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EfFective Lagrangians for Z boson decay into photons
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The lowest-dimensional effective Lagrangians describing the decay of a neutral massive vector boson

Z into three photons are considered. %'e restrict ourselves a priori to the parity-conserving interactions.
The corresponding tree-level decay rate is calculated for a general effective Lagrangian of such a type.
We thus get a generalization of some earlier results appearing in the literature.

PACS number(s): 13.38.Dg, 14.70.Hp

Within the standard model of electroweak interactions
the process Z ~yyy is a rare decay mode as it may only
proceed via one-loop (or higher} Feynman diagrams. The
contribution of fermion loops has been known for some
time (see [1,2]} and the corresponding boson loops have
been studied recently in several papers (see [3—7]). Ac-
cording to these recent calculations, the branching ratio
is predicted to be very small within the standard model,
certainly less that 10 (see [3,4,5,7]}. In addition to that,
this process has also been discussed within some alterna-
tive models, in particular, assuming a scenario of com-
positeness, where such a decay mode might be
significantly enhanced in comparison with the standard
model (for a review and references, see Boudjema and Re-
nard in Ref. [1]}.

In general, an interaction of Z with three photons may
be described in terms of an effective Lagrangian involving
the Z boson and photon fields and their derivatives. If
electromagnetic gauge invariance of such an interaction
is to be maintained, one has to construct the correspond-
ing Lagrangian by using tensors F & for photons; in order
to preserve Lorentz invariance one then has to include at
least one extra derivative (since the Z boson is described
by a vector field). The lowest possible dimension of such
an effective Lagrangian is then equal to eight, i.e., the
relevant coupling constant must have a dimension of
M where M is a mass scale. This, of course, is an in-
teraction of nonrenormalizable type, so that in renormal-
izable field theories (as, e.g., in the standard model) it can
only be induced, as we have noted above, in a higher per-
turbative order, where one then gets a finite calculable re-
sult for the strength of such an induced effective interac-
tion (cf. [1—7]).

With the above remarks in mind, let us now examine a
most general effective Lagrangian of dimension 8 for the
interaction Zyyy. For simplicity we shall also assume
invariance with respect to parity. (Note that, e.g., an
effective Zyyy interaction induced within the standard
model at one-loop level does satisfy such a constraint,
since the only source of the parity violation might be a
closed fermion loop (box} of the type VVVA, which, how-
ever, does not contribute in the considered electromag-
netic (i.e., essentially Abelian) case—see, e.g., [2].) It is
not diScult to realize that under the above-mentioned
constraints there are two nontrivial independent lowest-
order effective Lagrangians for the Zyyy interaction:

namely,

Z, =G,F ~F'"a~„„Z. ,

Z, =G,F~F,"a~.„z, (2)

where G,j=1,2 are the corresponding (dimensionful)

coupling constants, which may be written as

GJ =gj /M (3)

t}+&„+c}&F,a+t}ga&=0 .

We shall therefore take the sum of (1}and (2) to be the
relevant lowest-dimension effective Lagrangian for
describing (in the tree approximation) the decay
Z~yyy:

&z,rr =&i+&2 . (4)

The results of our calculation may be summarized as fol-
lows: The decay amplitude for Z~yyy may, in general,
be written as

At(Z~yyy) =JR „„c.(P)e'"(k)e'"(l)e'~(r)

where M is a mass scale and the gj are dimensionless.
[Needless to say, expressions (1) and (2) are automatically
invariant under charge conjugation. ] Concerning the
"completeness" of the chosen set of effective I.agrang-
ians, it is easy to show that all the other variants are
equivalent to linear combinations of (1) and (2) if one em-

ploys partial integration (in the corresponding action)
and if the equations of motion are taken into account. As
a simple example of a trivial interaction term, let us, e.g.,
consider a modification of expression (2) which would be
proportional to

F"~Flic}~Fn„Z

It is easy to see that the last expression is identically zero
if one takes into account that F"~F$ is symmetric in the
indices p and v while F""is antisymmetric. Another ex-
ample would be an interaction term proportional to

FaeF""t}+„,Z

which is equivalent to the interaction term (1) if one em-

ploys the second Maxwell equation (i.e., the Bianchi iden-
tity): namely,
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where k, l, r are the four-momenta of final-state photons, P =k +1+r is the four-momentum of the decaying Z and the
e s are the corresponding polarization vectors. Using Xz~~r [as defined by (4), together with (1) and (2)] in the tree ap-
proximation, the "polarization tensor" JN, „„ in (5) reads

6

JHz , &= g P, [G&[(k.l)(l r)g g„„(k—r)k I„g —(k r)k„l g „+k k l„r ]
a=1

+Gz[ (k—.l)(k r)g „g „+(I r)k k„g „—(I r)k„k g „+(I r)k„l g „
+2(l r)k I„g —(k r)k l g„„—k k„lzr&]],

where P, denotes possible permutations (k,p)~(l, v)
~(r,p)

Squaring the amplitude (5}and summing over polariza-
tions one gets first

pal
g aP+ papP1

2mz

x( —g" )( —g"')( —g~ ) . (7)

[Note that in (7) we have, of course, simplified the photon
polarization sums in the standard manner, taking into ac-
count gauge invariance. One may verify explicitly that
the longitudinal part of the Z boson polarization sum in
fact does not contribute either. ] Now substituting ex-
pression (6) into (7) and using k ~ = I ~ =r 2 =0 and
P =mz, quantity (7) can be expressed in terms of scalar

I

products k.l, k r, and 1 r. For brevity we denote

s&z =—k I,
S13 =k 'r

$23 ——1 r

(this notation is inspired by [1]; note, however, that our
definition differs slightly from [1] in that the s; are not
dimensionless}. Taking into account the identity

$12+$13+$23 2 WZ
2

(which follows easily from the four-momentum conserva-
tion), the resulting expression for (7) written in terms of
the variables (8}reads

+~At~ =4G, (3sf2sf3+3s, zsz3+3sf3sz3+mzs, zs»sz3)+16(Gz —G, Gz)(stzsf3+s, 2sz3+s, 3sz3+ —,'mzs, 2s»s23) .
p01

Then one may write down immediately the differential decay rate for fixed photon energies in the Z rest frame (using a
form for the Dalitz plot)

I =
,

!At~ dE, dE —dE 5(E, +E +E m), —
(2~)' gmz 3!

(10)

where ~A ~
stands for the quantity (7) averaged over spin

projections of the Z, i.e.,

pol

and E, ,E2,E3 are photon energies corresponding to the
four-momenta k, I, r, respectively. In (10) we have also
included the combinatorial factor 1/3! corresponding to
the three identical particles in the final state. Using the
four-momentum conservation, the relevant scalar prod-
ucts may be expressed simply in terms of energies E.,
j=1,2, 3:

dimensionless variables

2E1x=1-
77l z

2E2y=1-
mz

2E3z=1—

In view of (13}one then has

$12 =—ZmZ

(13)

$)2 =mz( ,'mz E3 ), ——
z( — z E2),

sz3 =mz( —,'mz E, ) . —
(12)

For further manipulations it is convenient to introduce

13 —,~ Z
2

$23 = 2XmZ
2

(14)

It is easy to show that the allowed kinematical range for
each photon energy is (0, —,'mz ); this further implies that,
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e.g., for a fixed value of E„ the Ez (or E3) may vary from ,'r—nz E—, to —,'mz. According to (13) it means that the
kinematically allowed values of x, y, and z lie between 0 and 1 and for a fixed value of x, y (or z} may vary from 0 to
1 —x. Using (9), (13},and (14}in Eq. (10},and integrating trivially over one of the energy variables (e.g., z), a corre-
sponding differential decay probability may be written as

m'

dx dy (2g ) 2304
[Gf[2xy(1 —x —y)+3x y +3(x +y )(1—x —y) ]

+4(G2 —G&Gz)[xy(l —x —y)+x y +(x +y )(1—x —y) ]] . (15)

Integrating Eq. (15) over the domain defined by
0 &y & 1 —x, 0 &x & 1 we get the total decay rate

m'
I = (26, +3G —3G, G ) . (16}

552 960m

sions (1) and (2); they discuss a particular case of a single
coupling constant. Within the context of their treatment
one may guess that Boudjema and Renard considered for
Z-+rrr a decay amplitude of the form (using our nota-
tion for the relevant four-momenta)

In particular, if 6, =62=G, results (9) and (16) be-
come

+~At~ =4G (3s f2sf3+3s, zsz3+3s f3sz3+mzs, 2s, 3s23},
pol

JKER=G[Z„„(P)F"(k)F Is(l)F ~(r)

+Z„„(P)FI"'(1)Fts(k)F ~(r)

+Z„„(P)F""(r)F&(k)F ~(l)], (19)

G mzr(z rrr}=
276480m

(17)

(18)

In closing, let us add several remarks. First, one may
observe that the two terms on the right-hand side of Eq.
(15), proportional to 6, and 62 —6& 62, respectively, ex-
hibit difFerent dependence on the photon energies (in fact,
one has there two analogous polynomials with different
coefficients. ) It means that a detailed measurement of the
energy distribution of the final-state photons (if it was
feasible} would allow one to determine the coupling con-
stants 6, and Gz [i.e., to disentangle contributions of the
two effective interactions in (1), (2), and (4)].

Concerning the integrated decay rate (16} [or (18)] one
may notice that it is suppressed by a large numerical fac-
tor, which is mostly due to the integration over the phase
space of final-state photons. This indicates, in general,
that the considered decay mode of a neutral vector boson
Z can be observable if the effective coupling constants
G„G2 are enhanced by some particular mechanism so
that the (dimensionless) quantities G, mz and/or 62rnz
are not too small (on the other hand, one should keep in
mind that the G& and G2 must always naturally involve a
factor of e, where e is the electromagnetic coupling con-
stant). In this context, see also Boudjema and Renard in
Ref. [1]. In any case, our formula (16) enables one to
make a quick estimate of the considered decay rate in any
particular model predicting the values of G& and G2.

Finally, let us mention that Boudjema and Renard in
Ref. [1] (see pages 203—205 therein) consider an effective
Zyyy interaction which looks different than our expres-

where Z„„(P)=P e,(P) —P, e(P}, etc. , and the 6 has di-
mension (mass) . (Note that such a decay amplitude
may arise, e.g., from exchange of a heavy scalar between
a Zr pair and a pair of photons. ) Comparing (19) with
the general expressions (5) and (6) one finds that A,n„cor-
responds to taking G, =46, 62 =0 in (6); in other words,
within a model described by (19) the efFective interaction
term Xz given by (2) does not contribute at all to the con-
sidered process. Setting then G2 =0 in (9) one may com-
pare the resulting photon energy distribution (15} with
the previous result of Ref. [1] [notice that for G2=0 our
Eq. (9) becomes proportional to (17)]. We have found
that the energy spectrum obtained from our formulas has
the same form as that given in Ref. [1] (see formulas (41)
and (42), p. 205 therein).

Thus, one may view our results as a generalization of
the earlier result appearing in Ref. [1],since we have dis-
cussed explicitly the case of two different coupling con-
stants in the independent interaction terms (1) and (2).
Note that a general combination of the two structures (1)
and (2} may be relevant, e.g., when the eff'ective Zrrr in-
teraction is induced at one-loop level in a renormalizable
field theory model. In our calculation, all the algebraic
manipulations were performed using the MATHEMATICA

package FEYNCALC [8], which proved to be extremely
useful for such a purpose.

We are grateful to Professor A. Vancura for providing
us valuable information concerning the MATHEMATICA

package FEYNCALC. Our thanks are also due to Dr. J.
Hosek for useful discussions. We are particularly indebt-
ed ta Dr. J. Novotny for an important remark concerning
the independence of the considered I.agrangians.
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