/N) gp(X,.—p)(X.
—p). For a multivariant Gaussian, b2 =0, and the fol-

lowing statistic

line will soon appear [28] and will not be repeated here.
We note that by using the statistics of multivariant skew-
ness, which is a X distribution with N(N+1)(N+2)/6
degrees of freedom. The total number of simulated maps
must exceed N, ~ N lp3, where p3 is the variance of the
skewness of a distribution. To estimate a skewness with
variance smaller than 0.1, the number of simulated maps
has to be larger than 6 X 10 .

III. TOPOLOGICAL MEASURES OF A RANDOM FIELD

In this section, we will discuss the topological measure
of a random field and the application to the test of devia-
tion from Gaussianity. This approach was studied in

[29,30]. It is found that among all these quantities, the
Euler-Poincare (EP) characteristic is the most eff'ective

topological measure with regard to testing Gaussianity.
Adler [26] also derived the mean for a special non-
Gaussian field: the X field. Subsequently, Coles [29] ap-
plied the result to a number of non-Gaussian fields which
are derived from Gaussian. Gott et al. [30] applied EP
characteristic to simulated cosmic string maps. Both
confirmed that the EP characteristic is effective in testing
Gaussianity. We will briefiy review the existing results
obtained by previous investigators, then we will move on
to study the statistics of the topological quantities. Spe-
cial attention is paid to the real experimental situation
where the noise level is high. We also derive some new
results on topological measures in the presence of Gauss-
ian noise. We will show that in the case where the signal
to noise ratio is around 1:1, the EP characteristic unfor-
tunately fails to be effective in discriminating between
Gaussian and non-Gaussian distributions.

A. Mean

I „= fkds,2' (22)

where k is the geodesic curvature of the contours, and the
integral is taken over all contours in the map.

For Gaussian random fields, the mean of the EP
characteristic is exactly calculable:

2C
(I „)= 3 vexp( —v /2),

(2m) i Co
(23)

For noise, without smoothing, the contour will be a fractal
and it will not be differentiable. We i11ustrate this point in Fig.
2. For a detailed discussion, see [26,29].

The central concept on which all topological measures
are based is the excersion set [26], which is the set of
points where the field F(r) exceeds a global value u. If
we take a map of a certain area of the CBR sky, the ex-
cersion set of the map above level u, denoted by S„,will

in general consist of a number of disjoint regions, each
having a boundary which is the contour of satisfying
F(r)=u. Since the smoothness and the diff'erentiability
of the contours are guaranteed by the beam smoothing,
the Euler-Poincare (EP) characteristic of S„, I „ is given
by
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where ~z=&Nz& Nz=N+-N zg (27)

'2
1 Cz ~n v+n

4ml'(n/2) Co 2

' (n —2)/2

X(~n v+1)exp[ —(~n v+n)/2] . (24)

Co
——&T'(~)&, Cz=&VT(&)P'T(~)&

is the variance of the temperature anisotropy gradient,
and v= u /o, cr is the rms temperature anisotropy.

Among all possible non-Gaussian PDF's, we
specifically choose the y„distribution because of its
relevance to the O(N) cr model. For our standardized
PDF given in Eq. (10), the mean number of the EP
characteristic is given by

Thus, to find the variance of the EP characteristics, the
central problem is to find the two-point correlation. We
approximate this correlation function g by the peak-peak
correlation g of the same underlying random field. Since
I'(v) is defined through the v peaks of the density field,
the approximation should provide a reasonable fit to the
true I correlation. We expect that this approximation
will give poor results when I ( v) -0.

The peak-peak correlation function is well studied in
the literature [32,12] and is most easily understood as the
following: Let Pl(t) be the probability of finding one v
peak at r, and Pz be the probability of finding a v peak at
9, and 92. Then, the two-point correlation for the peaks
will be

8. Statistics

The Euler-Poincare characteristic is a discrete point
process defined over the underlying random field. For
any point process N (r) with mean & N &

=N, the variance
of the process is given by [31]

1+Cz(rl, rz ) =Pz /P i

For a Gaussian random field, we have

m X
P, = — dx expv'2n. o ~ 0 2'

(28)

(29)

&N &=iNi+N (1+P, (25) and

where

z fdQ, dQg(t, z)
1

(26)

C2/Co is equal to &2y /8», where y and 8» are the spectral
parameters defined by [12].

is the sample-area averaged two-point correlation of the
process N. The first term in Eq. (25) is due to the
discreteness of the process. The variance of the process is
given by

Pz= f f dxidxzexp ——xM x, (30)
00 oo 1

2~detM 2

where x=(xi, xz) and M(ri, rz) is the correlation matrix
of the random field at r, , r2 which is

1 g(8)
g(&) (31)

g~,„=v it'(9) . (32)

ad f(0) is the normalized two-point function. Thus, in
the limit where g « 1, the peak-peak correlation function
is given by
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The beam-smoothed two-point temperature correlation is
well approximated by

C ( 8)=C (0)exp( —8 /8, ), (33)

Thus, the variance of the Euler-Poincare characteristic is
given by

where the coherent angle 0, =0„ is a function of the
beam width. The averaged correlation in an area
A =vTOg is

2
0,

(34)

oo= 3 g (2l+1)exp[ —t(1+1)o,']-3 1

1=2 Os

o, = 3 g l(I +1)(21+1)exp[—l(I +1)o., ]
1=2

1 1

Os

o 2
= 3 g ( I —I )1 (1 + 1)(1 +2 )(2l + 1)

1=2

X exp[ —1(1+1)o, ]——A
1 1

3 0

(36)

(37)

(38)

0,
o =~N~+v N, N=n(m8„) .

A

(35)

The mean and 10. uncertainty of the EP characteristic
I (v) for Gaussian random field is plotted in Fig. 3. Be-
cause of the approximations we used to derive the statis-
tic, we expect the uncertainties of I (v) given by Eq. (35)
are not exact when v-0.

C. The EP characteristic of noisy data

Our major concern over the applicability of the EP
characteristic as a reliable statistic to discriminate be-
tween a Gaussian and a non-Gaussian random field is the
noise term, which appears in all current CBR experi-
ments and is comparable in amplitude to the signal. In
this section, we will show first how the beam used in the

experiments regulates the noise. Without smoothing,
noise will be an obvious hazard to topological measures
because the rms of the derivatives of noise is not well
defined. We will then proceed to study the change of EP
characteristics due to the beam-smoothed noise term.

The spectral parameter of the noise is given by

Thus, y=o ~/ooo2=0. 75 and 8, =v 2ol/o2=v. '3o, If.
we compare this value for noise with that of a Harrison-
Zeldovich primordial perturbation, where y-0.5 and

0, —1.80., we can conclude that the noise term is regulat-
ed fairly well by the beam.

However, even with a beam smoothing, the EP charac-
teristic of the observed random temperature anisotropy
pattern is still changed due to the presence of noise. We
first consider a situation where the sky is dominated by a
quadrupole only, as we showed in Fig. 4(a). The EP
characteristic is very simple for this map: I =2 for
v= —1,1,2. However, when one puts Gaussian noise of
the same variance to the signal, the map is dominated by
the features of noise, which are shown in Fig. 4(b). Even
though we do not expect the temperature anisotropies to
be a pure quadrupole, this example makes us cautious
when using the EP characteristic. In the realistic cases
where the signal itself is also a random field which is
non-Gaussian, the problem is harder. A full analysis of
the EP characteristic for the sum of two general random
field is not tractable. Only one special case where both
fields are Gaussian is solved [26]. In our problem, where
one field is non-Gaussian, there is no ready-to-use result

100

50—

V

N

07

O
05

05

FIG. 3. The statistic of EP
characteristic for a Gaussian
random field. The central line is

the mean EP characteristic and
the other two lines are the lo
uncertainty estimated from Eq.
(35). The unit of the vertical
axis is arbitrary.
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to apply. Thus, we solve this problem by the following
strategy: the y„, n =1, . . . is a class of distributions,
ranging from very non-Gaussian (small n) to slightly de-
viating from Gaussian (large n), and the EP characteris-
tic of this class of distribution is known. Thus, we first
find the modified non-Gaussian PDF due to the presence
of noise, then we find the best fit g distribution to this
modified PDF. The EP characteristic of the noisy tem-
perature map is thus approximated to be the EP charac-
teristic of the best fit y distribution. The validity of this
approach lies partly in the fact that if the difference be-
tween two PDF's goes to zero, the difference between the
corresponding EP characteristic also goes to zero.

We assume the noise is Gaussian and uncorrelated
with the CBR anisotropy signals. The PDF for the noise
1s

P(r})= exp( —g /2cr„}
1

21TCT q

(39)

P(x}=J P„s„,l(x')P„„„(x x')d—x' . (40)

It is convenient to use the cumulant function [33] K (u),
which is the logarithm of the characteristic function
P(u), the Fourier transformation of the PDF:

P(u)= fP(x}e™"dx. (41)

where cr„ is the variance of noise. In the following, we
consider only the case where the signal to noise ratio is
1:1, thus cr„„„=cr„.„,l= 1/&2. It is straightforward to
generalize to the arbitrary noise case, and we will show it
here.

The PDF for the noisy map is given by
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FIG. 4. (a) The contour plot
of the sky signals 5 if they are
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5=0, the dotted line is for the
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dashed line is for 5=+20,
where a is the standard devia-
tion of the observed sky signals.
(b) The contour plot of the sky
signal 5 when the signal to noise
ratio is 1:1,where the signal is a
quadrupole. The solid line is for
the contour 5=0, the dotted line
is for the contour 5=+0., and
the short dashed line is for
5=+2cr, where 0 is the standard
deviation of the observed sky
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The cumulant function for P(x) is simply the sum of the
cumulant function of the signal and the noise. For
Gaussian noise, the cumulant function is simple:
K„„„(u)= —u /4. For the signal, the PDF is the
modified y distribution. After some algebra, the cumu-
lant is found to be

IC„s„,i(u)= —In 1 — — +i &n u /2 .
ll

(42)

Thus, the cumulant function for the noisy signal is given
by

E(u) =E„„„(u)+E„„„(u)

properties of a random Gaussian field. But the noise
present in the data prevents it from being efFective. How-
ever, as we stressed before [15], the three-point tempera-
ture correlation function is a good measure of deviations
from Gaussianity for the noisy data, as long as the noise
is mutually independent and not correlated with signals.
In this section, we will first introduce statistics to test
these aspects of noise. Then, we will discuss theoretical
predictions of the three-point function in different models
[34]. The reduced three-point functions for COBE 53
GHz signal and noise maps are obtained and show no de-
viation from Gaussian. We conclude that at the COBE
scale, the temperature anisotropies are probably Gauss-
ian.

= —u /2+ — —,n »1 .
6&n &2

(43)

Thus, with noise, the cumulant is still that of a y distri-
bution in the limit of large n, but with N degrees of free-
dom, where N=2 n —1.7n. In Fig. 5, we plot the EP
characteristic for n=12 with and without noise. Even
for the global monopole where n =12, the EP charac-
teristic fails to be effective.

IV. THREE-POINT TEMPERATURE
CORRELATION FUNCTION

There are various examples where non-Gaussian pro-
cesses possess Gaussian PDF's [18]. One classic example
is the smoothed Poisson point process. The process is
non-Gaussian when the smoothing scale is small, and
tends to be Gaussian when the smoothing scale becomes
large by the virtue of the central limit theorem [19].
Thus, the test of Gaussianity should go beyond the mere
one-point PDF. The EP characteristic discussed in the
previous section is one way to take into account the full

A. Properties of noise

A good understanding of noise in CBR experiments is
crucial in testing the Gaussianity of the primordial densi-
ty perturbation through the existing data. One has to
make specific assumptions about the instrumental noise
in order to test the Gaussianity: the instrumental noise
must be mutually independent among pixels and Gauss-
ian. The assumption has to be tested thoroughly before
any attempt to decipher the non-Gaussian CBR signal
from the data. The statistical tools of testing Gaussianity
we introduced throughout this paper should also apply to
the noise and we will not repeat them here. In this sec-
tion, we will address the following aspects related to the
noise in the experimental data: (1) is the noise mutually
independent? and (2) does noise correlate with the CBR
signals?

In testing the mutual independence of the noise, we use
the following results from statistics [25]: Let y;
(i = I, . . . , N) be a measurement of a zero mean random
process. The mean and two-point correlation of the pro-
cess can be estimated as
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N

1 x —/sIC()=—g (;— )(; ((
— ),

i=1

s =0,+1, . . . , +(N —1),
p(s)=cz(s)/Cz(0) .

(44)

(45)

(46)
Estimate Confidence level

TABLE II. Testing the properties of signal and noise in
COBE 53 GHz map. W„ is the statistic for testing mutual in-

dependence of noise. Under the null hypothesis that the noise is
uncorrelated, W„will distribute as a standard normal. W, is for
testing correlation between signal and noise, and W, is for test-

ing the correlation between signals. Under the null hypothesis
(signal and noise are not correlated; signals are not correlated),
both W, and W, are distributed as standard normals.

Then, if y, are mutually independent, p(s) is asymptoti-
cally Gaussian. In particular, p(1) is asymptotically
Gaussian with zero mean and variance 1/¹With a suit-
able redefinition of y, , this result can be applied to answer
questions (1) and (2).

W„
$V,

W,

1.54
1.21
8.73

1.58 X 10-'
0.19
1.1X10-"

1. Testing for the independence of the noise

(47)

where

Let g;, i =1, . . . , N, be the noise in ith pixel. The mu-

tual independence of noise can be tested through a second
covariance of analysis of the square of the noise. I.et
y;=g;, i =1, . . . , N. If q; are not correlated, then y;,
will not be either. Thus, we can define

p(1)Ci(0)i/N
W„=

QC (0, 1, 1)

The analysis shows that at the 1.6% confidence level,
the noise is uncorrelated. At the 19% confidence level,
the noise is not correlated with the signal. Thus, we can
conclude that the noise in COBE 53 GHz map is not
correlated with the signal and is marginally uncorrelated.
The 8', in the last row is the statistic to test the indepen-
dence of the signal. The statistic shows that the hy-
pothesis that the data are not correlated failed badly.
This is expected if the signal is primordial CBR fluctua-
tions.

8. Three-point function
N —1

C, (0, 1, 1)=—g (y, —y )'(y;+, —y )' .
l =1

(48) It is convenient to use the normalized two-point func-
tion P and three-point function g, where

2. Testing the correlation among signal and noise

Noise should not only be uncorrelated, but should also
be independent of the signal. We assume that the noise is
additive, i.e., 5,&, =5cB„+il. Once the noise is found to
be independent, the variable

y, =ri25;~'=.ti; (5; + ri; ), (49)

should also be mutually independent. Following the pre-
vious section, the set of statistics

Under the hypothesis that the noises are independent,

W„ is distributed as a standard Gaussian (zero mean and

unity variance). We can define W„ the same statistic as

W„by using the signal in each pixel, to test the indepen-

dence of the signal.

p(l&i —&&l)=C,(ri», )/C, (0), p(0)=1,
5T 5T

fJ(ri Pi »3 )= ('Pi ) (P2 )

X ((3() C3(0) ', 0(0)=(33

(52)

(53)

where p3 is the skewness. The theoretical predictions for
three-point functions are mainly the following.

1. Inflation

Various nonstandard inflation models [5] will generate
a nonzero three-point correlation function. The generic
form of the three-point function in most in6ationary
models is

with

p( 1 )Ci(0)~N
W, =

QC (0, 1, 1)
(50)

n(&i»2»i) =—[4(l&i —&pl)g(I&& -&il)

+0( lri —r2 l W(l~i —ri l )

+@(I+i —r&1)g( Ir&
—

+& I )], (54)

N —1

C4(0, 1, 1)=—g (y; —y )'(y;+, —y )',
i=1

is a standard Gaussian.

3. Analysis of COBE GHz DMR map

(51) where A, is a dimensionless constant. As we will show in
the Appendix, for one-Geld slow-ro11 inAation models,
A, -10 . In nonstandard inflation models [5], 1(, can be
much larger (up to order unity).

For COBE DMR, the ( A +B)/2 is the signal+noise
map and the ( A B)/2 is the noise m—ap. The properties
of signal and noise are tested through the statistics
defined above and are shown in Table II.

2. y ftelds

Consider the y field Y = g,",X, . As we discussed
before, the y field describes the global topological defects
in the large N limit. By extrapolating to low N, one can
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also gain insight into the possible temperature anisotropy
patterns generated by domain walls, strings, monopoles,
or textures. The two-point correlation is given by

Cz(f, Pz ) =2n (I) (r, Pz ),
where P is the common covariance function of the X, .
We choose P so that the two-point function of Y matches
the observation

3. Late-time phase transition

In this model [35],because the conformal invariance of
the system at the critical point [36], the three-point func-
tion result from this class of cosmological phase transi-
tions has the simple form

rI(r „r,r3 )= a[@(lt, t
l

)@—( lr, 1—
3I )g( lt z

t—, I
)]',
(58)

P (r, Pz )= Cz(fiPz )/2n .

The three-point function is found to be

(56)

7l Q Q(9)PQ )=( (9) ) ((, ) C,(0)
5T 5T 3/2

T T
(59)

where n is a dimensionless constant of order unity.
The full structure of q is complicated. We consider the

reduced three-point function [37] where
2

rI(r, pz p, ) =&8/n [l(( l r &

—rz l )

x g( lr, "r3—
l )g( lrz "r3—

l ) ] . (57)
The theoretical predictions in various models are given
by

z)„d„„d(r,pz)= [gz(lr, rzl—) +2/(l r, rzl)] for —inflationary models, (60)

rj„d„„d=&2/Nf (lr~ rzl) —for O(X) cr models,

z)„d„„d=a(4() (lr& rzl—) for LTPT models .

(61)

(62)

The three-point functions from the previous three
different categories are plotted in Fig. 6, the skewness is
chosen to be the same for all cases.

C. Analysis of COBE data

The 53 GHz COBE DMR data are analyzed utilizing
the statistics we discussed above. This frequency (53

GHz) is chosen because it has the best data quality [8].
Before subtracting the dipole and beginning further
analysis, the signal is weighted by the estimated pixel un-

certainty. The dipole is subtracted by using the most re-
cent COBE result [38]. For 53 GHz ( A +B)/2 map, the
subtracted dipole signal is

I I I I

.8

FIG. 6. The theoretical pre-
diction of reduced three-point
function in three different mod-
els: The dotted line is for
inflation, the short dashed line is

for O(N) 0 model, and the long
dashed line is for LTPT. The re-
duced two-point function, which
is the solid line, is modeled as
exp( —0 /0, ), where 0, =13.5.
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T(l,b)(m I ) = —0. 198cos(l)cos(b)

—2.075 sin(l)cos(b)+2. 333 sin(b), (63)

where I and b are the galactic longitude and latitude. In
our analysis, we consider only the 2019 pixels whose
galactic latitude is 20 or above. The COBE 53 GHz
( A +B)/2 and ( 3 B)—I2 are analyzed and the reduced
three-point functions are shown in Figs. 7(a) and 7(b).
The result is consistent with Gaussian fluctuations, and
there is no deviation above the statistical uncertainty.
We conclude that the current analysis shows that the
statistics of CBR at the COBE scale are probably Gauss-
ian.

V. STATISTICAL TESTS ON INTERMEDIATE
ANGULAR SCALES (8-1 )

The Gaussianity question is hard to resolve on the
COBE scale (8-7') even if there is no noise in the experi-
mental data. One should expect the CBR on the large
angular scale to be Gaussian simply by virtue of the cen-
tral limit theorem [19]. Furthermore, there is intrinsic
uncertainty in the statistical quantities measured in our
local Universe due to the cosmic variance [39], which
makes it harder to discriminate between Gaussian and
non-Gaussian fluctuations on the COBE scale alone. On
intermediate angular scales (8-1'), the cosmic variance
is small and the chance to detect a non-Gaussian signal is
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FIG. 7. (a) The reduced
three-point functions estimated
from COBE DMR 53 GHz
(A+B)/2 map and (A —B)/2
map. The solid line is for the
(A+B)/2 map and the dotted
line is for the (A —B)/2 map.
The unit of the vertical axis is
(o/Q, , )', where Q, =17 pK
is the quadrupole determined by
COBE term and o is the vari-
ance of the map. 0.=0.415 mK
for the ( A +B)/2 map and
cr =0.077 mK for the ( A —B)/2
map. (b) The estimate and error
of the three-point function for
COBE 53 GHz ( A +B)/2 map.
The result is consistent with pre-
diction from a Gaussian field
(which is zero). The unit for the
vertical axis is the same as (a).
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higher. As the data on these scales are accumulating, it
is timely to consider seriously testing Gaussianity on
these scales, since data in some experiments [40,41] show
clear non-Gaussian features. Although the current ex-
periments are inclusive, due to the possible foreground
contamination, it gives us hope that the Gaussianity
problem will be resolved experimentally in the near fu-
ture. The EP characteristic and the three-point correla-
tion will apply equally on both large and small angular
scales if the sky coverage of the experiment is substantial.
However, as the current state-of-the-art intermediate
scale CBR experiments cover a tiny fraction of the sky,
more sophisticated statistical tools [14] are required to
carry out the tests. In this section, we will introduce and
discuss the bispectral analysis and the Hotelling's T
statistic. We will show that the T statistic is a powerful
statistical quantity to use on these scales and we also esti-
mate the minimum data sample size to carry out the
Gaussian test through T statistic.

In most current intermediate scale experiments, the
data are sampled either in thin, long strips or an annulus
around an axis. In both cases, the data are one dimen-
sional. The three-point function and bispectral analysis
of 1D data are well studied by statisticians and much of
the specific techniques and mathematical details of this
section are contained in monographs by [25,42], which
interested readers should consult. One can arrange the
data set as a time series, X„where in the present case
"time" t refers to successive positions in the sky. The
data are usually edited so that the mean is removed. In
this case, the three-point function is simply

(64)

where the expression on the left-hand side is an estimate
of three-point function from a data sample, and N is the
size of the sample. Since the temperature anisotropies
are always real valued and assumed to be homogeneous
and isotropic, the three-point function has the symmetry

t27t] t]7tp t] t] (65)

The bispectral density f (co„co2) is the Fourier transfor-

mation of g. . .where

1 l t ] Q}] I7 2 Co2f (co, , coi) = 2
dt, dtie

(2n )
1' 2

—
m ~ co„co2 ~ vr . (66)

In general, f (co,, co2) is a complex function, following the
symmetry of g, one obtains the following symmetry rela-
tion for f:

all co&,~2. To test this hypothesis, one can use the
Hotelling's T statistics [25], which is constructed from
the bispectral estimates defined on a "coarse-grained"
frequency grid, (co;,co, ), where

lK „17T

j=i+1, . . . , y(i), (68)

where I. = [2K/3], y(i) =K —[i/2] —1. The parameter
K is chosen to be much smaller than the sample size so
that the frequency grid is "coarse grained". Let
rt; =f (co;,co ) and rearrange rt; into a vector

rt=(g/, . . . , g/, ), where P = g; i [y(i) —i] so that for
each I, 1 ~ I ~ P, g& =g; .

To estimate the bispectral density at each "coarse"
grid point, one can construct a "fine" frequency grid
around each (co, , co, ) point. Specifically,

N; —N+, p= T,
—T+1, . . . , T,pD~

P

(69)

co, =co;+, q= —r, —r+I, . . . , r, (q%0),qDm
ct

where the distance D is chosen so that the bispectral esti-
mates at neighboring points on this fine grid are approxi-
mately uncorrelated. To ensure that points in different
"fine" grids do not overlap, it is required that
D &N/K(2r+I). Since the total number of points in

each "fine" grid is (4r+1) and there are K /3 "coarse-
grained" grids, the constraint on parameter r is
(4r+1)K /3(N

Let f(co, , co; ) denote the estimated bispectral density

function at the points (co;,co, ). Because of the careful

choice of grid point, one may regard the set of estimators

[f(co, , co; ) ] as n =4r+ 1 uncorrelated and unbiased esti-

mates of f(co;,co, ). Forming the bispectral estimates

f(co;,co; ) into an n column vector, denoted by

g = ( g/, gz, . . . , g„), then, at each "coarse-grained" grid

point p/, there will be an estimated bispectral density gI//

from the "fine grid. " When the sample size N is large, gI"
(i =1,2, . . . , n) is distributed as complex normal with

mean g and covariance matrix X&. The maximum likeli-

hood estimates of g and X& are

g( /)

n

(70)

The Hotelling's T statistics are defined as

f (co„co~)=f (co„co, co2) =f (
—co, —co2—,coi) T'=nag (71}

=f*(—co, ,
—co~) . (67)

Because of the symmetry, one just has to estimate the
bispectral density in a small portion of (coi, co&) parameter
space.

The unique feature of the Gaussian process is that the
bispectral density vanishes for all co, i.e., f (co, , co2) =0 for

Under the Gaussian assumption, the xnean vector g=O
and the statistic

2(n P)—
2P

(72)

is distributed as a central F distribution with
(2P, 2(n —P}}degrees of freedom.
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VI. GAUSSIANITY OF CBR ON SMALL SCALES

In this section, we will show how to use the T statistic
by analyzing the recent 96-point RING data from OVRO
[20]. A special class of non-Gaussian signal, point
sources, which are interesting in their own right, is
separated out and discussed in detail in the next section.
The data sample is weighted according to the error in
each pixel. The sample size N=96. The estimate of the
three-point function is shown in Fig. 8(a) and the real and
imaginary part of the bispectrum is shown in Figs. 8(b)
and 8(c}. We have used an optimum window function
(see [25] for details) to smooth the discrete data. For
Gaussian distributed data, both the three-point function
and bispectrum should vanish. The results shown in

Figs. 8(a) —8(c) already suggest that the data might be
non-Gaussianly distributed. To show how statistically
signi6cant the deviation from Gaussian distribution, we
can use the Hotelling's T statistics. The parameters we
choose for RING data are X=4, r=2, n =9, d=4, P=2,
2 =2. With this choice of parameters, the statistical dis-
tribution for F is shown in Fig. 9. The 95% confidence
level (C.L.} upper limit of F is F, =3.15 if the data are
Gaussian distributed. Hotelling's T statistic estimated
from RING data is T =5.76, or F =7T /2=20. 1, which
is much larger than the 95% C.L. upper limits for Gauss-
ian distributions. Thus, we conclude that the data are
probably not consistent with Gaussian statistics.

Even though the data failed the statistical tests we pro-
posed, one cannot conclude that the non-Gaussianity is

1 I I I I I I I I I I I I I I I I I I I
l

I 'I I I

.6

FIG. 9. The statistical distri-
bution of F =[2(n P)/2P]T~-
We choose P=2 and n=9 for
the RING data.
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0
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due to nontrivial interactions in the inflationary cosmolo-

gy or the topological defects produced in the early
Universe. The nonlinear gravitational evolution will pro-
duce non-Gaussian signals which have to be carefully
studied and subtracted to gain some knowledge about the
Gaussianity of primordial perturbations. Part of the
answer to this important issue is contained in the next
section and we will not discuss it here.

VII. POINT SOURCES

exp(h v/kTp) h v 8TI„=B„(TQ)
exp(hv/kTp) —1 kTp Tp

(73)

where TO=2.73 K is the CBR temperature and B, is the
CBR flux at frequency v. At 5.6 cm ', the CBR Aux is
B =1.5X10 Jysr '. Thus, for a temperature anisotro-

py of 40 pK, which is the theoretically estimated temper-
ature anisotropy at the half-degree angular scales for cold
dark matter (CDM) with standard recombination [45],
the expected flux is

I,=6.8X10 Jysr
40 pK

(74)

Thus, the first sources correspond to a 5o, and the second
sources correspond to a 4o peak.

In the Gaussian picture, for a v peak, the mean size 8
and the average distance between peaks d are given by
[12]

0,e-&2 '
7'v

for v&)1, (75)

d =2/3(mn„) (76)

where 0» = 1.20, and n is the number density of v peaks.
For large v, n is given by

n„= exp( —v /2) .
y2(v2 1 )

(2n. )
(77)

Thus, for 4o. peaks, the mean size will be 0.710», which is

On intermediate angular scales ( —1'), the current data
sets are too small to carry out the three-point correlation
and the angular bispectrum analyses we developed in the
previous sections. To test Gaussianity based on the small
data set available (usually about 10 data points), the
statistics have to be very custom designed to be useful

[14]. However, a clear non-Gaussian signature will be
the pointlike CBR anisotropies. In fact, two candidates
of such sources are detected in the medium scale anisot-
ropy measurement (MSAM) experiment [40]. One
source, located in a dust-free region, has a flux of 3.7+0.9
Jy at 5.6 cm '. (1 Jy=10 ergcm sec 'Hz '. )
Another candidate, with a flux of 2.9+0.7 Jy, is located
4.3' away from the first sources. Both sources are com-
pact and have angular size less than the beamwidth
o =0.4250„FTHM=12'. Assuming that the angular size of
the sources are half the beamwidth, one can find that the
flux intensities are (3.8+0.8) X 10 Jy sr ' and
(3+0.6)X10 Jysr '. As a comparison, the flux of a 5T
temperature fluctuation will produce a flux

marginally consistent with observation, but the mean dis-

tance between rare peaks will be -508, -20', which is

much larger than the angular separation between the
sources. One may try to explain both point sources by
Gaussian statistics, assuming that they are just 3o. peaks
and fit the low limit of the observed flux. Then the aver-

age distance between peaks is 110„which is roughly the
same as the observed value. However, in this case, the
averaged angular sizes of the peaks are 1.20„which is

larger than the beam width. We conclude that if these
sources are of CBR origin, they are not consistent with
Gaussian statistics.

Various topological defects, notably soft-domain wall
bubbles [46], the global monopoles [47] or textures [24],
are capable of producing spotlike CBR anisotropies of
any size by appropriately choosing model parameters.
However, before one relies on topological defects as an
answer, one has to filter out the foreground contamina-
tions carefully. Several types of radiation may contribute
the pointlike sources observed in the experiments. One of
them is the Sunyaev-Seldovich (SZ) effect from rich clus-
ters. The scattering of microwave photons by hot elec-
trons in the intracluster gas will make a cluster a power-
ful source of submillimeter radiation. The typical angu-
lar size of the core of the hot gas is of order arc min, and
the flux density is given by [22]

x+1 X—4 B (Tp), (78)
ex 1 e"—1

F„=y x

4+a
hv 1 1f—

kTd v hv/k T (79)

L J

where x =hv/kTp and y = J (kT, /m, c )urn, dl For a.
typical rich cluster, T, —10 K, n, —10 r crn, and 1 —1

Mpc, the estimated y parameter is around 10 -10
The flux density is around 3 X 10 Jy sr ', which is exact-
ly what the MSAM experiment observed. Thus, it is very
likely that the observed sources are due to SZ effects of
unresolved rich clusters in the field.

The multifrequency channel method is widely used to
separate the local contamination from true CBR signals.
The method may not be effective to single out the SZ
effect. As we showed in Fig. 10, the spectral index of the
SZ effect is very close to that of primordial temperature
fluctuations at low frequencies (v(100 GHz). When the
frequency gets higher (v) 200 GHz), there is a small de-
viation, but at this frequency range the dust emission will
dominate. A possible way to discriminate the SZ effect is
through polarization of the radiation from candidate
point sources. Because of the peculiar velocity of the rich
clusters, the radiation will be polarized in SZ effect [22].
However, the pointlike CBR anisotropies from topologi-
cal defects will not. But since it is currently hard to mea-
sure the polarization of the radiation down to required
accuracy, we will not discuss this approach in detail here.

Apart from the SZ effect, primeval dust [48] or a popu-
lation of IRAS-like galaxies at high redshift [49] may be
substantial contributions at the submillimeter range. For
dust grains, if one assumes the emissivity of the dust is
-v, a=1.5, the Aux spectrum of dust emission is given
by
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.6— FIG. 10. The frequency
dependence of the antenna tem-
perature for CBR and for SZ
effect. The solid line is for CBR
and the dotted line is for SZ.
The antenna temperature is nor-
malized so that it is unified at
low frequencies.
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8= D=2H ' 1—
D Vl+z (81)

where / is the proper size of the dust envelope, which is
about 10—100 kpc. Thus the typical angular size of the
possible point sources produced by the primeval galaxies
1s

1 1+z
10 kpc 10

h

0.5

The observed flux density is

l. (v()S„=,v, =(1+z)v .
4~D (1+z)

(83)

Assuming that, in the rest frame of the sources, the in-
trinsic flux is peaked around 3000 GHz and the luminosi-
ty is L, then the flux density is

S =10 Jysr
L 10

10' Lo 1+z
3000 GHz

(84)

Both the angular size and the flux density are too small to
account for the observed flux in the MSAM experiment
[40]. Thus we can conclude that primeval dust or the dis-
tant infrared galaxies do not account for the pointlike

The peak of the distribution is located at

vzk
=4. 5 k Td Ih =3750 GHz( Td l40 K ) .

Thus, in order for the peak of a hot dust spectrum
(Td=40 K) to be redshifted into the 300 GHz range
which the MSAM experiments operate, the redshift of
the epoch of formation of primeval galaxies should be
around z -10. The angular size of the dust envelope is

sources observed.
As we showed in Fig. 11, which is plotted according to

Eq. (79), it is clear that if there is a population of cold
dust (Td-4 K), then the flux density will peak near
where the experiment operates. A uniform background
of such cold dust is impossible unless the density is low
enough so that the optical light from distant quasars will
not be absorbed. However, clumpy cold dust is helpful to
explain the experimentally observed pointlike sources. A
possible scenario to explain the spot sources based on
cold dust is the following: there is a population of very
quiet galaxies where most of the star formation activities
are shut down, so that there will be very low intensity ra-
diation in the far-frared regime. Thus, this population of
galaxies is not observed by the IRAS flux limited survey.
However, as the hot dust cools down to around 4 K, they
become powerful submillimeter emitters. The spectrum
of cold dust emission is shown Fig. 11. Multispectral
analyses can shed light on the possible spectral parameter
of the sources. The problem with the cold dust scenario
is that as one looks back in time, these sources used to be
very powerful infrared sources because the radiated flux
aTd+ . Because of the abundance one observes today,
we can estimate the luminosity at high redshift, which is
much brighter. However, the newest result from the
COBE Far Infrared Absolute Spectrophotometer
(FIRAS) [50] has already put a stringent limit on the pos-
sible evolution of infrared galaxy luminosity function.
Detailed modeling is in progress. But we are pessimistic
about explaining the point sources based on cold dust
scenarios.

In conclusion, the pointlike CBR anisotropy in a clear
non-Gaussian signature. If the future studies con6rm
that the point sources candidates are truly CBR fluctua-
tions, it wi11 be an exciting new chapter. It will provide
direct evidence that topological remnants left over from
the early Universe do exist.
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FIG. 11. The flux density of
the 4 K cold dust. The emissivi-

ty of the dust is chosen to be
=v". The unit of the vertical
axis is arbitrary.
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VIII. CONCLUSION

In summary, the following points which are related to
the test of the Gaussian nature of the primordial Auctua-
tions are discussed in this paper.

(1) We listed the skewness and kurtosis in various phys-
ically motivated models, with and without noise. We also
discussed the use of the multivariant skewness and kur-
tosis to quantify the deviation of a distribution from
Gaussian.

(2) We discussed in detail the Euler-Poincare charac-
teristic of random fields. We showed that the Euler-
Poincare characteristic will not be a good discriminator
between Gaussian and non-Gaussian random fields when
the noise is comparable to the signal.

(3) We stress the use of the three-point temperature
correlation function to test Gaussianity. The predictions
from various models are discussed and the COBE 53
GHz data is analyzed. The analysis shows that the fluc-
tuations are probably Gaussian on the COBE scale.

(4) We discussed the detailed statistical tests on inter-

mediate angular scales. The bispectral analysis and
Hotelling's T statistics are emphasized. We also dis-
cussed briefly the sampling technique and minimum sam-
ple size to test Gaussianity statistically on half-degree
scales.

(5) We discussed testing Gaussianity on small angular
scales (arc min scales). The RING data from OVRO is
analyzed and shown to be probably non-Gaussian.

(6) We discussed looking for pointlike sources as a way
to test Gaussianity and hunt for topological defects in
small scale CBR experiments. The SZ effects and the
effects of primeval dusts are discussed.

The current status of testing Gaussian nature of CBR
anisotropies are summarized in Table III.
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( —1')
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SK93, PATHON,
%'hite Dish, . . .

Inflation: Gaussian;
Defects: non-Gaussian.

Sky coverage is
still too small

Eventually
decisive

Large
( &)2')

COBE
MIT balloon

Gaussian

Gaussian

Central limit theorem;
Cosmic variance
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APPENDIX: GAUSSIAN NATURE OF
PKRTURBATIONS FROM INFLATION

H = p, p= —,'(f + V((()),

and the dynamical evolution of tf field is

(f+3HP+ =0, (A2)

In this appendix, we will discuss the Gaussianity of the
primordial fluctuations produced in inflation. We pick
one simple model, Linde's chaotic inflation model [51],to
analyze. The approach is rather heuristic, but brings into
focus the Gaussianity problem. For more rigorous treat-
ment, see [52].

The basics of the inflationary dynamics are the follow-
ing: there exists an epoch where the Universe is dominat-
ed by the vacuum energy of a scalar field ((). The Fried-
man equation which describes the evolution of the back-
ground metric is

Thus, the large angular temperature anisotropy is given

5T H,' X+
T 5j 12tr

' 1/2

z

mp]
(A8)

The statistics of CBR fluctuations are non-Gaussian be-
cause of the x term. This expression for the deviation
from Gaussianity is rather generic in inflationary models
and wi11 lead to the functional form of the three-point
correlation given in Sec. IV. The difference is that vari-
ous models will produce different skewness. In the one-
field chaotic inflation model we treat now, the skewness is
given by

inflation), one can conclude that the primordial density
fluctuation is Gaussian. However, since H is related to P
locally, the fluctuation in P will give rise to a fluctuation
in H. Taking this into account,

1/2

(A6)
12tr mp)

where H, is the classical value and mp) =1/&G is the
Planck mass. The usefulness of the g parameter lies in
the fact that it is a constant throughout the inflationary,
radiation, and matter dominated epoch, and the Sachs-
Wolfe contribution to the CBR temperature fluctuation is
given by [52]

where the inflaton potential for chaotic inflation is simply

V(P)=A/ (A3)

The model is easy to analyze in the slow-roll regions
where P &(H((), which is satisfied for P) m~)/&2m. . By
using the gauge-invariant parameter g introduced by [53],
where

I /2

12' mp]

During the slow roll [17],

0
. =«2/3X'"X'"

(A9)

(A10)

H(b(f )
k 7 (A4)

(A5)

In the slow approximation, the quantum fluctuation of P
is negligible. Thus, if the Hubble parameter is a constant
during inflation (which is the case for original exponential

b,P is the zero-point quantum fluctuation of the field P
along its classical trajectory. The probability density
function for b, P is a Gaussian with zero mean and vari-
ance given by (bP) =(H/2n). Let us den.ote 2rrbg/H
by x, then x is a random variable with standard normal
distribution.

Expressed in terms of x, g is given by:

where N, -60 is the number of e-folds the scale factor
inflates during inflation. In order for the amplitude of
the fluctuation to be of the same order of magnitude as
the COBE observation [8], the self-coupling constant A, of
the inflaton field is given by A. -10 ' . For such a weakly
coupled field, the deviation from Gaussian is estimated to
be p3-10 with P-(f, -5mp), which is negligibly small.

In conclusion, we have shown that the primordial Quc-
tuation from slow-roll inflation is very close to a Gauss-
ian. The deviation from Gaussianity is of order 10 in
the chaotic inflation model, and the result is general to
other one-field inflation models. The root cause is the
small coupling constant of the inflaton potential, which is
required to give the right amplitude for primordial fluc-
tuations. Thus, Gaussian-distributed CBR anisotropies
are a natural result of lots of inflation models.
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