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Grand unified theories with fermions transforming as irreducible representations of a discrete non-

Abelian flavor symmetry can lead to realistic fermion masses, without requiring small fundamental pa-
rameters. We construct a specific example of a supersymmetric GUT based on the flavor symmetry
5(75), a subgroup of SU(3), which can explain the observed quark and lepton masses and mixing angles.
The model predicts tanP = 1 and gives a ~ neutrino mass m „=Mr /GrMOUT = 10 eV, with other neutrino
masses much lighter. Combined constraints of light quark masses and perturbative unification place
flavor symmetry-breaking near the GUT scale; it may be possible to probe these extremely high energies

by continuing the search for flavor-changing neutral currents.

PACS number(s): 12.10.Dm, 11.30.Hv, 12.15.Ff, 14.60.Pq

I. INTRODUCTION

Particle physics seems to be at a stage similar to chem-
istry before Mendeleev or spectroscopy before Balmer-
we are confronted with apparent patterns in quark and
lepton masses and mixing angles, yet have no compelling
explanation for them. It is likely that the difficulty is due
to several simultaneous effects contributing to the ob-
served mass relations. These effects could include radia-
tive corrections in scaling from short distances, Clebsch
factors from gauge groups, mass matrix "textures, " and
Clebsch factors from flavor symmetry groups, flavor
symmetry-breaking vacuum alignment, and higher di-
mension operators induced by quantum gravity. Aside
from the observed masses, the only experimental evidence
we have to guide us is the absence of flavor-changing neu-
tral currents (FCNC's). In order to make headway in the
face of such ignorance, it is necessary to have aesthetic
prejudices for guidance; in this paper we adopt several.
The first prejudice is that the fundamental theory not
contain parameters less than -(10 '}. The second is the
principle of "flavor democracy" [2], namely, that all fer-
mions with identical gauge charges have the same or
similar short distance interactions, with the observed
diversity in masses arising from dynamics. Third, we
only consider theories where the gauge interactions are
unifiable, in order to adopt the successes in explaining the
equality of the proton and positron charges, as well as
predicting sin 8~ and the relations between quark and
lepton masses [3—5].

As we will show, these three prejudices naturally lead
us to consider theories with non-Abelian discrete flavor
symmetries. Such symmetries allow us to understand
many features of the quark and lepton masses, such as
why the down-type quarks are lighter than up quarks in
all but the first generation, and why the Cabibbo angle is
much larger than the other Kobayashi-Maskawa (KM}
angles. The type of theories we consider typically require
flavor symmetry breaking to be near the grand unified
theory (GUT) scale and offer the tantalizing prospect of
probing GUT-scale physics through searches for flavor-

changing neutral currents. They also suggest that the
neutrinos are massive, with the ~ neutrino mass naturally
in the range favored for dark matter.

The principles we adopt force us to think carefully
about flavor symmetries. In order to explain in a natural
way a small mass ratio such as trt, /m, -3X10 s in

terms of the parameters e-10 ', we must assume that
the mass ratios arise as high powers of e. These powers
of e can arise naturally if e measures mixing between or-
dinary fermions and massive exotic fermions through soft
flavor symmetry breaking [6]. Then e-g (X) /M, where

g is a coupling constant, (X ) is a soft flavor symmetry-
breaking parameter, and M is the heavy fermion mass.
The invariant tensors of the broken flavor symmetry
group and pattern of symmetry breaking naturally im-
pose a texture on the effective Yukawa couplings of the
low energy theory. ' The goal then is to find models
which lead to a phenomenologically acceptable texture.
Most previous work in this direction has focused on
Abelian flavor symmetries [U(1) or Zz] which allow one
to "dial" the fermion mass matrices by judiciously choos-
ing the charges for each fermion; for a recent example
consistent with current phenomenology, see Ref. [9].
Pouliot and Seiberg have also constructed a non-Abelian
example of such models, based on O(2) XU(1) [10],with
the quarks in reducible representations. Since all of these
models have quarks and leptons in reducible flavor repre-
sentations, the different generations are distinguished by
their flavor charges and have different interactions.
However, this is not compatible with our goal of flavor
democracy, which can only be achieved by putting all
particles of like gauge charge in irreducible flavor repre-
sentations. Furthermore, existing approaches do not lend
themselves readily to a unification of gauge forces.

In order to unify the three families into irreducible
flavor triplets, we are compelled to search for a non-

There has been much recent interest in investigating accept-
able and predictive mass matrix textures; see, for example, [7,8].
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II.NON-ABELIAN DISCRETE SYMMETRIEh

The representations of discrete groups with 'G ele-
ments satisfy the relation g, d, ='G, where d; is the di-
mension of the ith representation. Thus finite groups
have a finite number of finite dimensional representations.
Among the non-Abelian discrete groups most familiar to
physicists, namely, the crystallographic symmetries, the
ones with more than one triplet representation are the oc-
tahedral and icosahedral groups. The octahedral group
0 has 24 elements and representations I 1, 1',2, 3,3'I. We
could consider constructing an SU(5)XO grand unified
theory, for example, by having the Q, U, and E' fermions
transform as a (10,3). However, one finds that

3(8)3=3,3, 'e2, @1, . (2.1)

Evidently, the 5 of SO(3) decomposes as a 3,'2, under
O. This does not help to solve the problem encountered
with SO(3) as a fiavor group, since each of these cou-
plings leads to a rank-2 mass matrix again: The 3' and 2
decompositions of 3(3)3 consist of

Abelian flavor symmetry 6& with one or more three-
dimensional representations. For continuous symmetries,
this only allows groups with at least one factor of SO(3),
SU(2), or SU(3). A further restriction is found by consid-
ering the top quark, whose mass must arise at 0(e ) if it
is to have perturbative interactions. Thus the operator

QU'H„

must be a 6& invariant and lead to a rank-1 mass matrix.
If Q and U' are to be triplets of G& and H„ is some irre-
ducible representation, then we can rule out the possibili-
ties GI=SU(2) and G&=SO(3)—for those groups the
operator (1.1) yields a mass matrix that is either the unit
matrix or traceless and, hence, at least rank 2. Similar
reasoning excludes G&=SU(3) unless Q and U' trans-

form as 3's and H„ is a 6 with (H„)=U533. A semisim-
ple group such as G&=SU(3)XSU(3) with Q=(3, 1),
U'= (1,3 ), and K„=(3,3 ) is a possibility, as are groups
with more factors.

The diSculty with the continuous flavor symmetries
described above is that they contain few low dimensional
representations, and therefore there are few invariant ten-
sors that are of use in building up the fermion mass ma-
trix in powers of e. In contrast, if one is willing to con-
sider non-Abelian discrete groups for GI one can find
groups with an arbitrarily large number of triplet repre-
sentations, for example. With such a symmetry, there are
many invariant tensors which can arise without resorting
to a multitude of exotic particles. In this paper we con-
sider the b, (3n ) dihedral subgroups of SU(3), which con-
tain an arbitrary number of triplet representations. The
explicit model we give is based on 5(75), a group with
eight triplet and three singlet representations.

where the A,, are the Gell-Mann SU(3) matrices and
3A,,3=3,(A,, );~3J. The same conclusion holds for the
icosahedral group.

What is needed to explain the top mass operator (1.1) is
a group which contains a triplet 3= [x,y, z] as well as a
3' representation contained in 3(3) 3 with
33~3 = Ix,y, z ]. Then the top mass arises at the tree
level if the Higgs field transforms as H„=3' * with a vac-
uum expectation value (VEV) only in the third family
component. This is only possible if the 3 representation
is complex, since otherwise x +y +z is a singlet. It
follows that GI cannot be a subgroup of SO(3), and we
turn to discrete subgroups of SU(3).

The discrete subgroups of SU(3) are the irregular
groups X and the dihedral groups 5(3n ) and b, (6n ) for
all integers n Th.e b, (3n ) groups are particularly in-
teresting since their representations consist solely of trip-
lets and singlets. These groups are of order 3n and are
generated by the matrices

0 1 0
Eoo = 0 0 1

0 0
(2.3)

and

0 (»)„)»

0 0 )
—(p+ »)

(2.4)

where g„ is the nth root of unity,

g„—e (2.5)

A. h(75)

The irreducible representations of 6(75) include one
real singlet A, , one complex singlet A2, and four com-
plex triplets T, ~ ~ ~ T4 ~ The character table may be
constructed from the generators (2.3),(2.4) with n =5 and
is given in Table I. (For an explanation of discrete sym-
metries and character tables, see, for example, Ref. [11].)

and p, q are integers.
The irreducible representations of the b,(3n ) groups

consist of (i) nine singlets and (n2 —3)/3 triplets for n a
multiple of three and (ii) three singlets and (n I)/3—
triplets otherwise. The large number of inequivalent trip-
let representations in these groups is invaluable for build-
ing a model of fermion masses, starting with flavor demo-
cracy at short distances. In this paper we will focus on a
particular discrete symmetry in order to exhibit some of
the general features of model building with non-Abelian
discrete symmetries. The symmetry we discuss is 6(75)
[i.e., b, (3n ) with n =5], which is apparently the smallest
of the dihedral groups with suScient structure to be in-
teresting.

3k63 3g 3
(33)~3 = 3A43, (33)~2=

3k[3
(2.2) 2All of our discussion of discrete SU(3) subgroups is based on

Ref. [1].
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TABLE I. Character table for h(75}, computed from Ref. [I]. The quantities y and co are defined as y~ =(g, Y+(g, }~+ (g, } ~

and co=f3, where g„=e
h(75)

A1
A2

Tl
T2
T3
T4

3A 1o

1

1

X10

X20

X11

X22

3 A2o

1

1

X20

X10

X22

X11

3A30

1

1

X20

X10

X22

X11

3A40

X10

X20

X11

X22

3A»

1

1

X11

X22

X20

X10

3A22

1

1

X22

X11

X10

X20

3A33

1

1

X22

X11

X10

X20

3A44

1

1

X11

X22

X20

X10

25C

1

0
0
0
0

25E

1

0
0
0
0

The defining representation is taken to be T&, and we
have labeled the conjugacy classes after generators con-
tained in that class for the T, representation. For exam-
ple, the class labeled 3A&0 contains the group elements
A ]p A04 and A4„

(r)s)' 0 0

(rIs)'

0

(gs)

0

0 0

(mls)

0

(2.6)

(r)s)

0

0 0

(rjs)'

0 (F15)

in the T, representation, while the class 25E contains the
25 elements

0 vg 0

0 0

q,-'&+&' 0 0

(2.7}

where i =1, . . . , 4. Less obvious are the products of two
triplet representations, whose decompositions are given
in Table II.

The 25C class contains the square of the E~ matrices.
From the character table, it is possible to determine

the decomposition of the product of any two representa-
tions. Evidently, A

&
is the trivial representation, while

A2 A2 = A2, A2 A2 = A ), A2 Tg = A2 Ti T

(2.8)

Since we wish to construct explicit models with parti-
cle couplings obeying 5(75) symmetry, we need to choose
a basis for all of the representations and construct the in-
variant tensors. We have chosen a basis defined by

X

TlT1~T J
z2

yz
T,eT, ir = zx

xy
(2.9}

bc
T~T~lr, = «

ab

B. Symmetry breaking

We now turn to ways to spontaneously break the 6(75}
symmetry in a supersymmetric theory. One reason we
choose to focus on supersymmetry is that the flavor-
breaking patterns can be more interesting: In a super-
symmetric theory, one can have diferent symmetry-
breaking patterns in difFerent sectors of the theory which
communicate only through higher dimension operators
and not through radiative corrections. Nongeneric flavor
symmetry breaking can lead to interesting structure, as

where we have written T, = Ix,y, z), Tz =
I a, b, c I. This

basis has the virtue that the generator E00 is the same
matrix (2.3) in all of the triplet representations. Thus,
when any two triplets T, and T (or their conjugates) are
combined into a third triplet Tk, the elements of Tk must
cyclically permute when the elements of T, and T are
simultaneously cyclically permuted; therefore, all of the
components of Tk are specified when the first component
is known. The decomposition of all products of triplets
in this basis is given in the Appendix.

TABLE II. Decomposition of the product of two triplets. Triplets T„and T„are represented by n

and n, respectively, while A = A1 A2 A2. For example, T3 T1 = T1e T2 T4 and
T1 T1 = A1 A 2@A 2 @T3' T3.

6(75)

112
233
124
234

A 33
144
124
234

233
122
134
123

144
A 44
134
123

124
134
334
224

124
134
A 22
113

234
123
224
344

234
123
113
A11
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we will show. Here we give a couple of toy models show-
ing difFerent symmetry-breaking patterns.

The first toy model we consider has b, (75) breaking
down to Z3 generated by Eoo alone [Eq. (2.3)]. We in-

clude the singlet fields S, P, and P transforming as the
AI, A2, and A2 representations, respectively, as well as
Z and Z triplets transforming as T, and T, . The (non-
renormalizable} superpotential is taken to be

5

W=aS( —3p +ZZ }+PPZZ+yPZZ+ +Z 3+
3 5M

(2.10)

Written in terms of components, the above interactions
read (see the Appendix}

W=aS( —p +ZiZi+Z2Z2+Z3Z3)

+PP(Z&Z&+coZ2Zz+co Z3Z3)

+yg(ZiZi+co Z2Z2+coZ3Z3)+g(Z, Z,Z, )

C. Fermion mass texture

Flavor symmetry breaking can be communicated to the
Yukawa couplings of the light fermions in two ways: ei-
ther through the mixing of light and heavy fermions or
through the Higgs potential. We have seen that in flavor
unification the large top quark mass requires that the
Higgs fields H„ transform under flavor at short distances
and have direct (unsuppressed} flavor symmetry-breaking
VEV's. Keeping in mind that the successful GUT predic-
tion for sin L9~ assumes that there are only two Higgs
doublets below the GUT scale, it is natural to suppose
that flavor symmetry breaking occurs at the GUT scale
or above and that all but these two Higgs doublets ac-
quire large masses.

For example, suppose H„and Hd are Higgs doublets
that are both flavor triplets in the T2 and T, representa-
tions of b, (75), respectively, and that they couple to the
left-chiral superfield triplets Z=T3 and Z=T3, which
are gauge singlets. There are two couplings:

+ (Z i +Z2+Z3 )/5M (2.11)
W= A,ZH„Hd +k'ZH„Hd

=A(Z, H»Hd, +c.p. )+X'(Z, H»H~, +c.p. ) . (2.17)
(where co=e ' ), with several isolated supersymmetric
minima; all have /=/=0. One of the vacua takes the
values

1
Z=p5 1

1

S=-
9a5

(2.12)

with

2
I /8

gM
27p

Our second example has 6(75)XU(1) broken to
Z5 XZ5 by giving a triplet a VEV in a single component.
The toy model includes the following superfields that
transform as irreducible representations under
b, (75}XU(1), where the U(1) is gauged:

S=(A&)o Z=(Ti)i Z=(Ti)
R =(T, ) 2, R =(T, )q .

(2.13)

From these fields we construct the renormalizable super-
potential

If Z and Z get the VEV's Ip, 0,0] and [O,p, OJ, respec-
tively, where p is some very heavy scale, then only the
Higgs doublets H„3 and Hd3 remain light and are able to
eventually develop SU(2)XU(1) breaking VEV's. What
has happened is that b, (75) XU(1)p& has been broken
down to a diagonal Z~, where U(1)p& is the Peccei-Quinn
symmetry in the interactions (2.17). The three com-
ponents of both of the Higgs doublets carry Z5 charges
that allow two of the Higgs flavors to pair up and become
heavy, while protecting the third.

We now incorporate these ideas into a toy model based
on b, (75)XU(1) that leads to an interesting fermion mass
hierarchy, ignoring gauge interactions for the moment.
The "matter" fields are

F=(T, )i, P=(T~)„Q=(T4)i,
where I will play the role of three families of quarks and
leptons, while g and P are three vectorlike exotic families
that will become heavy when the U(1) is broken. This
occurs at a scale xM when the singlet field S develops a
VEV:

W=aS( —p +ZZ) MRR +PRZZ+—yRZZ .

In terms of component fields,

W=aS( —p +ZiZi+c. p. ) —M(R iR i+c.p. )

+P(R,Z,Z, +c p )+y(R,.Z.,Z, +c.p. ),

(2.14)

(2.15)

S=(Ai) 2=M .

At a somewhat lower scale, b, (75) is broken, and we as-
sume that this is due to the fields

1 1

X=(T3) z=xM 1, I'=(Ti) 2=yM 1

1 1

0
S=R =R =0, Z=Z= 0 (2.16)

where c.p. stands for cyclic permutation of each triplet's
indices (see the Appendix). Minimizing the scalar poten-
tial [including the D term from the gauged U(1}] yields
three families of supersymmetric vacua, including the iso-
lated solution

where x and y are small numbers. The fermions I' only
get a mass when the "Higgs" field H gets a VEV, and we
assume that

0
H=(T2) ~= 0

, v

where v &&M is the "weak scale, " envisaging a mecha-
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X H X Y H scale physics, accounting for m, lmb »m, lm, and the
large Cabibbo angle.

FIG. 1. Leading supergraph contributions to the elective
Yukawa coupling of the F superfield in Eq. (2.19). The internal
dotted lines indicate g and g superfields with mass M. The un-
labeled external lines are the light fermions X

nism such as described above that renders all but the
third family component of H heavy at the scale xM.

The most general renormalizable superpotential 8'
describing the interactions of the matter fields with S, X,
Y, and H is given by

A. Fields and interactions

F=(16,Ti),
as well as exotic fields,

(3.1)

The model we offer as an example is an SO(10}Xb(75)
supersymmetric GUT, where 6(75) is the flavor group.
This example is an extension of the toy model (2.18), con-
taining both "matter superfields" which do not get UEU's
and "Higgs superfields" which do. The matter fields con-
sist of three ordinary chiral families,

W =Sfg+XfF+ YPg+H(FF+FP)

=S(tt'i/I)+X, $3F3+ Yitt'3/2

$=(16,T4), g=(16,T4),

X=(10,Tq), X=(10,Tt) .
(3.2)

+H3(F3F3+F2$3)+c.p. (2.18)

(For simplicity, we have omitted coupling constants, as-
sumed to all be of order 1.} At the scale M, the g field
gets a mass and is integrated out of the theory, giving rise
to the effective theory

There are several fields associated with symmetry
breaking. To break SO(10) down to SU(3) XSU(2) XU(1)
at MG~-—10' GeU in the most economical fashion re-
quires both a 45 and a 16 of Higgs fields, and we include
a conjugate partner for the latter. These fields are as-
sumed to come in b, (75 ) triplets:

We& =
YIj H 3FP Fj e (2.19) X=(45, T4), Q=(16,Tq ), Q =(16,T2 ) . (3.3)

The Yukawa coupling Y; can be computed by summing
the diagrams in Fig. 1, making use of the invariant ten-
sors discussed in the Appendix. The result is

0 xy 0

Y;J
—xy xy x

0 x 1

In addition, there are wave function renormalization
graphs which give effective D terms which eliminate the
zeros in the above matrix, but they are negligible: The
[13] and, [31] entries in Y; receive 0(~x~ y ) contribu-
tions, while the [11]entry is 0(~x

~

"y' ). Y~ exhibits an
obvious hierarchical structure, and with x-y-», it
could provide a reasonable description of the Yukawa
coupling matrix of the up-type quarks at the GUT scale
[4]. In the next section, we incorporate this toy model
into SO(10) and SU(5) grand unified theories.

III. SUPERSYMMETRIC SO(10)X6{75)GUT

In this section we show how to use non-Abelian
discrete flavor symmetries to construct a GUT in which
the gauge and flavor symmetries are separately unified.
In particular, we show how to incorporate the toy model
(2.18) into an SO(10) grand unified theory. To get realis-
tic quark masses, it is necessary that the YD Yukawa cou-
pling of the down quark matrix look quite different from
YU, we achieve this by having the Higgs fields H„and Hd
transform as difFerent flavor representations. The repre-
sentations are chosen so that (i) down-type quarks get
masses at higher order in symmetry breaking, explaining
the small b/t mass ratio without requiring unnaturally
large tanP, and (ii} [22] and [12] entries of the down
mass matrix are susceptible to large corrections from
higher dimension operators which arise from Planck

There are also gauge singlets which get VEV's at a simi-
lar scale: namely,

X=(1,T3), Y=(1,T, ), Z=(1,T2) . (3.4)

Finally, there are singlet fields S and S which are invari-
ant under both SO(10) and h(75); their VEV's are re-
sponsible for the masses of the vectorlike fermion families
lf and X and occur over an order of magnitude above

MOUE ~

To break the weak interactions, we require a 10 of
Higgs fields; we will take three families of these Higgs
fields as well. In order to construct a model without the
fine-tuning problems associated with large
tanP=(H„/Hd ) [14], we have the up and down Higgs
doublets reside in different 10's:

H„=(10,T2), H~=(10, TI) . (3.5)

+H„[FF+FQ]+HdXY . (3.6)

For notational simplicity we have not indicated coupling
constants for these operators, which are all assumed to be
of order 1. Note that we have omitted an SgH„opera-

SO(10) GUT's have been discussed extensively in the litera-
ture. See [12]and, for recent references, [13].

As we will show below, the flavor quantum numbers of
Hd are chosen so that the down-type quarks have natu-
rally suppressed Yukawa couplings.

SO(10)Xb(75) symmetry allows us to write down the
renormalizable superpotential

W~ =Sgf+S'XX+XgF+ Ygf+X[FF+Fg]
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tor, which can be done by choosing suitable definitions of
the y and H„ fields, which have the same quantum num-
bers. Other operators allowed by SO(10) X b,(75) but ab-
sent from (3.6), such as Mpgg, operators involving Z, X,
and 0, etc., may be naturally excluded by imposing an
additional U(1) or Zz symmetry to the theory which
commutes with fiavor and has no SO(10) anomalies. The
choices of charges under this symmetry are not unique,
and in fact the symmetry can be either an E. symmetry or
ordinary. It is the spontaneous violation of this Abelian
symmetry by & S ) and & S') that determines the masses
of the heavy fermions

hatt
and y.

Although the fields X, Z, and Q do not have renormal-
izable couplings to the matter fields F, f, and y, they will
interact through operators of dimension 5 and higher
suppressed by powers of Mz. By means of the same
Abelian symmetry controlling operators in the renormal-
izable sector of the theory, the allowed dimension-5
operators can be restricted to

Ws„„= [HdFFZ+ XHd FF+FFQQ, ] .= 1

P
(3.7)

As we will show below, the first two operators give im-
portant contributions to the down quark mass matrix,
while the third operator is responsible for giving an in-
teresting pattern of neutrino masses. Furthermore, in an
SU(5) version of this model, the second operator can ex-
plain the ratio of down quark masses to charged lepton
masses in the manner of Georgi and Jarlskog [15].

In order to generate realistic masses for the quarks and
leptons, it is necessary to make certain assumptions about
the symmetry-breaking pattern of the fields that get
VEV's. We make the following assumptions, along the
lines of our discussion of symmetry breaking in the previ-
ous section.

(1) The S and S' fields get VEV's at a scale which is
about (20-50)MoUT, giving large masses to the g and y
fields.

(2) The I, Y, and Z fields get VEV's on the order of
MGUT in each component, inducing mass mixing between
the heavy fermions f,y and the light fermions F

(3) SO(10) is broken to SU(3) XSU(2) XU(1) at the
GUT scale by VEV's of the 0, 0, and X fields. We as-
sume that each flavor component of the Q and at least
the second flavor component of X develop VEV's.

(4) Of the H„and Hd triplets, only the Y= —
—,
' weak

doublet from (H„)3 and the Y=+—,
' weak doublet from

(Hd )3 remain lighter than MoUT and develop
SU(2) XU(l) breaking VEV's.

The reason we take the flavor symmetry-breaking scale
to be so high is dictated by the desire to keep interactions
perturbative up to scales near the Planck mass. This is a
generic feature of models of flavor unification where
masses arise through mixing with heavy fermions: Such
theories will have at least an extra set of fermion families
as well as their mirrors, which, with the Higgs fields,
render the gauge theory asymptotically unfree above the
favor unification scale. Thus the scale of flavor physics is
forced to lie within a few decades of the Planck scale.
Furthermore, it is interesting to note that gauge interac-

tions are often strong very near the scale where quantum
gravity is expected to be relevant.

Eq. (3.8) is modified to read

0 xy 0 0 5, 0

Y„— xy xy x , Yd — 5, 5z xy'

0 x 1 0 xy' y'

(3.9)

for the Yukawa couplings at the GUT scale. We have
only given the leading contributions to each entry and ig-

gC + Il X Y ~u

~ s ~ ~ Is ~ s ~

X Y
Ya

s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~

FIG. 2. Leading supergraph contributions to quark and lep-
ton Yukawa coup1ings. The internal lines indicate tt, it, y, aud

y superfields. The unlabeled external lines are the light fer-
mions I". The top row of diagrams contributes to Y„,while the
bottom row contributes to Yd.

B. Quark masses

The effective quark Yukawa couplings are generated in
this model when the g and y fields are integrated out of
the theory at the scales & S ) and & S'), taken to lie above

MARUT, and the symmetry-breaking fields X, Y, Z, and X
acquire their VEV s. The diagrams arising from the re-
normalizable interactions (3.6) that contribute to an
effective superpotential are shown in Fig. 2. Denoting

&I/S) =—x, & Y/S) =y, & Y/S') =y',
and ignoring both the order 1 coefficients in (3.6), the
effective Yukawa couplings generated from these dia-
grams are

0 xy 0 0 xy 0
Y„—xy xy x, Yd -y' xy xy x, (3.8)

0 x 1 0 x 1

where Y„and Yd are the coeScients of the effective
operators H„FF and HdFF, respectively. One sees that
there is a natural hierarchical structure to the masses and
that down-type quarks are automatically a factor of y'
more weakly coupled to the Higgs doublet than are up-
type quarks. The two matrices are not simply propor-
tional to each other [due to the omit ted order 1

coefficients of (3.6)], so that there are nonzero mixing an-

gles, although there may be partial cancellations leading
to a small V,b.

Additional important contributions to Y„and Yd come
from the dimension-5 operators (3.7)„which enter the
effective Yukawa couplings through the diagrams pic-
tured in Fig. 3. The first two graphs in Fig. 3 contribute
to the d and s quark masses, as well as the Cabibbo angle.
Denoting
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IV. FLAVOR-CHANGING NKUTRAL CURRENTS

FIG. 3. Supergraphs involving the dimension-5 operators
[Eq. (3.7}]contributing to quark and lepton Yukawa couplings.

nore the negligible contributions from wave function re-
normalization to the t13I, [31],and I 11] entries. Tak-
ing scaling effects into account, these matrices can lead to
realistic quark masses for the values

zo & so
1 ~ 1

In the standard model, FCNC's must proceed through
dimension-6 operators, and so experiments are insensitive
to physics above —1000 TeV. In contrast, FCNC's enter
supersymmetry through dimension-2 squark mass ma-
trices and are sensitive to physics at very short distances
[17]. Limits on FCNC's from the neutral K and B
mesons require that the squarks must be mass eigenstates
in very nearly the same flavor basis as are the quarks
[18,19]. To discuss these constraints, we use the notation
and analysis from [19].

The 6X6 squark mass-squared matrix may be written

and imply

tanP=1
ML,L, ML,g

g2 g2

M ~'=
Mq2t M g2

LR RR
(4.1)

for a top quark mass m, = 160 GeV. This fit assumes that
the couplings in W [Eq. (3.6)] are all of order 1 and
work best if the couplings in W's„„[Eq. (3.7}]are actually
=0.5 (i.e., so that the characteristic scale of nonrenor-
malizable gravitational interactions is 2Mp).

where L and R refer to the chirality of the associated
quarks. Assuming that the SU(2)XU(1} violating LR
components of M are smaller than the diagonal com-
ponents, then FCNC experiments limit the quantities

C. Lepton masses

The third diagram in Fig. 3 gives the right-handed neu-
trino a Majorana mass

V„M~s Vj
5AB

Pl
(4.2)

2
0 1 1

M, — 1 0 1

1 1 0
(3.10}

m, 1
3

3 Nle
=1,

Pl ~ Ng
(3.11)

We do not bother writing down the SU(5) model, since it
is in almost every respect identical to the SO(10) version
described above. The reason why the Georgi-Jarlskog
mechanism does not work in the SO(10) version of the
model is that HdX=10X45 can only couple to I'I' as a
10, which does not split the down quark from lepton
masses.

where the entries denoted as "1"are to be understood as
of order 1. By identifying the B Lbreaking —scale with
the GUT scale, the fact that F couples to Q only through
a dimension-5 operator naturally predicts a Majorana
mass of MoUT/Mp. The seesaw mechanism [16] then
leads to a i neutrino mass of roughly Mp/(GpMoUT),
where GF is the Fermi constant, which gives rise to a
mass hierarchy for neutrinos that is of interest for both
dark matter and neutrino oscillations.

The charged lepton masses do not work in the SO(10}
model described above, but do in a similar SU(5) version,
where F~5+10+1, H& 5, H„~5, X~24, and so
forth. In this model the [22] entry in Y& in Eq. (3.9} in-

volves SU(5) breaking through the coupling to the 545
in HdX=SX24. If the coupling is primarily in the 45
channel, then the mass matrices are similar to the
Georgi-Jarlskog form and yield the successful GUT-scale
mass relations [15]

where VL z and VL z are the unitary matrices which di-
agonalize the u and d quark mass matrices. The
[5„s],z's are constrained to be less than few X10
while the [5„s],3's and [5"„s],z's are constrained to be
smaller than few X 10 . Various explanations of how
these small numbers arise naturally have been proposed,
such as squark universality and horizontal flavor sym-
metries. Universality, as invoked in minimal supergravi-
ty [20], is quite unnatural, since there is no reason why
the physics that gives diverse Yukawa couplings to the
different families would not also give diverse squark
masses, but models have been proposed where squark
universality is a natural consequence of their identical
gauge interactions [21]. Explanations for small FCNC's
based on horizontal symmetries [19,22] simply ensure
that the inevitable breaking of flavor symmetry in the
squark sector is small enough for symmetry reasons not
to have been observed. The model we are describing here
falls into this second category.

Our b, (75) model has small FCNC effects due to the
non-Abelian Savor symmetry, as long as the order pa-
rameter for supersymmetry (SUSY) breaking is flavor
neutral. First, consider the LR sector of the squark mass
matrix. One contribution is proportional to the Yukawa
coupling and is diagonal in the quark mass eigenstate
basis. The other contribution arises through the soft
SUSY-violating trilinear couplings of the squarks to the
Higgs doublets. These couplings are assumed to arise
from a dimension-5 superpotential W'- WP/Mp, where

P is a chiral superfield whose F component breaks super-
symmetry at an intermediate scale and the tilde means
that there is a one-to-one correspondence between opera-
tors, although the order 1 coupling constants are not as-
sumed to be the same. This implies that at low energy
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the effective trilinear couplings are

m [Y„QH„u '+ YdQHdd '], (4.3)

2
[ciF"F+c2$'g+c3$'g+ ]D,

Mp
(4.4)

where the 6(75 } symmetry dictates that there is univer-
sality in the coupling of the three families. These terms
alone give contributions to the LL and RR components
of M~ which are proportional to the unit matrix and
hence diagonal in any basis. FCNC effects can exist in
dimension-8 operators arising directly from the Planck
scale

$ QS*(F*XF)
4Mp

(4.5)

inducing off-diagonal contributions to 5)L zz of order
(S )MoUT /Mz ——2 X 10 . Larger contributions arise
from dimension-8 operators generated by integrating out
the heavy P field as in Fig. 4, leading to the operator

Q'f(F'XX F)
M,'(S)' (4.6)

Since (X/S) —=x= —,'„ this operator would appear to
contribute to FCNC's at the 3X10 level. Ho~ever,
(X'X) in the above operator is flavor diagonal in the
6(75) basis we have been using and therefore gives rise to
off-diagonal contributions in 5)L „z of order x 8, where
8 is the relevant mixing angle. In the kaon system, for
example, this gives 5 =ec/400= 5 X 10 . Thus
FCNC's in a model such as this one are below current
limits, but only by about an order of magnitude, even
though flavor physics occurs up at the GUT scale.

It is interesting to note that FCNC effects increase in
supersymmetric models as the flavor symmetry-breaking
scale gets closer to the Planck scale. Thus it is conceiv-
able that improved searches for FCNC's could in fact
probe physics in the region between the GUT and Planck
scales. This is peculiar to models such as supersymmetry
in which Glashow-Iliopoulos-Maiani (GIM) violation can
proceed through soft operators.

where the Y matrices have the same texture as the Yu-
kawa coupling matrices. Thus, in the flavor basis where
the quark masses are diagonal, the {ij ] component of
MLS+ is at most of order m Qm; m~, where m,. are the cor-
responding quark masses, and so their contributions to
the constrained parameters 5)z are very small.

The LL and RR parts of the squark mass matrix also
get two contributions. The first is proportional to Y~Y
and is diagonal in the quark mass eigenstate basis. The
second arises from the dimension-6 D terms:

V. CONCLUSIONS

In this paper we are advocating using non-Abelian
discrete flavor symmetries for unifying flavor at short dis-
tances. The example we have given, a supersymmetric
GUT with a b, (75) flavor symmetry, can account for the
diversity of quark and lepton masses and mixings without
small fundamental parameters, other than the hierarchy
of the mass scales Mp MARUT and an intermediate scale
associated with the masses of vectorlike families. This
particular model predicts mixing angles to be approxi-
mately equal to their observed values, as well as tanP=3.
The model also predicts a seesaw mechanism for neutrino
masses, with the ~ neutrino mass given approximately by
M /GFMoU&-—10 eV. The two lighter neutrino masses
scale like the up-type quark masses squared (at the GUT
scale) and are much lighter.

We believe that our b,(75}model exhibits a number of
features that will be generic in flavor unification models
that do away with an explicit fermion mass hierarchy put
in by hand. These include the following.

(i) Because of the extra families added in such schemes,
the gauge group P function changes sign at short dis-
tances. This requires that flavor symmetry breaking
occur near the GUT scale or higher or that there are
larger gauge groups at low energies than usually en-
visioned. Typically, gauge interactions are strong near
Mp in these models. It is intriguing that a model of
flavor physics favors strongly interacting physics at the
Planck scale.

(ii) With flavor symmetry breaking occurring at a high
scale, the light quark masses and mixings are sensitive to
operators suppressed by powers of Mz. In the model de-
scribed here, the relatively large Cabibbo angle is due to a
dimension-5 operator.

(iii) Flavor-changing neutral currents are typically
suppressed enough to be acceptable in such models, as a
result of the non-Abelian flavor symmetry. However, the
proximity of the flavor symmetry-breaking scale to Mp
means that FCNC effects from these ultrashort distance
scales could be detectable.

(iv) Because of supersymmetry, the most generic opera-
tors consistent with flavor symmetry are not generated
when heavy particles are integrated out of the theory.
This suggests that an effective Lagrangian approach is no
substitute for a model of short distance flavor physics,

In models with the short distance flavor democracy we
are advocating, Higgs fields typically carry family quan-
tum numbers, and understanding symmetry breaking be-
comes a more pressing issue. An important problem
sidestepped in this paper has been the doublet-triplet
splitting of the Higgs doublet, which now becomes entan-
gled with the problem of flavor. Other issues that remain
to be addressed in detail are neutrino masses and CI'
violation.
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Dz( A ip)= Azp, D3( A ip)= A i3, D4( A ip)= A2i

(A2}

where D„ is the representation matrix for the triplet T„
and the A matrices are defined in Eq. (2.4). The above
representations follow from the conventions (2.9}. This is
enough information to determine all of the invariant ten-
sors of the group.

From Table II one sees that T„ T„always contains all

three singlet representations, for n =1, . . . , 4. Writing
T„as Ix,y, z j, one finds these singlets to be

T„eT„~„=xx+yy+zz,

T„ T„ I „=xx+toyy+to zz,

T„eT„~—„=xx+to2yy+ tozz,

(A3)

where co=e '"~ .
For the decomposition of a product of two triplets into

a third triplet, it sufBces to give the structure of all of the

APPENDIX: TRIPLET DECOMPOSITION IN h, (75)

Here we give the decomposition of the products of
triplet representations shown in Table II, consistent with
the basis defined in Eq. (2.9). As discussed in Sec. II, the
generator PtN has the same representation matrix

Dtt (Epp) for all of the triplet representations R:

0 1 0
D„(E pp}= 0 0 1, R =IT„.. . , T4j .

1 0 0

The representation matrices corresponding to the genera-
tor A, p are given by D, ( A, p ) = A, p and

three-triplet invariants. Because of Eq. (Al), all invari-
ants of three triplets (ABC) can be specified by three
numbers jijk j signifying that (ABC)= A, B Ck+c.p. ,
where c.p. stands for cyclic permutation of each
representation's index. For example, ( ABC )= I 112j
denotes that (A, B,C2+A2B2C3+A3B3C, ) is a h(75)
singlet. Table II reveals that the product of three triplets
of a given representation always contains two invariants.
These are given by

(T„T„T„)=I123j+I213j . (A4}

Thus, for example, if one wants to find the T&'s contained
in T& |3)T&, one finds them to be

yz' zy'
TiTi i&

= zx', xz'
xy' yx'

(AS)

or any linear combination of the two. There remain 16
independent invariants with 3 triplets, and their structure
is found to be

I 111j:(112)(122},(334},(344},

I 112j:(132),(143},(234), (241 },
{113j:(132),(143),(234),(241),

I123j:(311),(414),(422), (233)

(A6}

Thus, for example, if one wants to find the invariant
formed from T2 T4 T„one notes that (T2T4T, ) is an
invariant of the I 112j type, so that

T2 T4 T, ~
„=a ya+bPz+cy x,

where we have taken T, = Ix,y, z j, T2=Ia, b, c j, and
T4 =

I a,P, y j. Similarly, if one wants to find the T„con-
tained in T,e T2, the same I112j invariant yields

ya
TiT2lr, = zb
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