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Proton decay and related processes models with gauged baryon number
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In unification models based on SU(15) or SU(16), baryon number is part of the gauge symmetry,
broken spontaneously. In such models, we discuss various scenarios of important baryon-number-
violating processes such as proton decay and neutron-antineutron oscillation. Our analysis depends
on the effective operator method, and covers many variations of symmetry breaking, including
different intermediate groups and different Higgs-boson content. We discuss processes mediated by
gauge bosons and Higgs bosons in parallel. We show how accidental global or discrete symmetries
present in the full gauge invariant Lagrangian restrict baryon-number-violating processes in these
models. In all cases we find that baryon-number-violating interactions are sufBciently suppressed to
allow grand unification at energies much lower than the usual 10 GeV.

PACS number(s): 12.10.Dm, 11.30.Ly, 11.30.gc, 13.30.—a

I. INTRODUCTION

In all gauge theories reasonably verified by experi-
ments, fermions transform as the fundamental represen-
tations of the non-Abelian gauge groups. Quarks trans-
form as the fundamental representation of the color group
SU(3), left-handed fermions are fundamental representa-
tions of the electroweak SU(2). Inspired by this, it is
intriguing to consider the idea that all fermions trans-
form like the fundamental representation of the grand
unified gauge group. This leads to grand unified mod-
els based on the maximal symmetry group [1] for each
generation, SU(16), where the fermions all appear in the
fundamental multiplet:

4'g =
~
u„usus d„dade d„dydee u„usuz v e e+ve

~

. (1.1)

The indices r, b, y are three colors, and carets denote an-
tiparticles for any fermion field Q:

(1.2)

where C p„C= —p„.Thus, for example, v, t, is the
antiparticle of the right-handed neutrino v,R, assuming
that it exists. The same pattern is repeated for other
generations. Mirror fermions are needed to cancel the
anomalies. One important feature of this model is that
both baryon number (B) and lepton number (L), which
are known symmetries of low energy physics, appear as
gauge symmetries at high energy. In fact, this was one of
the main motivations of Pati, Salam, and Strathdee who
first introduced such models [1].

A new variant of these models has received some atten-
tion lately, where the gauge group is SU(15) [2,3]. The
difference with SU(16) is that the right-handed neutrinos,
which are not confirmed experimentally, are assumed not

to exist, so that there are only 15 left-chiral fermionic
fields per generation. Baryon number is still part of the
gauge symmetry although lepton number is not.

The interesting point about these models is that their
characteristics are very difFerent &om the standard unifi-
cation models based on the gauge groups SU(5), SO(10),
E6, etc. For example, it has been shown that renor-
malization group analysis of certain symmetry breaking
chains of these models yield low unification scales [2—5],
as low as 10 GeV in some cases. All the known chains
with such low unification scale have the property that
they all break the unified group in such a way that at
intermediate scales, quarks and leptons transform under
separate subgroups of the gauge group. Because of low
unification scales, these models do not sufFer from the cos-
mological monopole problem [6], in sharp difference with
SU(5) models. Important and interesting constraints on
rare processes can be put in these models [4,7]. Although
many of these points were first made with the SU(15)
gauge group, it is now known that there are symmetry
breaking chains of the original SU(16) gauge group as
well which show these characteristics [8—10].

One crucial question arises now. How can a low unifi-
cation scale be consistent with known bounds on proton
lifetime? Of course, it is easy to see that gauge interac-
tions do not violate B in the unbroken phase. This is
another important difFerence with SU(5), SO(10), or Es
models. With a limited number of Higgs multiplets, it
was argued that baryon number symmetry (B) is not vi-
olated [3] even after symmetry breaking has taken place.
Subsequently, it was emphasized [4,11] that since B is
part of the gauge symmetry of these models, it must be
broken spontaneously in order to avoid a massless gauge
boson corresponding to an unbroken B symmetry, and
therefore the Higgs sector Inust be expanded.

Once this was pointed out, various scenarios of proton
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decay were considered by different authors [12,13,5,8].
Particularly powerful is the method of effective operators,
which will be explained in Sec. II. A simple dimensional
analysis performed with these efFective operators [13,8]
shows that proton decay amplitude in these models are
suppressed by as many as the fifth power of the grand
unification mass, as opposed to the second power in the
case of standard uni6cation models. For this reason, the
low unification scale is consistent with the known bounds
on the proton lifetime.

However, this analysis was performed only with proton
decay mediated by Higgs bosons, in a handful of scenar-
ios. But there is another kind of contribution to the pro-
ton decay amplitude in these models. It is true that in the
unbroken theory, each gauge boson carries a well-defined
baryon number and therefore cannot mediate B-violating
processes [2,3]. However, once the gauge group is sponta-
neously broken, gauge bosons with difFerent baryon num-
bers can mix with one another and therefore the mass
eigenstates of gauge bosons are not, in general, eigea-
states of baryon number. They can therefore mediate
baryon-number-violating processes. Although such con-
tributions were discussed in some detail [14,15] in some
early papers on the SU(16) model, the possibility of low
unificatioa scale was not realized at that time. In the
context of low energy unification, it was discussed brieQy
only at the tree level in a very specific scenario [5].

In this paper our focus is threefold. First, we dis-
cuss not only proton decay which is a ~bB~ = 1 pro-
cess, but also neutron-antineutron oscillation which is a
~bB~ = 2 process to see whether both are consistent with
low energy uaification. Of course, even when we will be
explicitly talking about "proton decay, " the comments
can easily be translated to the baryon-number-violating
decays of the neutron as well. Second, we include
both gauge-bosoa-mediated aad Higgs-boson-mediated
processes in our analysis. Third, we poiat out acci-
dental global symmetries in the full gauge invariant La-
grangians of the models which seriously constraixi possi-
ble baryon-number-violating processes. For example, in
one case we find that there are no operators involving
four fermions which can give baryon number violation
even after baryon nuxnber symmetry is spontaneously vi-
olated. In such cases we extend the analysis of proton
decay to operators involving six fermions, which has not
been done before.

II. GENERAL CONSIDERATIONS

From the symmetries of the standard model alone, one
can argue that the dixnension of any proton decay opera-
tors must be six or higher [16,17], whereas for ~b,B] = 2
processes it is at least nine [18]. Thus, we should be
looking at nonrenormalizable operators generated by the
theory. In general, these operators can involve both ordi-
nary and mirror ferxnions since the physical up quark, for
example, can be a superposition of the ordinary and the
mirror quark 6elds. However, for the sake of simplicity,
we will assume that the mirrors do not mix with ordi-
nary fermions. This can be attained naturally if we im-

pose a discrete symmetry, O'4 ~ ~ —4~ ~ where 4~
stands for the mirror 6elds. This is the most popular
discrete symmetry considered in the context of mirror
fermions. In the presence of this symmetry the model
ceases to remain vectorial and hence the fermion masses
are protected. Hence the survival hypothesis is applica-
ble to these theories. The mirrors can be heavier than
the ordinary fermions if their Yukawa couplings are con-
sistently larger. In that case, they will not figure in any
of the low energy processes we will be discussing. We will
also assume that there are no hitherto unknown bosons
lighter than the nucleon mass. Low energy operators in-

volving nucleons should then involve ordinary fermionic
fields only.

To analyze these operators we adopt the procedure
used in Refs. [19,13], where one first constructs effec-
tive operators which are invariant under the gauge group.
For baryon-number-violating processes at low energy, the
full gauge invariant operators will in general also contain
some scalar fields so that, when these scalars develop
vacuum expectation values (VEV's), one obtains oper-
ators involving the fermionic 6elds only. If the VEV's
are baryon number violating, the fermion field operator
generated after putting the VEV's would violate baryon
number. This is the main difference with operator anal-
ysis for proton decay performed in the context of SU(5)
or SO(10) grand-unified models [16,17], where the oper-
ators have to obey only the symmetries of the standard
model since the unbroken grand-uni6ed model does not
conserve baryon number. Here, the unbroken operators
must obey the symmetries of the unified model, which of
course is much larger than that of the standard model.
This requirement severely restricts the type of baryon-
number-violating operators that one can construct.

The above discussion is applicable equally for any
baryon-number-violating process induced by Higgs-boson
and gauge-boson exchanges. We now consider proton de-
cay in particular. Here, one needs an operator where the
number of fermionic fields is at least four [16],and in the
most part we will discuss operators where the number is
in fact four, except in Sec. IIIB where we will find that
such operators are forbidden for proton decay.

For Higgs-boson-mediated processes, the relevant bi-
linears are (O'L, ) C@z„where C is the conjugation ma-
trix for fermions. For gauge-boson-mediated processes,
the relevant bilinears are @I,pp@'I, . The important dif-
ference is that the 6rst 4' appears with a complex conju-
gation here. If we put in the gauge indices, this will mean
a lower index for the first 4 and an upper index for the
second one. Thus, the gauge invariants constructed will
have a quite diferent nature than the ones for the Higgs-
boson-mediated processes.

The discussion so far implies that, for processes me-
diated by gauge bosons, the 4-fermionic operators must
appear in the effective operator in the combination

(2.1)

where i, j, k, l denote gauge indices, and we have sup-
pressed the generation indices. On the other hand,
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for Higgs-boson-mediated processes, the combinations
should be

(2 2)

~
—1 6n —7 ~2

7p mp IM(2 )
~ (2.3)

Then, the known limits on the proton lifetime,

vp) 3x10 yr,

implies

C (10 32 4—sn
(2n) ~ mp

(2.4)

(2.5)

In the specific case where n = 2 (which is the most fre-

quent case so that we will omit the subscript of K in this
case) we obtain

10 32GeV (2.6)

In standard unification models such as SU(5) or So(10),
K g M&, so that one needs MG/g ) 10is GeV in
order for the models to be phenomenologically viable. In
the models that we consider, we will see that K is further
suppressed by ratios of diKerent xnass scales, and that
is why smaller uni6cation scales will be consistent with
phenomenology.

III. SCENARIOS OF BARYON NUMBER
VIOLATION IN SU(15) MODELS

Various scenarios of baryon nu~ber violation has been
discussed in the literature [12,13,5] in the context of the

The precise bounds depend on the speci6c decay mode. For
rough estimates we use the same bound for all modes.

One can think of other operators such as

(@R)'&(@z)~ (+R)s&(@'R)i » (@I)'&(@I,)'

(O'R)i, C(4~)~, where Sir is the multiplet which con-

tains the antiparticles of the 6elds in CL„but these are
either just Hermitian conjugates of the operators in Eqs.
(2.1) and (2.2), or can be Fierz transformed to them. So,
we need not discuss them separately.

Our goal is to find gauge invariant operators which can
give rise to the four-fermion operators of Eqs. (2.1) and
(2.2) after symmetry breaking. This discussion involves
the Higgs content of the model and the precise way in
which baryon number is violated, and therefore has to
be done separately for SU(15) and SU(16). This will be
done in the ensuing sections. Also, as we said before, we

will encounter speci6c models where 4-fermion operators
are inconsistent with the symmetries of the model. For
such cases, we describe here the general case where the
fermionic part of the operator has 2n number of 6elds.
Let us denote such an operator symbolically as K~2 lop

".
The coefficient K(2„)has a mass dixnension 4 —3n. Thus,
neglecting the masses of all decay products, a simple di-
mensional analysis will give

SU(15) gauge group. We present some such chains later
in this section. In all these chains, for all symmetry
breakings above the weak scale, we use Higgs bosons ei-
ther in completely antisymmetric representations, or in
the adjoint representation or representations which can
be obtained by taking tensor products of two adjoint rep-
resentations. This is done for the sake of economy and
definiteness. We also assume that, unless mentioned oth-
erwise, the only Higgs boson multiplets present in the
model are the ones which have VEV's.

At the weak scale, however, we make an exception.
Here, unless otherwise speci6ed, we assume that the sym-
metry breaking is performed by a Symmetric rank-2 mul-
tiplet S. This is motivated phenomenologically. If we use
the antisymmetric tensor to be the only field to couple
to fermions, the fermion mass matrices would be anti-
symmetric. For three generations, this will imply that
one mass eigenvalue is zero and the other two equal for
particles of any given charge. This is very unrealistic, so
we will not consider this possibility further.

A. Baryon number violated by an antisymmetric
rank-3 multiplet

1. Symmetrses of the model

For the SU(15) model, Pal [13] introduced the most
econoxnic Higgs boson spectruxn that leads to a breaking
pattern with "ununified" intermediate stages. The mul-

tiplets necessary for this purpose are the antisymmetric
rank-3 multiplet 4I'&~~, the adjoint T'~, the symmetric
rank-2 multiplet S&'~& which gives fermion masses, and

P ~

an additional one, H~&&j, which will be called the antisym-

metric biadjoint since it appears in the tensor product of
two adjoint representations and both the upper and the
lower indices are antisymmetrized. Here and henceforth,
the square and curly brackets denote antisymmetrization
and symxnetrization of indices.

In Fig. 1 we show the complete chain of symmetry
breaking, where the numbers n denote a factor SU(n) in
the gauge group if n ) 1, and a U(1) factor if n = 1.
Thus, at the highest stage, the multiplet 4~'~~~ develops

a VEV 4"" ', which breaks the uni6cation group

SU(15) down to SU(12) x SU(3)&, where the subscripts
indicate which fermions transform nontrivially under the
subgroup —q stands for quarks and antiquarks, 8 for lep-
tons and antileptons. This VEV also breaks lepton num-
ber by 1 unit. At the next stage, SU(12) breaks to
SU(6) & x SU(6) & x U(1)&. This can be performed
by a 0EV in the adjoint representation, as shown in
the 6gure and explained in the figure caption. At the
scale MsqL„ the SU(6)~L, breaks to its maximal subgroup
SU(3) SU(2), under which the fundamental of SU(6)
transforms like (3,2). In SU(6), the lowest dimensional
multiplet which has the component whose VEV can in-
duce this breaking is the 189-dimensional antisyxnmetric
biadjoint. Naturally, it is contained in the antisymmet-
ric biadjoint representation of the SU(15). At the next
stage, SU(6)~~ breaks to SU(3)„&x SU(3)z& x U(1) &z.
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FIG. 1. SU(15) symmetry breaking where baryon number
is broken by the VEV of an antisymmetric rank-3 multiplet.
If one considers the adjoint Higgs multiplet T as a traceless
matrix, its VEV's are diagonal and the notation 1~6~, e.g. ,
stands for six consecutive entries of unity. In the multiplet
4, the symbol (due), e.g. , stands for the VEV of the color
singlet combination of the components with one index having
the quantum numbers of d, another of u, and another of e.

The SU(3) factors here operate nontrivially only on the

uL, and dL, components, respectively, whereas the U(1)
quantum numbers are defined to be +1 for the up-type
quarks and —1 for the down-type ones. Baryon number
is broken at the next stage, where SU(3)„&x SU(3)&&
also is broken to the diagonal SU(3) subgroup which is
called SU(3)q~. At this stage, the gauge group that ap-
pears is the square of the standard model gauge group,
where the quarks and leptons transform under different
SU(2) and different U(1) factors. This has been discussed
under the name "ununified" model by some authors [20].
On the other hand, the right and left chirality of quarks
transform under different color groups, which has been
discussed in the literature under the name "chiral color"
[15,21]. At the next stage, the standard model gauge
group appears, which is why this scale is called Mp.

It should be understood that some variations of this
chain are obviously possible. For example, the scale M6qL,
can be lower than M6q+ or even M3g. On the other hand,
some scales can merge, so that the standard model is
reached in less number of steps. These will not essentially
change the conclusions of the subsequent discussions and
hence will not be discussed separately. Similar comments
apply for other chains which we will discuss later in the
paper.

For this and various other scenarios that we are go-
ing to discuss, we find that the full gauge invariant La-
grangian involving the specified fields often contains some
accidental global or discrete symxnetries which commute
with the gauge symxnetry. These restrict the type of po-
tentially baryon-number-violating operators. To see such
symmetries in the present case let us write the full La-

grangian in the suggestive xnanner

8 = 80+ 8'. (3.1)

Here, 80 is the part which is invariant under independent
phase rotations of all complex multiplets present in the
model. These would include, e.g. , all gauge interactions,
scalar interactions involving only the adjoint Higgs multi-
plet and the antisymmetric biadjoint. There will also be
soxne terms involving other multiplets, e.g. , terms such as
4'~ 4;~k or S'~S~kS" Sh. Obviously, symmetry of Zo is
much larger than the gauge symmetry. However, 8' con-
tains other terms which are allowed by the gauge sym-
metry. In the present case, the Yukawa couplings are the
only terms which fall in this class. Thus,

r' = y(e, )"(e,)'s„+H. , (3.2)

where the generational indices on @L, and y have been
omitted. However, it is easy to see that, even with this
term, the full gauge invariant Lagrangian has the follow-

ing accidental global charges which are conserved:

Multiplet
Qi
Q2

yk Skl C,klm

1 2 0
0 0 1

(3.3)

Notice that the global phase of the multiplet 4 is indeed
a global symmetry of the Lagrangian [19]. In addition,
there is another one, which has been labeled as Qi.

Consider now a generic effective operator of the form

(@)2f gras C me (3.4)

f+qis=o,
n@ ——0.

(3.5)
(3.6)

Any effective operator generated by the theory xnust then
obey these two conditions, and we will discuss some such
operators below. Note that both these conditions remain
unaffected if the operator in Eq. (3.4) contains the adjoint

or the multiplet H~&&j, since they contribute equally to
the ru~mber of upper and lower indices, and since they
are neutral under the global syrumetries of Eq. (3.3).

One general characteristic of baryon nuxnber violation
in this model can be ixnmediately noted. As we said ear-
lier, in order to obtain purely fermionic operators, we
need to replace the scalar fields in Eq. (3.4) by their
VEV's. From Fig. 1 we note that 4 has three types
of VEV's. One of these gives bB = —1, and each of the
other two give bl = 1. Let us say that in the operator

which stands for 2f number of fermionic fields with upper
indices, ns number of the multiplet S with upper indices,
etc. Each of these numbers can be positive, negative
(if the relevant multiplet contributes a net number of
lower indices), or zero. Thus, for example, the operator
4'~k4;~k will have n@ ——0 since 4'~k contributes n@, ——

1 but 4,&k contributes n@, ———1. On the other hand,
4'~k@' "S,~S~ Sk„hasn@ ——2, ng ———3.

Conservation of the charges Qi and Q2 tells us that,
in Eq. (3.4),
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with fermionic fields only, there are n@~ VEV's of the
first type, and n@c VEV's of the second kind. Since the

purely fermionic operator comes &om the gauge invari-

ant operator of Eq. (3.4), they must obey Eq. (3.6), which

implies n@, + n@c = 0. The total violation of B and I
in the purely fermionic operator can now be written as

B n@'a& ~L n@c = n@'a ~ (3.7)

so that

h(B —C} = 0. (3.S}

This immediately tells us that there is no n-n oscillations
in the model.

One coxnment needs to be made here. Lepton number
is not part of the gauge symmetry in SU(15). However,
it is well defined for all components of 4. This can be
used to assign lepton number to the gauge bosons and
Higgs bosons. In other words, for any multiplet gP&"', we
can count a lepton number +1 for each occurrence of the
indices 13 or 14, and —1 for each occurrence for the index
15. Since lower indices are complex conjugates, they will
have just the opposite assignments. It is then easy to
see that lepton number conservation is assured in the
Lagrangian by gauge invariance, and therefore must be
violated spontaneously. This is one characteristic of this
particular version of SU(15) models which is not shared
if we break baryon number by higher rank multiplets, as
we will see later.

(b)

eKcient can be easily computed by looking at these dia-

graxns:

g'Ma Ms
M2 M2

G
(3.10)

FIG. 2. Tree-level diagram giving rise to the operator Qq

of Eq. (3.9}. All the indices should be considered as upper
ones, except the ones for gauge bosons g where upper and

lower indices have been shown explicitly.

S. I'scion decoy openator a

Since proton decay requires both baryon number and
lepton number violation, and since both these violations
come through VEV's of different components of 4, we

must need at least two factors of O in the gauge invariant
operator. Of course, one of them xnust come with upper
indices and the other with lower indices in order that Eq.
(3.6) is satisfied.

a. Gauge boson mediated: For gauge boson mediated
proton decay for which f = 0 in the generic operator
of Eq. (3.4), we obtain nz = 0 from Eq. (3.5). Indeed,
there is one operator which is consistent with all these
nuxnbers:

Here, the factor g2 is just the gauge coupling constant
coming from two vertices with fermions. M~/g and

Ms/g give the VEV's, and the four-boson vertex gives
a factor g . The denomintor comes from the propagators
of the gauge bosons. In both diagrams, the gauge boson
coming out of the left vertex has the quantum numbers of
a diquark. Such gauge bosons belong to the coset space
SU(12) /[SU(6) L x SU(6) &I, and acquire masses of or-

der of SU(12)~-breaking scale, Mq2. The other gauge
boson which couples a quark to a lepton belongs to the
coset space SU(15)/SU(12) x SU(3)r, and therefore has
mass at the unification scale MG.

Proton lifetime bounds now imply, from Eq. (2.6), the
constraints

(@L)n"(@L)' (@L)lc7A(@L)' @'""'C',i. . (3-.9)
MaMs

(3.11)

In Fig. 2 we have shown a tree-level diagram which gives
rise to a particular component of this operator. This
is the component with {ikr}—:{udd}. Since the other
VEV must have one index contracted with this one, and
it has to be lepton number violating, we have to use ei-

ther {jle}= {due} or {ddv,}. These two possibilities
are shown in Figs. 2(a) and 2(b), respectively. Once the
VEV's are put in, 4-fermion operators result, whose co-

Notice that Ma and Ms are by definition smaller than
Mq2, and g ( 1. Thus this condition can be satisfied
with a low grand unification scale.

%'e now discuss the proton decay xnodes obtained from
the diagraxns of Fig. 2. In the figure we have suppressed
all generation indices of the fermions. We now notice
that there is a property of the operator of Eq. (3.9) which
forbids all fermions to be of the same generation. This is
because
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I

(eL),P"(@L)' (@L)kVA(+L)'] = — (@L)'& (@L)']

= 2 (+L);(+R)~ (~R)'(~L)'

= 2 (+R);(=(+R). (~L)'(-"(~L)'] (3.i2)

~i &L, 'Y~&L, sL, Y PL, (3.13)

Here, the 6rst step is obtained by the delnition of 4,
and the next one is obtained by Fierz transformation.
Since the matrix C is antisymmetric, the last form shows
that the spinor indices of 4" and @"are antisymmetric in
Eq. (3.9). Because the gauge indices are contracted with
4" " which is antisymmetric, the gauge indices i and k
are also antisymmetric. Therefore, in order to satisfy
the Fermi principle, they must be antisymmetric in their
(unshown) generation indices. The same comment can be
made about 4'& and @ . Thus, disregarding charm quark
fields which will be kinematically forbidden in proton de-

cay, we obtain that the 4-fermion operator generated by
Fig. 2(a) is

2 2(
iCg (M~) ( M~ )

(3.19)

Even if Agg, Ag@ 1 which is the limit allowed by pertur-
bative procedure, we obtain Kq « Kq since Mq2 & M~
by de6nition and my « MG. .

B. Baryon number violated by an antisymmetric
rank-4 multiplet

scalar couplings are denoted by Ags and Ag@ in obvi-
ous notation, and we have assumed that all the virtual
colored scalars in this diagram have masses of order M~,
the largest scale in the model. Then notice that

Similarly, Fig. 2(b) generates 1. Symmetries of the model

(3.i4)

The Grst one predicts the decay mode

P~P
whereas the second one gives

(3.i5)

PW V@K (3.16)

Notice that these are unusual decay modes which are sup-
pressed in unification models such as SU(5) or SO(10),
although they occur in their supersymmetric versions. In
the present case, it is predicted in the absence of super-
symmetry because of the Fermi symmetry between all
particles in a generation.

b. Higgs boson mediated: In this case we should put
f = 2 in Eq. (3.4), as discussed in Sec. Il. The constraint
of Eq. (3.5) now implies ns = —2. Operators of this
type were discussed earlier by one of us [13]. Here is one
example:

The rank-4 antisymmetric representation 6 was in-
troduced by Brahmachari, Sarkar, Mann, and Steele
(BSMS) [5]. A possible chain of symmetry breaking has
been shown in Fig. 4. Notice that the symmetry break-
ing above the scale M~ is performed by the same VEV's
as in Fig. 1. At the scale M~, the still unbroken gauge
group 3qI, 2qL, 3„~3d~l~lq~p2g1, 1gy is broken by the VEV
of the rank-4 multiplet, 6"""' . The 3„~and the 3~~
subgroups combine to give the diagonal subgroup which
we call 3&R. Also, out of the three U(l) factors, one
combination breaks, leaving two unbroken ones, one of
which is the hypercharge of the standard model, and the
other is called U(l)~, whose generator is proportional to
diag (9(6), —22(s) ) 4(s) )

—7(2), 14).
Notice that the VEV 4"""' breaks both baryon num-

ber and lepton number by —1. Since this is the only
baryon number violating VEV in this scheme, it must
appear in the gauge invariant operator giving rise to pro-
ton decay. Moreover, it must appear an odd number of

2 = [(@L)+(@L) ] [(@L) +(@L) ]C'i%re Sly' q ~

(3.17)

Since the effective operator now involves two occurrences
of the 6eld 8 whose VEV's are of order M~, any contri-
bution coming &om this operator must have a suppres-
sion factor of (M~/M~) ~. For example, the tree diagram
of Fig. 3 gives a contribution

0 due
v

I l
L ~

I I

udd ~1 de+
I

Ml4 4e e+

( my ) As@MsMRM~~l(2~
~ 6(M~ ) MG

(3.18)

Here, the quantity my is the mass of a typical fermion,
and comes &om the Yukawa couplings. The quartic

FIG. 3. Proton decay mediated by Higgs bosons, giving
rise to the operator in Eq. (3.17). The notation about indices
has been explained in Fig. 2. One can simi&arly contemplate
a diagram where the VEV of the component 4" " appears
instead of 4~"'.
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Consider now a generic effective operator of the form

MG i„i (O"" '
)

12q3

(1(e)&
—1(e)& 0(3))

6qL6qR 1B3c

M6ql ' ' (Hiaq)
b~l

3qL 2qL6qR 1B34

MsqR i
„

i (0(s) & 1(3)&

—1(s)& 0(s) )

3qL2qL 3&R3dR1B1qRA3C

(0(gz), l(g), —2}

SqL2qL3&R3dR 1B1qRA2CL 1Q

M g &»&de+
)

sqLsqR2qL2&L 1F1Y

(@d(»e-dvo) )
3c2L1Y

Mz i„i P')
3,1g

(@)2fg&lg 4&&&@+&&~ (3.23)

in the notation used in Eq. (3.4). The global symmetry
of Eq. (3.22) implies

2f + 2ns+ ', nc, —-', nr,-= 0. (3.24)

On the other hand, all the indices should be contracted,
which means that the total number of upper indices
should either be zero or be divisible by 15 (so that they
can be contracted by e symbols). For the model of
Sec. III A, this condition is already contained in Eqs. (3.5)
and (3.6). Here, it produces an independent conditions

2f + 2ns+ 3n@+4n~ ——15N, (3.25)

where N is an integer, denoting the number of times a
vertex involving the e symbol appears in the diagram
giving rise to the operator of Eq. (3.23). As noted in
Sec. III A 1, both conditions remain unaffected if the op-
erator in Eq. (3.23) contains the adjoint or the antisym-
metric biadjoint.

The solution of Eqs. (3.24) and (3.25) can be written
FIG. 4. 8U(].5) symmetry breaking where baryon number

is broken by the VEV of an antisymmetric rank-4 multiplet.

The notation for VEV's has been explained in Fig. 1.

as

f + ns = nd —3N, ne = 7N —2na. (3.26)

times. Thus, it is obvious that if the model contains a
discrete symmetry

(3.20)

with all other fields invariant, one cannot generate any
term that violates baryon number by an odd integer. The
proton will then be absolutely stable. This comment ap-
plies irrespective of whether proton decay is mediated by
gauge boson or Higgs boson exchange.

Even if such a symmetry is not imposed on the La-
grangian, analysis of the full gauge invariant Lagrangian
reveals accidental global symmetries as discussed in
Sec. III A1, restricting the type of potentially baryon-
number-violating operators. To see this we use the nota-
tion of Eq. (3.1) and note that here

~'=z(~L) (@L) ~kl+~+sl
+A'[b, b,b,4 j, + H.c. , (3.21)

Let us now check what the above solution means for the
violation of baryon and lepton numbers. Baryon number,
as noted before, is part of the gauge symmetry and is
broken only spontaneously through the VEV of L. Thus,
clearly,

(3.27)

BL = —n&+ n~+ N. (3.28)

Using Eqs. (3.26)—(3.28) we therefore finally obtain

On the other hand, lepton number violation comes from
three different sources: each VEV of 6 (with upper in-

dices) gives bL = —1; each VEV of 4 (with upper in-
dices) induces bL = 1; each occurrence of a term with an
e symbol will have 15 upper indices which are all differ-
ent, contributing to an explicit violation hL = 1 in the
unbroken Lagrangian. Taking all these contributions we
can write

b(3B —L) = 8N, — (3.29)
where in the last term, the indices (not shown) are all
upper indices which are contracted by an antisymmetric e
tensor having 15 indices, which is indicated by the square
brackets with a subscript ~. The first term is the Yukawa
coupling term.

It is easy to see that, even with the presence of the
above terms, there is a global U(1) symmetry of the La-
grangian under which the quantum n»mbers of various
multiplets are

which is the selection rule for this model. Immediately, it
tells us that in this model, there cannot be any neutron-
antineutron oscillation8.

Multiplet O' 8'~ 4'~

harge 7 7
(3.22)

This condition is necessary, but not sufBcient, since it does
not take into account the fact that the indices to be contracted
by the e symbols have to be antisymmetric.
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2. Parton decay operetov 8 tor contributes to proton decay, using Eq. (2.5), we can
rewrite Eq. (3.32) as

f =1 ns=0, n@= —2, nr, =l. (3.30)

An operator of this type is

& = (@1.)*&i(@l,)' (@r,)by" (@I,)'

x [(@L,)"C(4'I,)"] b, '" (3.31)

%e show in Fig. 5 how this operator can arise at the tree
level. The amplitude of the purely fermionic operators
can be easily determined. Assuming the scalar interac-
tion couplings to be of order unity, we obtain

gM~Mg Mg
(6)

ue e+ ev
(3.32)

where the last two factors in the denominator represent
the masses of the internal Higgs boson lines. Of these, the
former one is a colored boson, whose mass is expected to
be of order M~. But the latter one is uncolored, whose
mass we keep as an unknown. Experimental bounds,
however, tell us that, being a charged scalar, its mass
cannot be much less than 100 GeV. Thus, if this opera-

due
il

&k

I

IJ
I

e+ I vee
I

T

4
ve e~

FIG. 5. Tree-level diagram giving rise to the operator Q of
Eq. (3.31). The notation about indices has been explained in

Fig. 2. One can similarly contemplate a diagram where the

VEV of the component 4""" appears instead of C"" .

Specializing to the simplest case when N = 0, Eq.
(3.29) tells us that 3B —L is conserved, which means

that there will be three leptons in the final state for pro-

ton decay. This cannot occur with four fermionic 6elds

only, since three of these fields must be quark-antiquark
6elds in order to obtain a bB = —1 operator. For other

values of N, one needs an even higher number of lepton-

antilepton pairs in the 6nal state, which cannot be ac-

commodated in a 4-fermion operator for the same reason.

Thus, we conclude that in this model there is no proton

decay operator with four fermionic field operators. The
result is true for operators mediated by gauge or Higgs

bosons.
The lowest dimensional operators will thus have six

fermionic fields. They can have f = 3 where all the

indices are upper. Alternatively, they may have f = 1

where two of the fields have lower indices, but the other

four have upper ones. Of course, one can similarly have

f = —3and f = —1.
Among these possibilities, f = 1 can yield a solution

to Eq. (3.26) with the smallest number of scalar fields,
given by

s (gMgyMgl t'100GeV )0'V( ~;, )(M.. )
(3.33)

Since Mq2 )M~, MS by de6nition and g & 1, this bound
can be satis6ed for any uni6cation scale larger than about
109 GeV.

However, there is a subtle reason why this operator
cannot contribute to proton decay. In order to accommo-
date baryon number violation, the indices on the fields 4
must be uude+ in any permutation. Now, these indices
contract either with the indices of 4, or those of 4. But
Ci does not have any VEV which contains the index u.
Thus, both the indices on 4 have to be u indices. How-
ever, as argued in connection with Eq. (3.12), the fields
(@I,); and (O'1, )b must come &om diferent generations.
Therefore, one of them must be the charm quark and
therefore proton decay is kinematically forbidden from
this operator.

To get out of this impasse one can use a slightly mod-
i6ed operator:

&' = (@L)*»(@L)' (@I)»"(@I)'
x [(4r, )"C(4'I,)"] T* b, " bC, „Crib. (3.34)

This is still an operator of the type of Eq. (3.30), but
now the gauge indices i and k are not antisymmetric,
and therefore (@L,), and (O'L, )b can refer to fields &om
the same generation. A diagram for this operator can be
obtained &om Fig. 5 by attaching an adjoint Higgs bo-
son to any line which carries at least one SU(12)~ index.
This will provide further suppression to the 4-fermion op-
erators since the extra propagator is expected to have a
mass Mt-, but the largest VEV available for the adjoint
multiplet is at the scale Mq2. The quark level transition
induced by this operator is ue e v m uu, which implies
a decay mode

p -+ vr e+e+v, .

C. Baryon number violated by an antisymmetric
rank-5 multiplet

In an early paper, Frampton and Kephart [12] dis-
cussed baryon number violation by the VEV of an anti-
symmetric rank-5 multiplet J~'~" ~. Although less eco-
nomical than the ones discussed above, we include this
possibility for the sake of completeness. Figure 6 gives
a chain involving this rank-5 multiplet. The VEV that
breaks U(1)~ has the gauge transformation properties of
dddv, e, i.e, it has B = —1, L = 2. Notice also that
since this VEV does not involve both u- and d-type in-
dices, it cannot break 3„R3gRpart of the symmetry to
3qR, as is done in the models described earlier. There-
fore, this symmetry breaking is performed by a VEV in
the antisyrnmetric biadjoint H~&&~. This multiplet cer-
tainly has a component which is the antisymmetric bi-
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15

MG ~ ~ (@""~+)

12q 3|)'

('(s) -'(s) *0(s))
6qL6qR1B 34

Ms, l, „.(H)„|))ft~l

3qL 2qL6qR 1B3&

(
Jdddvee

)
3qL2qL3eR3dR2gL1y'

~ ~

MR ' ' (+w])
SqL2qL3qR24L 1Y

(@d(ee-de))

3,2L1~

Mz .„.(S)
3,1g

FIG. 6. SU(15) symmetry breaking where baryon number
is broken by the VEV of an antisymmetric rank-5 multiplet.
The notation for VEV's has been explained in Fig. 1. The
two difFerent VEV's of the multiplet H have been described
in the text.

adjoint of the subgroup 6qR and singlet under the rest.
This part is a 189-dimensional representation of SU(6)
which has a component that transforms like (8, 8, 0) un-
der its subgroup 3„&3&&1q&p A VEV here would per-
form the desired symmetry breaking. On the other hand,
one now does not need the adjoint to break the 6qR sub
group, since the baryon number violating VEV itself per-
forms the job. In fact, the VEV (J~""" ) also breaks
the leptonic subgroup 3g to 2gL, and the leptonic and
quark hypercharges combine to the total hypercharge of
the standard model.

In this case, using the notation introduced earlier, we
obtain

D. Introduction of antisymmetric Yukawa couplings

So far, we have assumed that the only Higgs bosons
which can couple to fermions belong to the symmetric
rank-2 multiplet 8&'». The situation changes if, in ad-
dition there is also the multiplet A~'~j which couples an-
tisymmetrically. In this case, some of the symmetries
described in the above sections may be broken explicitly
and hence more baryon-number-violating processes may
be allowed.

For the model of Sec. III A, such is not the case. %e
still have the condition in Eq. (3.6), which leads to B—I
conservation. However, in the model of Sec. IIIB, there
is an important change. This is because, with the intro-
duction of the multiplet A, there are the following new
terms which are allowed in 8':

(3.39)

There is now no way that one can assign a quantum num-
ber of A which keeps the symmetry of Eq. (3.22). Thus,
one can have the operator

0 = [(4L,)'C(CL, )'] [(4I )"C(4L)']b,;,) (. (3.40)

In Fig. 7 we show how this can be generated through the
interactions appearing in Eq. (3.39). In the figure we sup-
pressed the generation indices. Turning to Eq. (3.40) we
see that since the gauge group indices i and j appear in
antisymmetric combination in 6'~, and since the ma-
trix C is antisymmetric, the generation indices for the
two fermionic fields in the first bilinear must be antisym-
metric in order to maintain Fermi symmetry. The same
can be said about the fermionic fields in the other bilin-
ear. Thus, the quark level operator coming &om Fig. 7
is [uCp+] [uC~], which gives rise to a proton decay mode

for some integer N. Therefore, neither proton decay nor
neutron-antineutron oscillation is possible in this model.
Notice that this conclusion is reached only &om the ac-
cidental symmetries present in the full gauge invariant
Lagrangian.

8' = p(41,)"(@r,)'SI (+ p[JJJ],+ H. . (3.36)
p ~ @+K'. (3.41)

2mi/3 J (3.37)

Obviously, the entire Lagrangian respects the discrete
symmetry uude+

ud l ue+

with all other fields neutral. This is a Z3 symmetry. The
number of J 6elds in any effective operator arising in this
xnodel must then be a multiple of 3. Since baryon num-
ber violation comes kom the VEV of J only, in purely
fermionic operators we will have

FIG. 7. Higgs-boson-mediated diagram giving rise to the
operator of Eq. (3.40).

lhBI = ur (3.38)

Indeed, the baryon-number-violating diagram given by
Frampton and Kephart [12] for this model has hB = 3, as
was noted by one of us earlier [13].
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The amplitude for the 4-fermion operator is given by ddv ~'~ -I---~-e e+
I

K A (s.42)

~g = 3 A(@L) (@L) ~sr + ~JJ4A[JJc ]~

+p J C'al~A~g + H c. (s.4s)

There still is a Zs symmetry in the full Lagrangian, de-
fined as

ultiplet @k $kl Akl Cl, kl~ Ji2 him

Zs charge 1 2 2 2 1
(3.44)

Consider now a generic e8'ective operator of the form

(y)2f gng gn~@ray Jag (s.45)

assuming, once again, that the colored Higgs bosons have
masses of order Mo. The quantity P~ in this formula

stands symbolically for two factors of the Yukawa cou-
pling with the multiplet A. Since the antisymmetric
Yukawa couplings, if any, are expected to be smaller than
the symmetric ones, and since M~ & MG by definition,
this again shows the suppression of proton decay rate.

For the model of Sec. III C, the changes are more dra-
matic. Here, the extra terms can appear in l."due to the
introduction of A are given by

dddvq e

FIG. 8. Gauge-boson-mediated diagram giving rise to the
operator of Eq. (3.53).

An example of a gauge-boson-mediated diagram of pro-
ton decay is provided in Fig. 8, which has f = 0 and
nA ———1. The operator here has the form

» = (@~)'~"(@~)'
x (4'r, )span(4'1. )' J*" ""O, &rp, (3.53)

and Fig. 8 shows how it can be generated at the tree level.
Because of the Fierz transformation property shown in
Eq. (3.12), the generation indices of 4' and 4" must be
difFerent here. But the same cannot be said about 4~
and 4 since their gauge indices are not antisymmetric.
Thus, the quark-level transition obtained &om Fig. 8 is
de+ —+ Sd. This implies a proton decay mode

2f + 2(ns + n~) + 2nc, + nz = 3N,
2f + 2(ns + n~) + snc, + 5nq = 15N',

(3.46)

(3.47)

where N and N' are both integers. Thus,

n@ ——15N' —3N —4n J

2f + 2(ns + ng) = 9N —30N' + 7ng .
(s.48)

Following arguments similar to those in Sec. IIIB, we
now obtain

in the notation used before. Using the Zs symmetry and
the requirement that all indices must be contracted, we

obtain the conditions

p ~ vr+E+e (s.54)

1 — M2 M412 G
(3.55)

assuming that the colored scalar internal line has a mass
of order MG. Once again, since M~, Mg, and Mgr are
each smaller than either M12 or MG by definition, a low
unification scale is allowed.

A Higgs boson mediated diagram, with f = —2 and
n~ ——1, was given in Ref. [13]. The operator responsible
for this is

which conserves B + L, as argued before on general
grounds. The coeScient of the 4-fermion operator is
given by

bB = —nJ,
bL = 2n, + n, + X',

(3.49)

(s.50)
02 = (0 I,)'C(4L, )' (0 I )"C(4L)' J;,r,„4"'"Ar„.

(3.56)
so that, using Eq. (3.48), we obtain

b(2B —L) = 3N —16N', (s.51)

n@ = —1, f + ng + n~ = —1. (3.52)

Using Eqs. (3.49) and (3.50), it is now easy to see that in
this case, proton decay operators will satisfy the selection
rule b(B+ L) = 0.

which is the selection rule in this case.
For proton decay which requires np ——1, notice that

the integer N must be odd because of its definition in
Eq. (3.46). The solution of Eq. (3.48) involving minimum
number of scalar fields is now given by N = —1, N' = 0,

It apparently looks like it has the same VEV's as the
operator in Eq. (3.53). But this need not be the case,
as seen &om Fig. 9. Here, one can use the VEV of 4

dddv, e v, e e+

r'

I I

dd dv e I de
I

0
e e+

FIG. 9. Higgs-boson-mediated diagram giving rise to the
operator of Eq. (3.56).
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which occurs at the scale M~. Thus, we obtain, for the
strength of the 4-ferxnion operator,

f my 'l y,'MaMw

(Mw) MGs
(3.57)

Depending on the magnitude of the scales Mg and Mq2,
this may or may not doxninate over the gauge-boson-
mediated decay. The decay mode is the same as that
given in Eq. (3.54) since iII' and 4'~ have to belong to
different generations in the operator of Eq. (3.56).

It must also be noticed that, unlike the previous mod-
els, neutron-antineutron oscillations are not ruled out in
this model. However, it is very suppressed. This can
be seen from Eq. (3.51), where we can put bB = 2 and
bL = 0 as is necessary for neutron-antineutron oscilla-
tions. The simplest solution for this situation is obtained
when N = —4, N' = —1, which means

8' = p(4 I )'(4 L)~S;,. + A'[Ab b b], + H.c. (4.1)

It is easy to see that it has an accidental global U(1) x Z4
symmetry, under which the charges of various multiplets
are

Multiplet
U(1) charge

Z4 charge

Qtg kl

1 2 0
0 0 1

(4.2)

it is reasonable to try to see if there are suitable VEV's in

the xnultiplet 4, the adjoint T'z and the biadjoint
H~&&~

which can break the grand unification symxnetry down
to the symmetry of the standard model. In Fig. 10 we
show how it can be done. At the weak scale, the symme-
try is broken by the rank-2 symmetric multiplet 8&'», as
before.

For this model we find

ng = —2, nc, = 5, f + ns + n~ = —10. (3.58) Considering now a generic effective operator of the form

Obviously, it is a very high dimensional operator, so we
will ignore it.

(y)2 fgccs ~cce, (4.3)

IV. SCENARIOS OF BARYON NUMBER
VIOLATION IN SU(1t)) MODELS

It might seem that SU(16) scenarios of baryon number
violation should look similar to the SU(15) ones, since
the groups are not all that different. There are, how-

ever, some ixnportant differences, which should carefully
be taken into account. The first is that baryon number
violation occurs spontaneously and therefore is sensitive
to the choice of the Higgs sector, as amply demonstrated
in Sec. III. Being a larger group, SU(16) in general re-

quires more VEV's to break it down to the standard
model gauge group, which affect the operator analysis.
Second, baryon number processes such as proton decay
involves lepton number violation as well, and the na-
ture of the latter is very different in the groups SU(15)
and SU(16). The reason is that in SU(16) lepton num-

ber is part of the gauge symmetry and can be violated
only spontaneously. This is a difference from the SU(15)
models where the Lagrangian can violate lepton number.
Third, the sylnmetric rank-2 multiplet of SU(16), unlike
its SU(15) version, can have a lepton number violating
VEV S"",which does not violate the symmetries of the
standard model. This VEV can give neutrinos a Majo-
rana mass at the tree level. To keep our discussion simple
we will neglect this VEV.

A. Baryon number violated by an antisymmetric.
rank-4 multiplet

Symmetries of the model

Breaking SU(15) down to SU(12)~xSU(3)t requires
the VEV of an antisymxnetric rank-3 xnultiplet. Similarly,
breaking SU(16) down to SU(12)&xSU(4)& requires the
VEV of an antisymxnetric rank-4 multiplet A. Therefore,

2f+2 sn= o,
n~ ——4N,

(4.4)
(4.5)

for some integer N. Notice that both baryon number and
lepton number violation come from only one VEV, viz. ,

(b," ""). This VEV gives bB = —1, SL = —1. Thus, in
this model,

MG

16

12q4&

6qL6qR1B4&

(/uce e+ Sc)

( (s) (s) (4))

3qL2qL6qR1B4c

( (s)~ (s)~ (s)~ (4))
3qL2qL3&R3dR1 B1q~4g

Mgy i i (b, """)

3qL2qL3qR1qY ~P

(0(12), 1(2), —2, 0)
3qL2qL3qR1 qy' 2' 1~

3,2Lly

(+du(ee —dv, ))

3clq

FIG. 10. SU(16) symmetry breaking where baryon number
is broken by the VEV of an antisymmetric rank-4 multiplet.
The notation for VEV's has been explained in Fig. l.

the requirements of the U(1) xZ4 symmetry and of the
contraction of all indices give the conditions
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b(a —I) = o. (4.6)

Once again, neutron-antineutron oscillation is not possi-
ble in this model. The possibilities of proton decay are
discussed below.

12q4

6qL6qRla4e

(gv, e e+v,
)

(l(6) l(6) 0(4))

2. Pe+ton decay operators

Obviously, the simplest solution to Eqs. (4.4) and (4.5)
are given by

M64L, (II(„,) )
fsj]

QqL2qL6qR 1B4C

(«) '(» —'(»0«))
3qL2qL3v R3dR 1B 1qRh41

f =ns=nn —O.

An operator of this type is

(4.7) M„ i v (4"" '
)

3qL2qL3uR3gR lg 1qRh3

(@L)n (@I) (@I)Ie'Y)e(@L)

(4.8)

This can give gauge-boson-mediated proton decay, as
shown in Fig. 11. Notice that this diagram is very similar
to Fig. 2. The analysis is also the same, leading to the
constraint in Eq. (3.11). In fact, one can also show that
Higgs-boson-mediated diagrams, having ng ——2, will be
suppressed in this model, as shown in Eq. (3.19).

M ~ v (4"")
3qL 2qL 3qR 1

q Y 38

r

3,2L 1Y

(g)d(|ee-dv, ))

Mse ' ' (0(»), 1(2), —2, 0)

3qL2qL3qR 1qY ~cL li).'Y

B. Baryon number violated by an antisymmetric
rank-3 multiplet

FIG. 12. SU(16) symmetry breaking where baryon number
is broken by the VEV of an antisyznmetric rank-3 multiplet.
The notation for VEV's has been explained in Fig. l.

Deshpande, Keith, and Pal [8] advocated a model
where baryon number symmetry is violated by a VEV
of an antisymmetric rank-3 multiplet as in Sec. III A. In
Fig. 12 we show this chain with some slight modi6ca-
tions which helps eliminate a fundamental Higgs multi-
plet which was used by them.

With the introduction of the multiplet 4, there is one
more term in 8'.

8' = p(41, )*(@L,)'S;, + Ab, „S„„C"'"4""
+'A'[b, b, Ab, ], + H.c. (4.9)

However, we now have an accidental U(l) x Zs symmetry,
with the charge assignments

Multiplet
U(1) charge

Zs charge

yi gij @ij k ~ijkl
1 2 1 0
0 0 1 2

(4.10)

So now, the generic effective operator of the form

(@)2fSnS C n@ gnde

is subject to the constraints

(4.11)

2f + 2ns+ nc, = 0,
n@ + 2n~ ——8N,

(4.12)

(4»)
for some integer N. The first of these equations Bow
implies that n@ must be even. The simplest solution
to these conditions is given by all n's being zero, which
gives the operator of Eq. (3.9), and the phenomenological
conclusions are the same as in Sec. IIIA.

V. CONCLUSIONS

FIG. 11. Tree-level diagram giving rise to the operator O~
of Eq. (4.8).

We have analyzed a variety of syxnmetry breaking
chains within the gauge groups SU(15) and SU(16) in
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which the grand unified gauge group breaks to "ununi-
fied" subgroups under which quarks and leptons have
separate symmetries. As mentioned in the Introduc-
tion, such chains are interesting because some of them
are known to predict low unification scales, soxnetimes as
low as 10 GeV. Our analysis shows that low unification
scale is not phenomenologically ruled out in these xnod-

els because proton decay operators are very suppressed.
The amount of suppression, of course, depends on the
Higgs boson sector of the models and therefore varies
&oxn one model to another. We have also shown that in
these models, since operator analysis can be performed
on the full gauge invariant operators, and since such op-
erators have a large Fermi symxnetry, the proton cannot
decay into nonstrange hadrons. Such modes are preferred
in supersymmetric SU(5) or SO(10) xnodels, but here we
obtain this conclusion without any supersymmetry in our
models. In fact, inclusion of supersymmetry in SU(15) or
SU(16) models typically make the unification scales large
[22]. In that case, with all the suppression mentioned in
this paper, proton decay should be unobservably slow.

One remarkable result that comes out &om our anal-
I

ysis is that, most of these models contain accidental
global or discrete symxnetries. Of course, these symme-
tries depend on the Higgs boson contents of the model,
much like the B —L conservation in the simplest SU(5)
unification xnodel. Such syxnmetries provide selection
rules to baryon-number-violating processes. For exam-
ple, neutron-antineutron oscillation is strictly forbidden
in most of the models, as we pointed out. Of course, one
can always further complicate the models, using more
Higgs boson multiplets than are necessary for breaking
the symmetries. The presence of these multiplets will
explicitly break some or all of the accidental symme-
tries that we discovered, and therefore will allow xnore
baryon number violating processes. We provided exam-
ples of this by introducing, in Sec. IIID, the antisym-
metric rank-2 tensor which couples to fermions. Another
example could be a multiplet X&L'&~~I~ "~~, which exists
in the symmetric part of the tensor product of two an-
tisymmtric rank-3 multiplets. Once this multiplet is in-
troduced, one can show that neutron-antineutron oscilla-
tions become allowed in most cases through the operator

(5 1)

Our analysis, however, deals mostly with "minixnal"
models in the sense that we do not introduce any Higgs
boson multiplets which are not necessary for symmetry
breaking.

Our results can also be used to look for other baryon-
and lepton-number-violating processes in these models.
For example, using Eqs. (3.8), (3.29), and (4.6), we can
conclude that neutrinos cannot have any Majorana mass
in the SU(15) models of Secs. III A and III B, as well as
in the SU(16) model of Sec. IVA. For the first of these
models, this result was derived by earlier authors [19],but
for the other models, the result is new. This and other
new results can be readily derived &om the accidental

symxnetries that we have discovered in this article for
various models of interest.
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