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A new approach for deducing the theory of fermion masses at the scale of grand unification is pro-
posed. Combining SO(10) grand unification, family symmetries and supersymmetry with a systematic
operator analysis, the minimal set of fermion mass operators consistent with low-energy data is deter-
mined. Exploiting the full power of SO(10) to relate up, down, and charged lepton mass matrices, we ob-
tain predictions for seven of the mass and mixing parameters. The assumptions upon which the operator
search and resulting predictions are based are stressed, together with a discussion of how the predictions
are afFected by a relaxation of some of the assumptions. The masses of the heaviest generation, m„mb,
and m„are generated from a single renormalizable Yukawa interaction, while the lighter masses and the
mixing angles are generated by nonrenormalizable operators of the grand unified theory. The hierarchy
of masses and mixing angles is thereby related to the ratio of grand to Planck scales, MG /Mp. An expli-
cit realization of the origin of such an economical pattern of operators is given in terms of a set of spon-
taneously broken family symmetries. In the preferred models the top quark is found to be heavy,
M, =180+15 GeV, and tanP is predicted to be very large. Predictions are also given for m„m, /md,
I„/md, V,q, V„b/V, b and the amount of CP violation. Stringent tests of these theories will be achieved
by more precise measurements of M„V,b, a„and V„b /V, b and by measurements of CI' violation in neu-
tral 8 meson decays.

PACS number(s): 12.15.Ff, 12.15.Hh, 12.60.Jv

I. IN'IRODUCTION

The standard model is unlikely to be a fundamental
theory: it contains 19 parameters, 13 of which belong to
the flavor sector of fermion masses and mixing angles.
Two decades of attempts to incorporate the standard
model into a more fundamental and economical theory
have resulted in just one highly significant quantitative
success: the calculation of sin e~ in supersymmetric
grand unified theories (GUT's) [1,2]. Although this is
just one number, the quantitative agreement between
theory and experiment is so precise that it constitutes an
experimental hint in favor of low-energy supersymmetry.
Furthermore, the prediction from supersymmetric
GUT's has a much higher numerical significance than the
prediction from superstrings [3].

The biggest obstacle to constructing a predictive
theory is the Savor, or fermion mass, problem. Thirteen
experimentally determined numbers are needed to phe-
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nomenologically parametrize this sector of the theory.
But to make matters worse, with only 13 observables, the
Aavor sector is a highly underdetermined system, since,
typically, many more parameters are needed to describe
the Yukawa sector of some more fundamental theory. In
order to make progress in this situation, one hopes that
patterns in the masses and mixing angles can be ex-
plained by a few fundamental parameters. Tools that
have been used to tackle this tough problem (and that
minimize the number of fundamental parameters) include
grand unification and family symmetries. Grand
unification can, in principle, relate the lepton, up, and
down mass matrices and hence reduce the number of in-

put masses by a factor -3. Family symmetry can en-
force some zero entries in the Yukawa matrices, again
limiting the number of fundamental parameters.

The consequences of the Georgi-Jarlskog ansatz [4] for
Yukawa couplings in a supersymmetric theory were re-
cently derived [5]. The ansatz included seven parameters
in the Yukawa matrices plus one additional parameter
entering the mass matrices, tang, the ratio of the vacuum
expectation values (VEV's) of the two Higgs bosons
present in any supersymmetric theory. %ith eight pa-
rameters, there are five predictions for fermion masses
and mixing angles, and tanP is also predicted. These pre-
dictions are encouraging: in cases where they are already
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tested they agree with the data at the 90% confidence lev-
el or better [5,6].

However, there are some shortcomings to this ansatz.
(a) While down quark and charged lepton mass matrices
are related, there are no relations between up and down
quark masses, even within the context of an SO(10) [7]
theory. (b) The ansatz parametrizes the fermion mass
hierarchy (e.g., m, »m„»rn, ), but it provides no un-
derstanding of the origin of this hierarchy. (c) Although
the ansatz can be obtained from a set of family sym-
metries, it is nevertheless apparently ad hoc. Perhaps
there are other equally successful Ansa'ize [8].

(d) There are seven parameters in the Yukawa matrices
at MGUT. Can we find a theory with fewer parameters
and thus more predictions?

Our approach builds on an earlier attempt to construct
very predictive theories of fermion masses [9], in which
four input parameters gave all quark and lepton masses
and mixings. Although these earlier attempts were not
completely successful, they did not incorporate CP viola-
tion and the top quark mass was too small, they did sug-
gest a paradigm for theories of fermion masses which, as
we show in this paper, are quite successful.

In this paper we make a systematic operator analysis of
the most predictive fiavor sectors possible in supersym
metric grand uniPed SO(10) theories 'The s.hortcomings
mentioned above are addressed as follows.

(a) We exploit the full power of the SO(10) gauge sym-
metry obtaining relations between the up and down Yu-
kawa matrices.

(b) The family hierarchy is related to the ratio of grand
to Planck mass scales Mo/Mp.

(c) Instead of obtaining an example of a single predic-
tive theory, we perform a systematic search for the most
predictive flavor sectors within the SO(10) framework.
We give general arguments as to the maximum number of
predictions, and the search reveals all such theories.

(d} The minimal flavor structure involves just four
SO(10) invariant operators. Since there is a single ir-
removable phase, the Yukawa matrices depend on only
five parameters. Hence, these theories have three more
predictions than the Georgi-Jarlskog Ansatz, and two
more predictions than its SO(10) analog [4,5]. An
analysis of the predictions reveals that some of these
theories are already experimentally disfavored, while the
others can be distinguished by future experiments.

Why should nature be so kind as to choose the GUT
flavor sector to be maximally predictive? Such flavor sec-
tors may be the only ones which can be significantly
probed experimentally, but can they be motivated
theoretically? It may be that the dominance of just four
SO(10) invariant operators is a result of a set of family
symmetries and the breaking pattern of these symmetries.
This is an old idea [4,8 —10]. Unfortunately, there is con-
siderable freedom in choosing the family symmetries and
the breaking pattern. Perhaps one day this will be under-
stood in terms of a string compactification. There is cer-

We do not include neutrino masses in our analysis, which
would require the addition of further operators.

II. FEATURES OF SO(10)

All our analysis is done within the context of a super-
symmetric GUT, which breaks at the GUT scale to the
minimal supersymmetric standard model (MSSM), thus
preserving the good prediction for sin es [2]. The choice
of GUT is constrained by our desire to relate up and
down quark, as well as the charged lepton, mass matrices.
The smallest grand unified symmetry that accomplishes
this is SO(10), which has all the 16 chiral states of quarks
and leptons (including the right-handed neutrino} that
comprises one family fitting neatly into the 16-
dimensional spinor representation. In this sense, SO(10)
is quite unique since bigger groups containing one or
more families in a single representation typically contain
a plethora of unwanted and unobserved particles. The
three 16-plets associated with the three known families
will be denoted by 16&, 162, and 163, the last being the
heaviest.

Another virtue of SO(10) is that both Higgs bosons
that occur in minimal supersymmetric theories can fit
into one ten-dimensional representation of SO(10). This
implies that the SO(10) invariant Yukawa interaction

033 A 163 10 163 (2.1)

can give mass to the ~ lepton, top and bottom quarks of
the third family in terms of just one coupling A. This
simple operator, first studied by Ananthanarayan, La-
zarides, and Shafi [13], allows a prediction of the top
quark mass from the bottom quark mass without any
reference to the lighter generations. An interesting
feature of this interaction is that the observed value of

tainly no guarantee that the set of symmetries resulting
from a string theory will be very simple [11]. We give an
explicit realization of how family symmetries can lead to
our models, at least for the heavy two generations, in Ap-
pendix A. A more comprehensive development of such
theories will be given elsewhere [12].

In Sec. II we discuss some virtues of the gauge group
SO(10) and some features of the SO(10) interactions
which generate quark and lepton interactions. In Sec. III
we summarize the assumptions which lead to our class of
predictive theories. We discuss the number of predic-
tions in these theories and show that there are just two
possible textures: the "22" and "23"textures. In Sec. IV
we give the renormalization-group program which must
be performed to derive the predictions for these theories,
and discuss certain features common to both textures. In
Sec. V an analytic analysis of the "22" texture is made,
and nine models are discovered. The seven predictions of
each of these models are derived using analytic approxi-
mations. Numerical predictions for the nine "22"models
are given in Sec. VI, showing that some are already dis-
favored while others are successful. Section VII describes
the result of a numerical search for theories with the
"23" texture; although this texture necessarily has a cer-
tain degree of tuning, three models are found which agree
well with data. Conclusions are given in Sec. VIII. Ex-
tensions of our ideas, and certain proofs, are left to ap-
pendixes.
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TABLE I. Quantum numbers.

T3R

Q

d'
I

eC

V

1

1
—3
—3

1

5

1
—4

2
—3

6
0

1
—1
—1
—3

3
3

0
1

—1

0
—1

1

mb /m„ forces the coupling A to be large, of order unity.
In fact, the top quark mass in this scenario must be
heavier than about 165 GeV [14]. The heaviness of the
top quark is an immediate consequence of the large value
for the third generation Yukawa coupling; now the ques-
tion to ask is rather why the b and ~ are so light. The
large value for m, /mb can only be obtained by having a
large ratio of electroweak VEV's tanP—:u2/u, =m, /mb
[15]. Such a large value of tanP requires a moderate fine-
tuning in the MSSM which we do not discuss in this pa-
per [16]. However, large tanP does have several impor-
tant phenomenological consequences, one of which is the
potentially very large weak-scale radiative correction to
the down-type quark masses. At first sight these radia-
tive corrections appear so large that they will destroy the
top mass prediction. As discussed in Appendix D, this is
typically not the case [14], and the effects of such correc-
tions will be ignored in the results presented in this paper.

In addition to the Higgs decouplet 10 and three fami-
lies 16„162,and 163, more Higgs multiplets are certainly
necessary to break SO(10) down to SU(3) XSU(2) X U(1).
These Higgs multiplets may enter the fermion mass ma-
trices in operators with dimension ( 4). The smallest
such representations are the 45 and the 16. The 16 can
reduce the rank, breaking SO(10) down to SU(5); it could
also contribute to neutrino masses. The 45 can partici-
pate in several stages of SO(10) breaking depending on
the direction in which it points. In concert, a 45, 16, and
16 can break SO(10) to SU(3) XSU(2) XU(1) [17].

Since the 45 is the adjoint representation of SO(10), its
VEV can point in any direction in the space spanned by
the 45 generators of SO(10) as long as it leaves the group
SU(3)XSU(2)XU(1) unbroken. This means that the 45
VEV lies in the two-dimensional subspace of U(1)' gen-
erators of SO(10) that commute with SU(3) XSU(2)
XU(1). There are four special directions in this sub-
space.

(1) (45) =v,pe T, =45, . Here v,pe is the magni-
ip) ip)

tude and phase of the VEV and T, —:X is the SO(10}gen-
erator that commutes with the SU(5) Georgi-Glashow
subgroup (the Xquantum numbers of family members are
shown in Table I). The reason why this direction is spe-
cial is that it can break SO(10}down to SU(5) XU(1)z at
the scale v~0 ~ The linearly independent direction is then
given by

(2) (45) =use "Tz4 45'. Here T24
———Yis the hyper-

charge generator and therefore it is not SU(5) invariant.
The scale at which the three couplings, a&, az, and a3 un-
ify is, by definition, the GUT scale, MG. In this paper we

assume v, o
~ v 5, resulting in a symmetry-breaking pattern

SO(10)
'lO

= SU(5)
v5

= SU(3) X SU(2) X U(1)„

45)0;:—16;
1

45k 45k+i
10

Mk+i

45I
161, (2.2)

I

where some of the M„ in the denominator can be -Mz
and others -v&0, and i,j=1,2, 3. In writing these opera-
tors we understand the SO(10) group invariant to be
formed as follows: use the SO(10) y matrices to write the
45 and 10 as 16X16 matrices and then compute the in-
variant by a succession of matrix multiplications. The
operators so formed are those which result from integrat-
ing out heavy 16 and 16, as shown by an example in Ap-
pendix A. Other group contractions are possible, for ex-
ample, by integrating out a heavy 144, but we do not in-
clude these operators in this paper. We seek the predic-
tive flavor sectors which could result from only the sim-
plest GUT's.

When the 45's get VEV's (in any of the four preferred
directions 45„45„,45~ L, 45& ) these operators con-

3R

tribute to the ijth element of the mass matrices of
charged leptons and up and down quarks. These contri-

2These higher dimension operators may, in principle, be ob-

tained by integrating out heavy states at the scales v» or Mp.
See Appendix A for more details of such an interpretation.

where v s —=MoU~.
There is another special direction in this two-

dimensional subspace:
(3) (45) =use Ts I —=45& L. Here 8 L—is sim-~B—L

ply the ordinary baryon minus lepton number. Although
it is not linearly independent of the previous two direc-
tions, it may nevertheless play a significant dynamical
role. It has been suggested before that this VEV might
naturally induce the necessary doublet-triplet splitting in
the Higgs sector [18]. Once again, since this VEV breaks
SU(5}, we shall assume that the magnitude of its VEV is
given by v5 =MG.

Finally, the linearly independent direction is as follows:
(4} (45) =u, e '"T3~—:45r . T3~ is the third com-

3R

ponent of the right-handed isospin group. It also breaks
SU(5) and so we have again assumed that it has a VEV of
magnitude v5.

In any complete SO(10) model, additional Higgs in 54-
or 210-dimensional representations may be necessary to
force the desired breaking pattern. We shall not consider
these states in our analysis. As discussed, we have
identified v5=MG. As for the scale v&0, we will assume
that it can take values anywhere between the Planck mass
Mz and MG.

The effective theory near the scale MG will then consist
of renormalizable terms plus higher dimension operators
suppressed by powers of either us/Mp v&p/Mp or
us/u, p. In particular, there are higher dimension opera-
tors of the form
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butions are very simply related to each other: every time
a 45 VEV couples to a quark or lepton it just counts its
X, Y, (B L—), or T3a charge (shown in Table I) depend-

ing on whether the VEV points in the 45I, 45&, 45~&
or 45T direction. Thus, armed with this table, and for

3R

any choice of the VEV's, we can easily compute the con-
tribution of the operator (2.2) to lepton or up and down
quark mass matrices.

In these models, the fermion mass hierarchy originates
from a hierarchy of mass scales: v5=MG ~ vlo Mz.

III. A CLASS OF PREDICliVE THEORIES

A. The assumptions

Our objective is to construct the most economical and
predictive class of theories of quark and lepton masses.
This clearly involves making a set of assumptions, which
we now summarize.

(1) We require a supersymmetric GUT to preserve the
successful prediction for sin 8~, as discussed earlier, and

SO(10) is taken as the gauge group, since it is the smallest

group relating leptons and up and down quarks with no
superfluous particles.

(2} Beneath the GUT scale the effective theory is taken
to be the MSSM.

(3) The two Higgs doublets that occur in the MSSM
both belong to a unique 10 of SO(10). This leads to an
economy of parameters: for example, the single Yukawa
coupling A of Eq. (2.1} is responsible for the masses of
three fermions of the third generation: t, b, and ~.

(4} All dimensionless couplings of the GUT should be
of order unity. This implies that only the third family,
163, gets a mass via a renormalizable operator having di-
mension d 4. Given the previous assumption, this
operator is necessarily that of Eq. (2.1).

(5) All lighter families get their mass via the higher di-
mension operators 0; of Eq. (2.2). Recall that the M„'s
in the denominators emerge from physics beyond MG (for
more details on this point, see Appendix A). Some of the
M„'s are -M~ and others are proportional to (45, ) and
therefore —

vip ~ The ratio of scales will provide a partial
understanding of the fermion mass hierarchy. These ra-
tios are bounded, since the lower scale MG —10' GeV
and M&-10' GeV.

(6) Each of the (45„)'s [occurring in the numerator of
the operators 0; of Eq. (2.2)] can only point in one of the
four directions 45I, 45', 45(~ L), and 45T introduced

3R

in Sec. II. This hypothesis is often satisfied in specific
SO(10) models. The reason is that, as mentioned in Sec.
II, these VEV's accomplish a very specific step on the
breaking chain of SO(10) down to SU(3) XSU(2) XU(1).
In some cases this hypothesis is a corollary of the more
general extended survival hypothesis [19].

(7} The charged lepton masses and the quark masses
and mixings are assumed to be described, to a certain lev-
el of accuracy, by the smallest number of SO(10} invari-
ant operators possible. Such a picture may emerge from
a pattern of spontaneously broken family symmetries.

(8) The parameters of the MSSM are taken such that

the one-loop weak-scale radiative corrections to the
masses of the down-type quarks and charged leptons can
be neglected. We have argued in Appendix D why this is
expected to be true when tanP is large.

B. The operator search

This is a long list of assumptions: without a fundamen-
tal theory of fermion masses some such list is always
necessary. We believe that each assumption is reasonable
and are encouraged by the success of the scheme. Some
of the assumptions, for example, (3) and (7), are strong,
but we should stress that not all assumptions are needed
for each prediction. In fact, for any one of our predic-
tions a weaker set of assumptions can be formulated.
However, we believe that we have given the minimal set
of assumptions for all seven flavor predictions to result
from the same theory.

Using the above assumptions we can now begin to con-
struct theories of fermion masses. We first show that the
minimal texture of this type includes just four effective
operators.

In the absence of the nonrenormalizable operators 0;
of Eq. (2.2) it is clear that only the third generation v, t,
and b fermions will acquire mass via the operator of Eq.
(2.1). The physical quantities of interest in this sector are
four: m„m„mb, and tanP. These are given in terms of
the Yukawa coupling A and tanP. Following
Ananthanarayan, Lazarides, and Shafi (ALS) [13],we use
the experimental values for mblm, and rn, to fix 2 at
MG. We then predict m, and tanP. The results are
shown in Fig. 1 as a function of mb for various values of
a, (Mz }. It is important to note that for a, in the range
0.11~a, &0.13, the top mass comes out heavier than
—160 GeV. If the top is lighter than 160 GeV, then at
least one of assumptions (3}and (8) must be incorrect.

Now we come to the two lighter families. It is clear
that there must be a minimum of two operators of the
form of Eq. (2.2} in order for the mass matrices to have a
nonzero determinant, which is necessary to ensure that
the electron is not massless. If there were only two such
operators, they would necessarily be 023 and 0,2 which
give rise to V,b and V„„respectively. Note that we can-
not replace OI2 and 0», since the resulting V„, would be
too small. These operators 023 and 0,2 together with
the Yukawa coupling of Eq. (2.1) are not enough: in Ap-
pendix B we show that if 023 is of dimension 5 or 6,
agreement with the observed masses and mixings of the
heavy two families cannot be obtained. It is shown that
an additional operator must contribute either to the 22
entry or to the 23 entry. A corollary of this theorem is
that our theories have Kobayashi-Maskawa-type CP
violation. This is because the phases of the Yukawa cou-
pling, A, and the three effective Yukawa couplings, re-
sulting from the higher dimension operators cannot all be
removed by redefining the phases of 16„162,and 163.
We thus conclude that the minimal texture includes four
effective operators, which result in six arbitrary parame-
ters in the fermion mass matrices (four magnitudes and
one phase in the Yukawa matrices and tanP}. We will
thus have seven flavor predictions. We can have the two
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Top Quark Mass Prediction
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tan(P) Prediction
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4.1
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4.2 4.3 4.4

rnb(mb) GeV

FIG. 1. (a) The physical top
quark mass prediction is plotted
as a function of the MS value of
the bottom quark mass for
cl&(Mz ) =0.1 10—0. 126. M, is an
increasing function of a, . The
circles (diamonds) represent
points where the GUT-scale Yu-
kawa coupling is equal to 2 {3).
(b) The ratio of vacuum expecta-
tion values, tanp, is plotted as a
function of the MS value of the
bottom quark mass for
a, (Mz)=0. 110-0.126. tanP is

an increasing function of a, .
The circles {diamonds) represent
points where the GUT-scale Yu-
kawa coupling is equal to 2 (3).

possible textures defined by

33 23 +022 +012 (3.1)

or

33 23 23 + 12

IV. RKNORMALIZATION GROUP, 033 AND 0 i2

(3.2)

In this section we consider the renormalization-group
(RG) evolution of the Yukawa eigenvalues and mixing
anges rom e1 f th GUT scale to low energies. We make use
of well-known simple one-loop formulas to sea e rom
gran d to weak scales, MG to Ms [20,25], which include
the effects of large t, b, and r Yukawa couphngs. T
results will be used in the next section. In the numerica
analyses of Secs. VI and VII a two-loop renormalization-
group (RG) analysis is performed. In this section we also
discuss 33 an0 d 0 which are unique and therefore com-
mon to both textures.

The third generation Yukawas at the weak scale are

l
a (4.3)

0'a

27 3 ()"=(—" 3 —") c~=( 7, 3, 16), and c, = —„,3,Q ]$0 9 3

The one-loop gauge P-function coefficients are
b, =( —", , 1, —3). We remind the reader that Ms is the
effective scale of supersymmetry breaking, and above this
scale our theory has the particle content of the minima
supersymmetric standard model up to mass scale MG. In

0.5
The IrLtegrals I, , Ib, I,

0.4

a, (Mz) = . 110, , 118, . 122, . 126

and are shown in Fig. 2 for i =t, b, ~. The gauge coupling
renormalizations are given by t e factors, where i
refers to u, d, e Aavor and a =1,2, 3 to the gauge group
U(1), SU(2), or SU(3):

QG g g

—6I, —IbP g,"e (4.1a)
0.3

—I —6I& —Igg, e (4.1b)

—3Ib 4I+Pe (4.1c)
0.1

where the subscript G refers to the GUT scale. The in-
tegrals I; are given by

I

O.o
4.1 4.2 4.3

mb(mb) Gev
4.4

InMG g,. (t )

in~, 4~
(4.2)

FIG. 2. The integrals I„ Ib, and I,. I, (solid curve), Ib
(dashed curve), and I, (dotted curve), are plotted as of function
of the MS value of the bottom quark mass.
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Q, C

~ds

A.u, c 3It +Ib
e

~f g

b g

It +3Ibe'

(4.4a}

(4.4b)

eqp 3I
T

Alp g
(4.4c}

cou hn
We remind the reader that in these formulas th Y k

plings A.; are the eigenvalues of the Yukawa
e u awa

e u awa matrices
S'

The scahng of the Kobayashi-Maskawa (KM) matrix
elements is extremely simple:

G
(4.5}

and identical behavior for V V da
' ' », „, and V,d. The CP-

violating quantity J scales as V2

2It +2Ib
ge (4.6)

To the level which we work thor, t.".e following quantities are
mvariant: V, V V„d, V„, V,b, A, „/A,„A,d/A, „and

e p'
Finall we muy, ust compare our predictions at Mz with

parameters extracted from experiment. Since M i
to the weak scale

en . ince & is close
scale, we compare the elements of the KM

matrix at M& directl with
tally. Similarl

y
'

t ose determined experimen-
1 . ' '

y, we take the running top mass to be

this section we i nore'g ore GUT and supersymmetric thresh-
old correction effects, which we expect to affect our re-

In analytic results given later in the paper th e running

g uge couphngs is treated as follows. At p=M
' p, ' —88 d '= 98but keep a3{M ) a

f p t . E pt
a3(M ) (0. 108

or a special value of

meet at the
3 z the three gauge couplings do not 1

e GUT scale. This we assume to be due to
no exact y

GUT threshold corrections. Th' llis a ows us to show how
our predictions vary with a {M ) W3 z e assume that the

GeV. This
mass relations are valid at a scale M =2X10'

's could also be affected by GUT h h
G

corrections bu
t res old

ut is unlikely to change our predictions b
more than a few percent.

e ic cons y

'
g ses of lighter generations areThe RG scalin of mass

est shown as mass ratios, as this removes the ~' factorsa

m;(m; ):—g;m;(Ms) (4.9a)

for all quarks and leptons except u d and
have g,. defined by

u, , an s quarks which

m,.(1 GeV)=g;m;(Ms) i =u, d, s . (4.9b)

mb I, —3I +b3I—

m
(4.10}

for A and

—cospAri, g ge (4.11)

for tanp. The two predictions for M d
~ ~ ~

, an ta, cannot be
given in simple anal tic e u
1(a) and 1

y
'

quations, and are shown in Figs.
a and 1(b) as a function of the input m& for various a, .

ass Enhancement factorsRGM

2.5

2.0

1.5

Plots of g; are shown in Fig. 3 for i =u d si —u, ,s, c, w ere

We also in
contribution has been calculated t th 1

include one-loop QED contributions to the
o ree oops.

We now turn to a discussion of the degree to wh' h
each of the fourr SO(10) operators which contribute to fer-

ow ic

mion masses have a unique SO(10) stru
uss e operator. There are two possibilities for a

16 126 16 .
renormalizable 33 operator in SO(10): 16

3 3 The latter case implies A, = 3A, h' hb q w ic

can only be turned into a successful m /m 1 t'rn, reation i a,
arge and if mb is less than about 4.0 GeV 14 .

this case is's not excluded, we have chosen t
e . While

o erator 16p 63 10 163 in this paper, since this is known to
work ver well 13.
tion on t e

y we ]. The grand unified boundar d'-

the three Yukawa couplings of the h
ary con i-

g
, , is reminiscent of that for the

three gauge couplings g& =g = . Th—g . e two free pa-

rameters, A and tanP, are determined by m~ and m via

m r A, (Ms }—, sinP
U

2

and the "physical" top mass as

M, =m, 1+—4 a, (m, )

3

(4.7)

(4.8)

I

.105 0.110 0.1155 0.120 0.125 0.130

a, (M, }
FIG. 3. e renormalization- rou

tors are lotted
-g oup mass enhancement fac-

p d as a function of a (M
( )/ ( ) fs —» g; =;(1GeV)/m;(ms)

Hence we are choosin M'
g z to be in the neighborhood of

e top mass; for definiteness we take 180 GeV.
The other ferm'fermion masses require that we RG s

Yukawa parameter b 1 M .
parameters g by

ers eow M . WeMz. define RG scaling
t

Th~s could, perhaps, be overcome by lar e weak-sca
tive correction t th bs o e quark mass.

4There are perturbative corrections to this formula
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45& 45&
O)2 = 16) 10 162, (4.12)

which yields symmetric entries, i.e., the 12 and 21 entries
are equal in each mass matrix.

In our scheme the large value of rn, /mb results from a
hierarchy in the doublet VEV's, tanp))1. One might
then expect that this hierarchy of VEV's would lead to
large values for both m, /m, and m„/md. However,
m„/md is of order unity and is an order of magnitude or
more smaller than m, /m, and m, /mb How d.oes our
theory solve this mystery of why m„(md while m, »m,
and m, »mb? The answer is yet again a Clebsch factor
of 3. Every 45, appearing in O, z of Eq. (4.12) contributes
a factor of 3 to zdzd/z„z„'. Hence, from the determinant
of the up and down Yukawa matrices we derive

2
mu s zu u Ib Iu Qc 4(1 —I )

e ' ' (4 13)
mb ZdZd Qd Qs

m,

m,md

Thus the naive expectation of

m„/md ——(m, /mb) (m, /m, )=200

is actually enhanced by RG e6'ects by a factor of about
2-3 to become of order 400-600. It is the Clebsch of

z„z„1=—=10
zdzd 3'

which reduces m„/md to around 0.6—0.8. Because the
RG enhancement is smallest for small values of a, (Mz }
the prediction for m„/md favors smaller values of the
strong-coupling constant.

The operator (4.12) involves six suppression factors of
(45, ) /M. This implies that the scale at which SO(10) is
broken to SU(5}XU(1) by (45& ) is not much less than the
fundamental mass scale of the theory, M.

We have shown that 033 and 0,2 are unique, and thus
identical in "22" and "23" models. To go further we
must treat the "22"and "23"textures separately.

V. THE "22"TEXTURE
In this section we present an analytic treatment of

models based on the "22 texture" shown in Eq. (3.1), and

In our "analytic" analysis for the lighter generation we
will read I;, m„and tanP from Figs. 1, 2, and 3 and will
never actually use (4.10) or (4.11). Note that the values of
M, which we predict are larger than those given by
Ananthanarayan, Lazarides, and Shafi, partly because
they used values of a, which would be considered low to-
day.

In Appendix C we prove that, once the 33 operator has
been chosen to be 163 10 163, the choice for the 12 entry
is unique. The experimental inputs needed to obtain this
result are quite mild:

60 MeV&m, &360 MeV,
0.2 & m„ /md & 1.5,

and the experimental value for the Cabibbo angle. The
resulting operator is

so called because there is an operator which contributes
to the 22 entry of the mass matrices. We first give the
general form of Yukawa matrices of these theories and
show how they may be approximately diagonalized at the
GUT scale. In the last section we showed that 033 and

0,2 are unique. In Appendix D, a numerical search is
described which proves that the Clebsch structure of the
22 entries is also unique. This allows us to prove that
there are just nine possible operators for the 23 entry, and
hence nine possible models. We show how m„m„, m„
m„mb, and the Cabibbo angle can be used to accurately
determine the six free parameters which describe the
Aavor sector of these theories, and give the resulting eight
predictions of the fiavor sector. We find that m, /md dis-
favors some of the models. In addition, we give the pre-
dictions of these models for the kaon CP impurity param-
eter e, for B B mixing, and for the CP-violating asym-
metries in neutral B meson decay.

The GUT scale Yukawa matrices which follow from
the theories defined by the four operators of Eq. (3.1) can
be written in the form

z C

zC yEe'~ x B (5.1)

c2 s2 0

V„— —s2 c2 0

0 0 1

'&u
e 1 0 0

1 0 0 c3 s3

0 —s, c,

(5.2a)

and

where i =u, d, e. In this paper we define the coupling ma-
trices with the doublet fields to the right of the matrices,
so x; are relevant for V,b.

Notice that A, B, E, and C are all dimensionless: they
are the original operator coeScients multiplied by the
relevant factor of 45 vacuum expectation values. Thus
A »B and E»C. Phase redefinitions on the matter
multiplets have been arranged so that the single physical
phase P appears in the 22 entry. The Clebsch factors
from the 45 VEV's are parametrized as x, , x, y;, z;, and
z and for a given model can be obtained from Table I.

Approximate diagonal forms for these matrices at the
GUT scale can be obtained by the following sequence of
transformations: (i) In the heavy 2 X 2 sector rotate the
left-handed fermions by angles a, =x;8/A, and the
right-handed ones by a,' =x 8/A; (ii) write the resulting

i/, .
22 entry as y,.E,.e ' and rotate the left- and right-handed
lightest generation fermions by a phase factor e '; (iii) di-
agonalize the light 2 X 2 sector by rotations p; =z; C/y, E,
and p,'=z C/y, E; on the left- and. right-handed fermions,
respectively.

Let 83= —a„, 84= —ad, 82= —P„, and 0&=Pd,' then
the transformations in the left-handed up and down sec-
tors are
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C] S] 0 iPd

Vd = s] c] 0

0 0 1

0 1 0
0 0 1

0 0

c4 $4

0 $4 C4

the large ones. This requires a 22 operator which gives
~y„~:~yd~:~y, ~= & —,':1:3. A study of all operators at di-
mensions 5 and 6 shows there to be a unique y,. which
satisfies this:

(5.2b)
y. :yd y, =0:1:3 (5.5)

Setting 8& =8&—8z and p=p„—pd, the KM matrix takes
the form

This is the form familiar from the Georgi-Jarlskog tex-
ture. There are six operators which give such Clebsch ra-
tios

C]C2 $1$2e $1+C]$2e $2$3
—ip —ip

V= V Vd = C]S2 $]e C]C2C3e $]S2 C2$3

C3e'&—C]$3$1$3

(5.3)

$1=
Zd

I
Zd

1/2 ~ 1/2
Ad

1/2 1/2

which is identical in form to the KM matrix obtained in a
previous framework [5]. The angles 8, and 8z are related
to quark Yukawa couplings and the Clebsch factors z,
a.ndz by

16245110 162,
45~

1

1
162 10 45~ I 162,

1

1624511045~ L 162,

16210 162,
45m-L,

1

1621045]45~ I 162,

16210 2 162 .
45'-L,

451

(5.6a)

(5.6b)

(5.6c)

(5.6d)

(5.6e)

(5.6f)

S2= u

I
u

Using results from the last section it is straightforward to
see that 8„8z, and P are RG invariants, while s~ scales as
V,b.

We now turn to a discussion of the 22 and 23 opera-
tors, which generate V,b, A, , A, , and A,„.The low-

PG

energy experimental values of V,b =0.044+0.006,
m, = 1.22+0.05 GeV, m, = 175+55 MeV, and m„= 106
MeV can be run up to the GUT scale with the RG equa-
tions yielding

8
V =(x —x )—

cbG d u

but is also entirely responsible for generating iL, :
G

(5.7)

8= xuxu
A

(5.8)

Since they lead to the same y„:yd.y„ the operators lead to
identical predictions. All six operators require a 45&
in addition to the 451, which is needed both here and for
012

The 23 operator generates not only

t g
=0.0030-0.0012,

V,b =0.040-0.024, (5.4a)

(5.4b)

Since B/A is determined by the charm quark mass, the
Clebsch combinations xux„' and xu —xd cannot both be
independently probed. Eliminating B /A gives

1/2

b g
=0.025-0.009, (5.4c)

V,b =
t g

(5.9)

=0.048-0.035,
g

(5.4d}

where the quoted ranges correspond to a, (lz)
=0.11—0. 13, respectively. In the cases of (5.4b) —(5.4d)
we have also used our prediction for m, and inputs
mb =4.15+0.1 GeV and m =1.78 GeV. A crucial
feature concerning the magnitude of these four quantities
IS

2Vbc G

A, A, A,—3
t g ~7 g ~b g

(5.4e)

The theory can naturally account for this division into
two small parameters and two large ones if the 23 opera-
tor generates the small parameters and the 22 operator

where the Clebsch combination which can be measured is
given by

/x„—xd/x=
Qfx„x„'/

(5.10)

0.55 &7 &0.92, (5.11)

where the larger values of y tend to result from large V,b
and large a, .

A search of all operators of dimensions 5 and 6 shows
that only three values of y occur in this range: y=

3

and the sigh of 8/A was chosen to make V,b positive.
Experimental values for V,b and m„ together with the
predicted value of m, (a, } imply that allowed values of g
must fa11 in the range
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and —,', resulting from the following operators:

X 3
=2

1
(1 } 16z45z410 163,

(2) 16z45z410 163,
45~

1

(3) 162 10 163,
&524

1 1

(4) 16z 10 163;
4524 45~

1 1

(5.12a)

While we have argued that this is a natural division, it is
not obvious that it is a necessary one. In Sec. VI we men-
tion a numerical search for all possible models with the
texture of (5.1) with the z; and z Clebsch factors coming
from operator (4.12), which we have already proved is
unique. The result of this numerical search is just the
models described by the 22 operators of Eq. (5.6) and the
23 operators of Eq. (5.12). These well-motivated models
are the unique ones of this texture.

Thus, without any loss of generality, we are now able
to write the GUT-scale Yukawa matrices which result
from this texture as

U= —
—,', C x„'8

4524
(5) 16z45z410 163,

(6} 16z 10 163,'
4524 4524

1 1

9

(5.12b) 0 C 0

0= C Ee'~ xd8

0 xd8 A

0 C 0

(5.14)

(7) 16z10 163,
1

451

(8) 16z10 z 163,
45'-L

451

(9) 16z10 163 .
458 —L

451

(5.12c)

16210 45145 y 163 . (5.13)

At first sight, the Georgi-Jarlskog texture seems to be in
confiict with the idea of up-down SO(10) mass relations:
U2z=0 but Dzz+0, and Uz3/0 but Dz3=0. We find

that this is not the case. The Georgi-Jarlskog predictions
result with the 23 operator of Eq. (5.13) and any of the 22
operators of (5.6). The condition A, , =A,b, which was

not part of the original Georgi-Jarlskog scheme, implies
that y= 1 results only if a, and V,& are uncomfortably
large, so we do not consider it further.

We have written down the most general set of 22 and
23 operators which follow from the assumption that A.„PG

and A,, are dominated by the 22 operator, while A,, and
G G

V,b have contributions only from the 23 operator.

In Eqs. (5.12) we label the operators (1)—(9}and will use
these numbers also to denote the corresponding models.
If slightly larger values of V,& and a, are accepted, the
case g=1 is also allowed. This case has been studied
previously [6] and arises when A, , =A, b is imposed on

the Georgi-Jarlskog texture, which has xd =0 and
x„' =x„and, therefore, y= l. It is interesting to note that
this can be quite simply obtained by the operator

8= C 3Ee' x'8
0 x,8

m, 8
=vg, /x„x„'/

t
(5.15)

with m, determined from Fig. 1(a) and Eq. (4.8). Thus
B/A actually depends on two inputs m, and mb, and on

a, . The ratio C/A is obtained by taking the determinant
of the lepton Yukawa matrix of Eq. (5.14) and dividing by
A,3:

tG

p ge gp C 6I
e

A
(5.16)

We are left with the determination of E and P from m„
and sin8c. Diagonahzation of the hcavy 2 X 2 sectors of
the 0 and E matrices gives

A
=3—+1—25,cosg+ 5, , (5.17a)

~s E 2=—+1—25d cosP+ 5d
~b G

The unique z;,z,y;,y Clebsch factors have been shown

explicitly, while the x, ,x parameters allow for the possi-
ble Clebsch factors which follow from the 23 operators of
Eq. (5.12).

The fermion masses and mixing angles depend on six
free parameters: A, B, C, E, P, and tanP. We will now
give the six equations that fix these parameters in terms
of m„m„, m„m„mb, and singe. A and tang are given
in terms of mb and m, in Eqs. (4.10) and (4.11). BiA is
determined from m, via the equation

'2

We have specifically allowed for the possibility v&0 & v& in or-

der to obtain models with y & 1.
=—(1—5dcosg),

A
(5.17b)
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where the last step involves the approximation ~5d ~
&&1,

valid in all 9 of our models. Here
3XdXd

, 5, .
XeXe

(5.27b)

I

5, =
XeXe B2

AE '

B2
AE

(5.18a)

(5.18b)

The signs of 5, and 5d will be crucial: in (5.27) it is un-
derstood that 8, and 82 have been chosen in the first qua-
drant. Finally, using the determined values for C/A and
B/A in (5.23) gives

Scaling (5.17a) to low energies gives

mp =3 —Q 1 —25,cosg+ 5, e
gp, 3I

m, A
(5.19)

which provides one equation for E and P.
The phase P of the Yukawa matrices difFers in general

from the phase P of the Cabibbo-KM (CKM} matrix. In
the "22" texture P =P„—Pz = —

Pd and the di8'erence be-
tween P and Pd is small: P Pd =5—&. In all nine models
of interest 5d is less than 0.1, and in most less than 0.01,
hence in the rest of this section we take P= —P. A rela-
tion to determine P follows from

sin8c =
I V„, I

=
I
s

&
+c,sze

so that P is determined from

(5.20}

cosP=
sin 8g s1 $2

2S1S2
(5.21)

where the angles 8, and 82 are given by

tan8, = =—(1+5dcosg),C C

$G

(5.22)

C$2=
27k,

1 AC

27Xu Xu B
(5.23)

tan81 ——3

' 1/2 ' 1/2
me

Qe
(1—5 cosP), (5.24)

where we have defined 5 by

1 —5 cosP= +1 25, c—os/+5—,(1+5dcosg) . (5.25)

In most of our models ~5, ~
&& 1, in which case 5=5, —5d.

Equation (5.24) is alternatively written as

The ratios B/A, C/A, and E/A necessary to evaluate s,
and s2 are obtained from (5.15), (5.16), and (5.19). The
sign of B/A has been chosen to make s3 &0, and we now
choose the sign of C/A and E/A to make s, and s2 posi-
tive. Thus, without loss of generality, the angles 81, 82,
and 83 are all taken to lie in the first quadrant. Hence we
have

1/2 1/2m p mf gt. g~ 3I +I —3I$2= t b

27 mm 9e lp
(5.28)

The analytic determination of cosp in a particular model
is not completely straightforward. This is because cosP
occurs in both (5.26) and (5.27a) so Eq. (5.21) becomes a
polynomial of high order in cosP. The analysis simplifies
considerably for the models with ~5, ~

&&1, since then the
square root factor in (5.27a) may be neglected in estimat-
ing 5, .

This concludes the parameter determination: A from
m&/m, via (4.10); tanP from m, via (4.11); B/A from

m, /m, via (5.15); C/A from m, m„/m, via (5.16); E/A
from m„/m, via (5.19);P from sin8c via (5.21).

Before proceeding to the eight predictions, we show
why the predictions for m, /md disfavors some of the
nine models. From the determinant of D and E we find

2 '2
mg md 1 my me gp 11— 1—

m, 9 m, m„ri, (1—5cosg)2md

(5.29}

Ix,x, m,
5, = —0.043

1.27 GeV
180 GeV 23

m, /m&

where 1 —5 cosP is given in (S.25). This reproduces one
of the predictions of Georgi and Jarlskog [4] in the limit
that 5, d ~0: m, /md =25. 15. Since this is a high value
for m, /md, a very interesting feature of the present mod-
els is that this number is modified by 5, d. We consider
models with m, /md larger than 2S.15 to be disfavored.
In general, the deviation of m, /mz from 25.15 will de-
pend on the numerical value of the inputs m„mb, and
a, . This dependence, and the quantitative value of
m, /md will be discussed in Sec. VI. However, the quali-
tative behavior of m, /mz can be understood from our
analytic formulas.

To understand the qualitative deviation of m, /mz, the
crucial question is the signs of 5 and cosP for the nine
models. The signs of 5, and 5& are determined by the
signs of x,x,'/x„x„' and xdxd/x„x„' which are listed in
Table II.

Using (5.29), one can rewrite (5.27a) approximately as

1/2

s, =0.196(1—5cosg) . (5.26} X(1%0.05) (5.30)

Inserting B/A and E/A into (5.18a) gives
I

, Ql —25,cosg+8,
X X„ m mf 'g 'g

—3I, —Ib+3I~Xe

and

(5.27a)

for a, (Mz)=0. 115+0.005. Thus, for many models, ~5, ~

and ~5&~ are much less than unity, in which case 5 ap-
pearing in (5.29) is given by 5=5, —fid. The sign of 5 is
then given by the sign of

3XdXd X XeC=
XuXu
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TABLE II. Useful combinations of Clebsch factors for the nine models.

C=

XeXe

XuXu
r

XdXd
f

XuXu

I
XuXu

Nl /Nld

cosP
sing

—1.5

1

6

26.7
2
3

0.35
0.94

—13.5

1

6

14

1

2

1

18

—2
3

24.8
2
3

0.24
0.97

4.5

1

18

—4.7

23.6
2
3

0.16
0.99

—6.75

1

12

6.5

2.25

1

36

—2.2

24.2
5
6

0.20
0.98

1

9

25.3
8
9

0.27
0.96

1

9

—2
3

24.8
8
9

0.24
0.97

1

9

—8.7

which is also listed in Table II. Consider the models with
5 positive: if cosP is also positive m, /mz will be in-
creased above 25.15 and the models disfavored. For
models 1 and 7, 5, d «1 and 5=5, —

5& is positive. Be-
cause 5 «1, (5.21) determines cosP to be positive: these
two models do indeed give values of m, /md larger than
25.15. The values of m, /md, as well as cosP and sing are
shown in the table for a, (Mz ) =0.115. Note that for the
models where c is not large, Eq. (5.21) can be approximat-
ed as cosP =0.26/( 1 —0. 13c ); where we have used
a, (Mz)=0. 115 and m, =180 GeV.

The other two models with

3XdXd XeXec= )0
XgX~

are models 2 and 5. In these cases i5, ~
is not much less

than unity, so the analysis is more complicated. Howev-
er, it can be shown that s, )0. 196 (necessary for
m, /md & 25. 15) can only occur for a very narrow range
of 5, near 0.40. Using Eq. (5.30) the central values of 5,
for models 2 and 5 are 0.59 and 0.30. To obtain an ac-
ceptable solution with 5, near 0.40, parameters must be
chosen far from their central values. While not excluded,
we find these two models to be highly disfavored: in
Table II we write "D" for disfavored. However, if ex-
treme values of a, are used in these theories, m, /mz can
vary over the entire acceptable range.

Models 3, 6, and 8 all have i5, i «1 so that 5=5, —5d
and is negative. Furthermore, since cosP is positive for
these three models, m, /md is reduced slightly below
25.15. For models 4 and 9, the small i5, i approximation
is no longer valid; nevertheless, one finds that in these
models m, /md is decreased even further, so that, from
the viewpoint of m, /md, these are the preferred models.
However, in comparing with data it is important to study
predictions for m„/md simultaneously with m, /md, and
this will be done in the next section. From the numerical
results of Fig. 5 one can see that m, /md decreases in the
sequence of models: 3 and 8, 6, 4, 9. This can -be under-
stood as successively larger deviations from the Georgi-
Jarlskog result due to the Clebsch factor

shown in Table II.
We now give analytic formulas for the eight predic-

tions. The top mass m, and P can be predicted from the
analysis of the heaviest generation. With A and therefore
I; determined from (4.10),

cosP=
sr +4r

b

av11,grl
PQ
ba —6ri+ 21b +4r

(5.31)

(5.32)
a a

RG scaling (5.9) to low energies gives
' 1/2

m (.Ib It ) /2b
V,b =y

m,
(5.33)

m,m 1 I~ 5I, Ib —3I,
37 m, m, mb 1 —icos/

(5.35)

From the form of the KM matrix of Eq. (4.3) one finds

V„& /V, b =s2, and using (5.28) this immediately gives

V„b

V,b

1/2 1/2
l me mp f +C 9V 3I +I 3I

27 m m 91/291/2
(5.36)

where y is given in (5.10). This result illustrates how our
predictions have the form:

Predicted GUT Input RG
Quantity Clebsch Quantity factor

The strange mass is obtained from (5.17b):

m p 1 'rig 'gg 3r~+r, mr, —
s mb

b t

3 m, 1 —5cosg gb g„
which can be simplified using (4.11) for mb/m, . The pre-
diction for m, /md follows from the determinant of D
and E and is given in (5.29). The prediction for m„/md
follows from the determinantal relation (4.13) with m,
from (5.34):

c= 3XdXd XeXe
I

X„X„

The final prediction is for the amount of CP violation in
the KM matrix, which we choose to specify via the re-
phase invariant quantity J [21]:
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J=Im Vud ~tb ~td ~ub —S1$2$3$f
2

2 m e
(1 ~ ~)

9~ 2I, +21b 3I—
~

9 m, Qe
(5.37) 3/2

23

m, /mz
x

5/6

ing the same central values as above, we find the kaon CP
impurity parameter e is given by

IEI =2.26X10
where P is obtained from (5.21}. Since s& is determined to
be near unity, the value of J can be obtained to within a
factor of 2 from

mt

180 GeV

' 1/2

(1+0.03) (5.43)

' 1/2
180 GeV

t
(1%.03), (5.38)

=0.063 (1+0.1), (5.39)

where the range corresponds to a, (Mz)=0. 115+0.005.
Note that the predicted values for the running mass
m, =m, (m, ) should be used in these equations and in the
remainder of this section. For the relevant mb and a, the
predicted top pole mass, M„should be read from Fig.
1(a), and converted to the running mass using Eq. (4.8).

Predictions for m„m„/md, and J can be obtained
from Eqs. (5.34), (5.35), and (5.37):

' 1/2
rn, /mz

23
m, =(168+19) (5.40)MeV,

Pl„ mt=0.71
md 180 GeV

2 ' 1/2
m, /md (1+0.13),

23

(5.41)

J=4.6X 10-'y' 23
m, /md

1/2

sing(1+0. 03) (5.42)

for a, (Mz }=0.115+0.005. Note that Eq. (5.29}has been
used to express (1—5cosg) in terms of m, /md. From
Table II it can be seen that sing = 1.

Finally, we give approximate formulas for CP violation
in K and B meson processes, and for B B mixing. Us-

P7l eJ= =3X10
9 m,

In summary, our eight predictions for P, m„V,b, m„
m, /md, m„/md, V„&/Vb, and J are given in (5.29) and
(5.31)—(5.37). An interesting feature of these predictions
is that, of the six Clebsch factors which appear in the Yu-
kawa matrices (x„, x„', xd, xd, x„and x,'), only three
linear combinations occur in physical observables:

x= lx„—xd I/v'lx„x„'
I

and x,x,'/x„x„' and xdxd/x„x„' which occur in 5, and
5d. The combination y occurs in the V,b prediction and
we have already seen that this limits us to consider only
theories with g =—'„—„'and 9.

In comparing the nine models, it is useful to recall that
the m, and tanP predictions are essentially universal.
The distinctions between the models appear in the other
predictions, which we now evaluate for inputs of
mb =4.25 GeV, m, = 1.27 GeV and a, (Mz) =0.115
+0.005. In this case we find

for a, (Mz)=0. 115+0.005. A lattice calculation gives

Sx =0.72+0.06 [22], where the error includes only the
uncertainty due to the continuum extrapolation. Other
calculational approximations, such as the quenched ap-
proximation, lead to additional uncertainties. For BdBd
mixing we find

hm +a
d P 1 28 ps

v'g fs
175 MeV

' 1/2

5/6

'2

mt
X

m, /rn& 180 GeV
(1+0.06) (5.44)

showing that large y prefers smaller fs (which is normal-
ized such that f =135 MeV}.

The CP-violating parameters sin2a and sin2P measured
in 8 ~~+m and 8 ~/X, are given in our models by

sin2a = —2 cosP sing,

2c1$1$2 C1$2
sin2P= sing 1+ cosP

$2 $1

(S.4Sa)

(5.45b)

From Table II it can be seen that the six models where c
is not large have Icos/I (0.35. In this case, the factor
(c,s2/s, )cosp is less than 0.1 and can be neglected in
(5.45b). Since these models all have sing=1, we find
sin2p= 2s ls2/s, . Using s

&
from Eq. (5.26) and

s2 —-0.063(1+0.1) we find that these models all lead to
essentially the same P:

sin2P =0.54
23

me /nld

' 1/2

(1+0.15) . (S.46a)

On the other hand, these six models do have variation in
cosP, as shown in Table II, so they can be distinguished

by sin2a:

sin2a= —(0.66, 0.47, 0.32, 0.40, 0.52, 0.47) (5.46b)

for models 1, 3, 4, 6, 7, and 8, respectively.
These numbers, and the predictions of Table II, are for

a, (Mz)=0. 115 and m, =180 GeV. The full predictions
for these models, and also for models 2, 5, and 9, where c
is 1arge, wi11 be given in the next section. In Appendix D
we show that the predictions of this section survive, with
certain modifications, even if there are large supersym-
metric threshold corrections to A, b which give a lighter
top quark. In Appendix E we discuss the extent to which
these predictions are affected by GUT threshold correc-
tions, including relaxation of the assumption that both
Higgs doublets lie in a single 10.
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VI. A QUANTITATIVE STUDY OF THE "22"TEXTURE

In this section we present a quantitative analysis of the
eight predictions in each of the models with "22" texture.
To obtain the numbers quoted in this section we numeri-
cally integrated the full two-loop renormalization-group
equations from the grand unification scale down to the
weak scale. At the grand unified scale, a small threshold
correction was applied to the strong-coupling constant in
order to obtain a prescribed value of a, (Mz). At the
weak scale, one-loop matching corrections were applied
to account for a degenerate spectrum of superpartners.
For definiteness sake, we show our predictions for
MsUs Y

=M„„&= 180 GeV; however, we have varied both
these scales separately and our results do not change by
more than a few percent. At the weak scale, the Yukawa
couplings were diagonalized and the mixing angles were
determined. The fermion masses obtained at the weak
scale were subsequently evolved to three loops in QCD
and two loops in QED from the weak scale down to the
larger of either the particles mass or 1 GeV.

In addition to the numerical evolution described above,
we have performed a numerical search to discover all
possible models having the "22" texture. Using the
uniquely viable operators 0,2 and 033 discussed in Sec.
IV, we searched through all possible pairings of operators
022 and 023 up to dimension 6. In this search, we
demanded m, =199+66 MeV, 0.5(y&1, where V,b
=yam, /m„0. 03& V„b/V, „&0.1, 17&m, /md &26,
and 0.2 & m„/md &0.7. All of the models which passed
these constraints simultaneously had a "22" operator
with a 0:1:3Clebsch factor, thus establishing the unique-
ness of the Ozz operators in Eq. (5.6). Furthermore, the
search resulted in nine acceptable "23"operators, which
are precisely those given in Eq. (5.12), and we now turn

to the predictions of these nine different "22"models.
Because the large hierarchy within the third generation

is explained by the dynamical factor tanP, and because an
acceptable mb /m, requires a top quark Yukawa coupling
of order unity, the top quark mass and tanp are predicted
to be large. As shown in Fig. 1, 166 GeV&M, (192
GeV, and 51&tanp&63. The predictions for the top
quark mass and tanp shown in Fig. 1, arise when all three
third generation Yukawa couplings are equal at the grand
unification scale. Perturbative corrections to this equali-
ty occur when the operator 023 has large Clebsch factors
since the third generation Yukawa couplings are equal to

A, =A +(x +x' )B (6.1)

at the unification scale. This effect is numerically
insignificant in most models, because typically
x;B/3 = V,b. However, V,b actually constrains only
(x„—x„)B/A, and occasionally some x, and x Clebsch
factors, particularly those with i =e, happen to be large.
Of the nine models, this is most significant in model 9
where the top quark mass prediction is decreased by
5-10 GeV.

The nine "22" texture models separate into three
groups according to their predictions for V,b

..
V,b =yam, /m, with y= —'„—'„—', . These three classes of
V,b predictions are shown in Fig. 4 along with the predic-
tion for y=1. The values of V,b obtained from exclusive
B decays using heavy quark effective theory favors the

3
and —,

' models. Figure 4 also shows that
the Harvey-Ramond-Reiss (HRR) [4] relation V,b
=Qm, /m, is incompatible with a framework which
unifies the third generation Yukawa couplings because it
leads to unacceptably large values of V,b.

A second feature which distinguishes the nine models
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FIG. 4. V,b =X+m, /m,
plotted as a function of a, (Mz)
for y=3 6 9 and 1. The re-

gion between the dashed (dotted)
curves is the range of predictions
for V,b for m, (m, ) = 1.27
+0.05(0. 1) GeV and mb(mb )=4.25+0. 1(0.2) GeV. The
solid curve gives the prediction
for V,b with central values of m,
and mb. Some of the curves are
not continuous across the figure
because the GUT-scale Yukawa
coupling becomes nonperturba-
tive for small mb(m&) and large
a, [see Fig. 1(a)].
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m,

Qt mg

2

mg

2

(6.2a)

M» M» —MM 2

(6.2b)

is the predictions for rn, /mz. We can compare these pre-
dictions to the chiral perturbation theory determination
of light quark mass ratios. Second-order chiral perturba-
tion theory along with Dashen's theorem can be used to
determine the light quark mass ratios m, /mz and

m„/mz in terms of the pseudoscalar meson masses

[23,24]:

The theoretical uncertainties in Eq. (6.2) can be cast as an
uncertainty in Q. Figures 5(a), 5(b), and 5(c) compare the
light quark mass ratio predictions of the nine "22" mod-
els. When the inputs are restricted to the ranges
rn&(mb)=4. 25+0. 1 GeV, m, (m, )=1.27+0.05 GeV, and

a, (Mz)=0. 120+0.01, only models 2, 4, 6, and 9 can
yield successful predictions with models 4, 6, and 9 pro-
viding the most successful predictions. The prediction of
the light quark mass ratios gives a preference for low
values for a, (Mz) in all models.

As discussed at the end of this section, the g =—' mod-
3

els do not have enough CP violation to explain the kaon
CP impurity parameter e. So the requirement that these
models account for the observed CP violation eliminates
models 1-4, leaving us with two remaining candidates: 6
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FIG. 5. (a) Light quark mass ratios for the y= —models. The mass ratio m, /mz is plotted as a function of m„/mz. These values

are obtained for the range of inputs: mb(mb)=4. 25+0. 1, m, (m, )=1.27+0.05, and a, (Mz)=0. 110—0.125. The dependence of
m„mz on these input parameters can be obtained from equation 5.35, or, more accurately, from Figs. 6 and 7 for models 9 and 6, re-

spectively. The quarter ellipse is the second-order chiral perturbation theory prediction for th 1' ht k
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FIG. 6. m, /md and V,b are
plotted as a function of m„/md
for model 9. The same set of in-

puts has been used in both
figures: mb(mb ) =4.25+0. 1,
m, {m, ) = 1.27+0.05, and

a, (M ) =0.110, 0.115, 0.120.
For each value of a, {Mz) the
prediction is given by five solid
lines, each of which corresponds
to a definite value of mb(mb),
which steps by 0.05 GeV be-
tween lines. Along each line the
input value of m, (m, ) is varied.
The predicted value for m„/md
decreases as either mb(mb ) or
m, (m, ) is increased.

0 . . . , I. . . , I. . . , I. . . , I. . . ,
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mu/Irl g

. . . , I. . . , I. . . , I. . . , I. . . ,

0.0 0.2 0.4 0.6 0.8 1.0

rn„/md

and 9. As an important discriminator, we show that
correlations between the predictions for V,„and m„ /md
tends to disfavor model 9. For all nine models, predic-
tions for m„/md small enough to agree well with the
chiral perturbation theory determination occur for large
values of the inputs m&(m„) and m, (m, ), and small
values of a, (Mz ). Each of these leads to a larger value of
V,&. For example, with model 9 m„/md (0.6 requires

V,b &0.052. This competition is shown in Figs. 6 and 7

for models 9 and 6, respectively. It may be over zealous
to say that model 9 is ruled out by this analysis because
there are uncertainties in these calculations at the level of
a few percent, and we have used a conservative range of
inputs in this analysis. However, the empirical value of
fermion masses and mixing angles seems to show a
preference for model 6.

At the level where they can be probed experimentally,
the predictions for m, and V„~/V, t, are fairly universal
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FIG. 7. m, /md and V,b are
plotted as a function of m„/md
for model 6. The same set of in-

puts has been used in both
figures: mb(mb ) =4.25+0. 1,
m, (m, ) = 1.27+0.05 and

a, (Mz) =O. 115, O. 12O. For each
value of a, {Mz) the prediction
is given by five solid lines, each
of which corresponds to a
definite value of mb(mb). which
steps by 0.05 GeV between lines.
Along each line the input value
of m, (m, ) is varied. The pre-
dicted value for m„ /mq de-
creases as either mb {mb ) or
m, (m, }is increased.
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between the nine "22" models. For the sake of
definiteness, the model 6 predictions are shown in Figs. 8
and 9. Both predictions are in excellent agreement with
current determinations. The successful prediction for the
strange quark mass re6ects the Georgi-Jarlskog factor of
3, which is incorporated in the operator 022.

The final prediction for these models is for e, the mea-
sure of CP impurity in EL and Ez. The dominant contri-
bution to e comes from the standard model box diagram
amplitude, which may be written as a function of CKM
elements and quark masses multiplied by a QCD matrix
element Blr [27]. Using this result, together with the
measured value of e and our predictions for quark masses
and CKM parameters, we can give a prediction for the
matrix element Bx. In the theoretical formula for e [28]
we use input quantities renormalized at p such that
a, (p) =1, hence the predicted quantity is Sx. Figure 10
shows the range of predictions for Sx for the nine "22"
models. Five of the nine models predict values of Sx that
agree well with the lattice determination of
Sx =0.72+0.06 [22], where the error includes only the
uncertainty due to the continuum extrapolation. Other
calculational approximations, such as the quenched ap-
proximation, lead to additional uncertainties. The g=

3

models give insufBcient CP violation, and can be excluded
if we demand that the observed CP violation in the kaon
system arise from the CP-violating phase in the CKM
matrix.

Predictions for sin2a and sin2P provide a complimen-
tary method of distinguishing and testing the nine "22"
models. Most importantly, measurements of these angles
from CP-violating asymmetries in B decays provide a po-
tentially more stringent test of these models. Figures
11(a)-11(c)display the sin2a vs sin2P predictions of mod-
els 1-9. Also shown is the expected size of the experi-
mental error bar for an integrated luminosity of 10 '

cm at an asymmetric B factory. Such measurements
could exclude our entire scheme. They could also distin-
guish between some (e.g., 5 and 6) but not all (e.g., 7 and
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FIG. 9. The strange quark mass predictions is plotted as a
function of a, (Mz ) for model 6.

In addition to these predictions, the set of inputs in Table
V predicts

8) models.
Finally, we provide three examples of particular pre-

dictions to demonstrate the degree of simultaneous suc-
cess each class of model can achieve. In addition to these
predictions, the set of inputs in Table III predicts

sin2a = —0.32, sin2P =0.39, sin2y =0.66,
and

J=1.75 x10-' .

In addition to these predictions, the set of inputs in Table
IV predicts

sin2a = —0.46, sin2P= 0.49, sin2y =0.84,
and

J=2.6x10 '.
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FIG. 8. V„b/V, b is plotted as a function of a, (Mz) in model
6. The error bars at the left of the graph represent several
determinations, together with the uncertainties, of V„b/V, b

from 1992 CLEO data on the end-point spectrum of semilepton-
ic B decays [26].

FIG. 10. The range of 8» predictions for models 1-9. The
input quantities for this Sgure were evaluated at a scale p where

a, (p)=1. With the exception of the y=
3 models, all these

determinations agree well with the lattice estimates of roughly
0.6.
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TABLE III. Particular predictions for model 4 with a, (Mz ) =0.110.

Input quantity

mb(mb )

m, (m, )

m, (m, )

Input value

4.35 GeV
1.777 GeV
1,32 GeV

Predicted quantity

ta
Vcb

Predicted value

166 GeV
51
0.043

m~
me

V„,

105.6 MeV
0.511 MeV
0.221

V.b/V. b

m, (1 GeV)

m„/md
m, /md

Q.046
147 MeV

1.1
Q.41

22.0

1.0
l{ = 2/3 (Models l —4)

(o)-

y = 5/6 (Models 5 —6)
1 0

0.8 0.8

0.6

{I) 0 4
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N 0 4
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FIG. 11. (a) sin2p vs sin2a for the y = 2 models. Predictions for the four y = 2 models are drawn over three different backgrounds

representing allowed regions. The area inside the solid curve shows the allowed region for theories in which the GUT-scale Yukawa
coupling matrices have vanishing (13}, (31), and (11) entries, m, /md and m„/md lie between the dotted curves of Fig. 5, and
V„&/V,b & 0.07. If this lower bound on V„b /V, b is reduced to 0.05 (0.03), the background expands to the dashed (dotted) curve. The
prediction for each model appears as a line, with larger values of sin2p corresponding to larger a, {Mz). (b) sin2p vs sin2a for the
y= 6 models. Predictions for the two y=

6 models are drawn over three different backgrounds representing allowed regions. The
area inside the solid curve shows the allowed region for theories in which the GUT-scale Yukawa coupling matrices have vanishing
(13), (31), and (11) entries, m, /md and m„/md lie between the dotted curves of Fig. 5, and V„b/V, b )0.07. If this lower bound on
V„b/V, b is reduced to 0.05 (0.03), the background expands to the dashed (dotted) curve. The prediction for each model appears as a
line, with larger values of sin2p corresponding to larger a, {Mz). (c) sin2p vs sin2a for the 2'= —models. Predictions for the three

9 models are drawn over three different backgrounds representing a]lowed regions. The area inside the solid curve shows the al-

lowed region for theories in which the GUT-scale Yukawa coupling matrices have vanishing (13), (31), and (11)entries, m, /md and
m„/md lie between the dotted curves of Fig. 5, and V»/V, b & 0.07. If this lower bound on V» /V, b is reduced to 0.05 (0.03), the
background expands to the dashed (dotted) curve. The prediction for each model appears as a line, with larger values of sin2p corre-
sponding to larger a, (Mz ).
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TABLE IV. Particular predictions for model 6 with a, (MZ )=0.115.

Input quantity

mb(mb)
m, (m )

Input value

4.35 GeV
1.777 GeV

Predicted quantity Predicted value

176 GeV
55

m, (m, ) 1.22 GeV V,b 0.048

m„
me

V„,

105.6 MeV
0.511 MeV
0.221

V„b /V, b

m, (1 GeV)

m„/mz
m, /mq

0.059
172 MeV

0.64
0.64

24.0

and

sin2a = —0. 14, sin2P=0. 59, sin2y =0.70,

J=3.6X10 '.

tor into the definition of y in (7.2).] For any given model,
the values of x ' (and z ') can be obtained from Table I.
By making phase rotations on the left and right matter
multiplets, this form for A, , can be brought into that of
(5.1), (P;,P,'=0) with y,. =0:

VH THE "23"TEXTURE

z;C 0

0 x;exp(ig, )B

x,'exp(i P,' )& (7 1)

wherei =u, d, e,
~y(&)

x "e' ' =x "+ye'&x."
l ia t ib (7.2)

is the complex linear combination of Clebsch factors aris-
ing from the operator 023 =023+ye' Oz3. [Strictly
speaking, we should distinguish between the y which ap-
pears in the linear combination of operators and the y
which appears in the linear combination of Clebsch fac-
tors contributing to the Yukawa entries. These y's are
actually related by a real multiplicative constant, because
the Higgs vacuum expectation values which contribute to
0/3 ' may be differently normalized. We absorb this fac-

In this section we study the second GUT scale Yukawa
texture which could arise from an SO(10) fiavor sector
with just four operators. The four operators of this "23"
texture are shown in Eq. (3.2), and lead to Yukawa ma-
trices which can be written in a form analogous to (5.1):

zC

0 e ' 0 A, ; 0
0 0 1 0

—if,. 0
0 1

c2 s2 0 ] 0 0 e " 0 0
—iPu

s2 c2 0 0 c3 $3

0 1 0 —s c 0 1

(7.3a)

Approximate diagonal forms for these matrices at the
GUT scale can then be obtained by essentially the same
sequence of transformations as was used to diagonalize
the matrices (5.1): (i) In the heavy 2X2 sector rotate the
left-handed fermions by angles a, =x,8/A and the
right-handed ones by a,' =x 8/A; (ii) write the resulting
22 entry as y;E, ; (iii) diagonalize the light 2X2 sector by
rotations p;=z;C/y;E; and p,'=z C/y;E; on the left-
and right-handed fermions, respectively.

Let 83 = —a„, 8„=—az, 82= —P„, 8, = Pz, then the-
transformations in the left-handed up and down sector
are

TABLE V. Particular predictions for model 9 with a,{Mz )=0.120.

Input quantity

mb(mb)
m, (m, )

Input value

4.35 GeV
1.777 GeV

Predicted quantity

M,
tanP

Predicted value

180 GeV
58

m, {m,) 1.27 GeV V,b 0.050

mp
me

V„,

105.6 MeV
0.511 MeV
0.221

V.b/V. b

m, (1 GeV)

m„/mz
m, /mz

0.071
172 MeV

0.43
0.75

23.0
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s) c) 0 0 c4 $4

0 —s, c, 0 1

(7.3b)

—igd
c, —s, 0 1 0 0 e 0 0 k, /A, ,

k, /A, b

2
V,b

A., /A, ,

/x„x„'f

iPd i$u 2x e

fx„x„'/

(7.4b)

(7.4c)

The resulting KM matrix, V= V„Vd, is not of the form
(4.3) for general choices of P;,P,' (although one more
phase redefinition can bring it into this form).

As discussed above and proved in Appendix C, once
the 33 operator has been chosen the choice of the 12
operator is unique. It is only the choice of 23 operators
which remains to determine the model. This selection is
constrained primarily by the crucial relation (5.4e),

(5.4e)

A,, /kb

k„/k, /x, x,'/
(7.4a)

which indicates a division into two small parameters and
two large ones. In the case of the "22" texture, " the
small parameters were obtained from the 23 operators,
and the large ones from the 22 operators. Here, no such
separation is possible; all four parameters are generated
by the same linear combination of operators. The hierar-
chy must therefore result from a set of Clebsch factors
which allow cancellations between the contributions from
023 and Oz3 to both V,& and A,, /A, „for similar values of
y exp[i/]. This cancellation implies that the hierarchy of
Eq. (5.4e) is unnatural, and it is for this reason that we
prefer the "22"models to the "23"models.

Unfortunately, the complex nature of 023 in the 23 tex-
ture also makes these models considerably less amenable
to analytic treatment than were the 22 models. The
reason is clear. Whereas in the 22 models [Eq. (5.1)] the
complex phase P which appeared in the 22 entry of I,,

was the same for i =u, d, e, in the 23 models the one in-

put phase P appears as six distinct phases P;, P,' in the
Yukawa matrices. The relation of these PI to P is
Clebsch dependent and hence depends on the particular
model.

We have therefore undertaken a numerical search of all
possible dimension-five and -six operators 023 satisfying
our dynamical hypotheses. (There are approximately
20000 such operator pairs. ) If any significant fraction of
these models reproduced the available experimental data,
then the probability of being able to make useful predic-
tions from this approach would be small; for any realisti-
cally achievable experimental error bars, the predictions
would likely be dense in the experimental plane. For-
tunately, it is very likely that any individual model will
work.

The search was performed by first considering the
GUT-scale predictions for the quark and charged-lepton
mass ratios and mixing angles, which [to leading order in
the small quantities (B/A ) and (CI& )] are

»nc 1 1/27+, ~x,x, ~
.

P XdXde x x„e

(7.4d)

(The predictions for the first generation masses being
fixed by the 12 operator. ) Here all Yukawa couplings I,,
are evaluated at the GUT scale.

Although these expressions involve ratios of masses at
the GUT scale, we understand their running well enough
to be able to make some definitive statements. In particu-
lar, (A,, /A, „)=(m, Im„) and sin8c essentially do not run
from the GUT scale down to low energies, so that
(sin8c/Qm, /m„)G-0. 015, while, as discussed above
[Eq. (5.4e)], ( A,, /A, „}G=

—,
' in any theory where

b A,, at MGUr. Since x; e ' =x;, +ye x,I,",
Eqs. (7.2a) and (7.2d) determine ye'&. Unfortunately,
they cannot be solved analytically for arbitrary values of
x,' and x,"b'. Therefore, for each possible choice of 23-
operator pair, we solved Eqs. (7.2a) and (7.2d) numerical-
ly to find the allowed value(s) of y and P for a small range
of input values about the central values given above.
This range allows for experimental uncertainties, for any
small amount of renormalization, and for the difference
between the exact and leading-order eigenvalues of the A,

'

and the rotations needed to diagonalize them. (The latter
being particularly crucial for sin8C. ) For each case we ei-
ther obtained values for y and P or discovered that the
equations have no solution. For those models for which
values of y and t)) were obtained, Eqs. (7.2b) and (7.2c)
were used to predict the GUT-scale values of (1,, /1,, ) and
V,b/+(A, , IA, , )—=y. As shown above [Eqs. (5.4) and
(5.11)], the allowed ranges for these quantities are
0.55 &y &0.92 and 0.085 &(A,, /A, , }6&0. 19.

Demanding that (A,, /A, , )G and g lie within their al-
lowed ranges, we were able to reduce the number of pos-
sible 23 models to less than 100. These we explored indi-
vidually by running them down from the GUT scale to
low energy using two-loop renormalization-group equa-
tions and appropriate threshold effects. The values of A

and tanP were determined (as described in Sec. IV above)
by fixing the values of (m&/m, ) and m, . The remaining
four parameters of the models —B, C, y, and P—were
used to fit m„m„, m„and sin8&. Predictions were ob-
tained for the eight remaining physical quantities in the
quark-lepton mass sector: m„m„(m, /md ), (m„/m„),
Vd„V„&/V, &, tanP, and Bx- (or the P. Most of the mod-
els are found to fail for one reason or another. For only
four choices of 23 operators can the six inputs quantities
be self-consistently reproduced as well as giving
V,„=0.043+0.007 and values of md /m, vs m„/md con-
sistent with experiment:
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(A) 16245, 10( 1/451)163+ye'~1621045&4524163,

(B) 16~45,45, 10163+ye '~16&45241045&4163,

(7.5a)

(7.5b)

200 s I
I

I I I I
I

I I I I

(g 180

~ 160

7Q I I
I

I I I I
I

I I I I

~ 60

~ 5o

(C) 16245i45~410163

+ye'&16&45, 10(45s L /4524)163, (7 5c.)

(D ) 16245145&10163+ye '~162452410( I /45
&

) 163 .

(7.5d)
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I

I I ~ ~
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Of these four models, (D) can reasonably be excluded
because it predicts V„b/V, &

&0.035, considerably smaller
than the accepted experimental value. V„&/V,& cannot
be increased without increasing V,b above 0.053. The
other three are consistent with all available experimental
data against which we have compared them.

The models (A), (B), and (C) make seven successful pre-
dictions for Savor parameters. Vfe present in Figs. 12,
13, and 14 the predictions for m, (m, ), tanP, m, (l GeV},
V,&, and V„b/V, & vs a3(Mz), and (m, /md) vs (m„/md),
for models (A), (B), and (C) respectively. Several observa-
tions are in order. First, there is a definite lack of univer-
sality in the predictions for m, and tanP vs a3(Mz).
Model (A), in particular, shows notably different behavior
than (B) and (C), with a wider range of permissible values
for both m, and tanP, and consequently for a3(Mz). In
fact, if future experiments support larger values of
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FIG. 13. Predictions for model (B) (same as Fig. 12).

a3(Mz ) ( ~ 0.12), then only model (A) would remain vi-

able, with a definite prediction of large values for both m,
and tanP.

In all three "23" models the top quark can be lighter
than in the "22" models. This is due to the modification
of the third generation Yukawa coupling eigenvalues by
the 23 entries in the Yukawa matrices. In the "22"mod-
els these 23 Yukawa entries are typically small, because
they are generating the small quantities V,b and A,, /A,
Hence, the correction which they provide to the third
generation Yukawa eigenvalues is small (with the notable
exception of model 9 where x, is anomalously large). In
the "23" models the situation is considerably different:
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FIG. 12. Predictions for model (A). The variation of the pre-

diction with a3(Mz ) is shown for the top quark pole mass M„
tanP, m, (1 GeV), V,s„and V„b/V, b. The prediction for m, /md

vs m„/md is also shown. Superpartners are taken degenerate at
200 GeV. The lines are for contours of 0.5', 1.0o, 1.5o., and

2.0u for input ranges of mb(m& )=4.25+0.25, m, (m, )
= 1.27+0.05, and sin8& =0.2205+0.0018. Thus, within the in-

nermost contour all three inputs mb(m&), m, (m, ), and sin8&

are within 0.5' of their central values. In some regions the
1.50. and 2o contours are indistinguishable.
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FIG. 14. Predictions for model (C) (same as Fig. 12).
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the 23 Yukawa entries must be much larger so that they
can account for the larger quantities A,„/A, and A,, /A, b.
The smallness of V,b and A., /A, , is due to an accidental
cancellation, as we have stressed. Thus in the "23"mod-
els the larger 23 Yukawa entries give considerable correc-
tions to the third generation Yukawa eigenvalues, allow-
ing top quark masses as low as 145 GeV.

All three of the "23" models give remarkably good
agreement with the values of m, /md vs m„/md derived
from experiment. These are unlikely to be useful in dis-
tinguishing between these models.

Tests of these models will come from more accurate
measurements of CP violation, V,~ and V„b/V, „. The
predictions for these quantities are correlated since in any
given model they must arise from the same set of inputs,
in particular, the same value of a3(Mz ). Using the exper-
imental value for the kaon CP impurity parameter e, we
can predict the QCD matrix element Sx, which is shown
in Fig. 15 for each of the three models. All are consistent
with the lattice result Sx =0.72+0.06 [22], where the er-
ror includes only the uncertainty due to the continuum
extrapolation. Other calculational approximations, such
as the quenched approximation, lead to additional uncer-
tainties. Notice that the prediction of Jx is less precise
in the "23" models than in the "22" models. This is
presumably a reQection of the fact that the "23" models
involve a degree of parameter tuning and have predic-
tions which therefore depend sensitively on the inputs.
In Figs. 16, 17, and 18 we show, respectively, the correla-
tion of Sx with V,&, of Sx with V» /V, ~, and of V ~ /V, „
with V,~. The very tight relationship between x and

V,&, particularly for models (8) and (C), should allow
these models to be tested, though not distinguished from
each other. If Sx &0.7, then all three models can be dis-
tinguished on the basis of their predictions for V„b/V, b.
Model (8) can be distinguished in any case by its predic-
tion of V„b/V, &

—-0.08, the others giving V„b/V, b
&0.07

for Sx & 1.5.

0 06 t & I i
(

g l I l
(

I I I ~

(
1 I ( I

(
I ~ I

0.05—

0.04—

0.03 0.5 1.5

FIG. 16. V.b vs Bz in models (A), (B), and (C). The range
corresponds to 2' variations of the inputs (see Fig. 12), and does
not differ greatly from the 10 allowed regions. The super-
partners are taken degenerate with mass 200 GeV.

In Fig. 19 we plot B~ F~ IGeV, which for 6xed xd is a
measure of BdBd mixing [cf. Eq. (5.44)]. Fs is normal-
ized such that E&=165 MeV. The most important
consequence is that for large values of a3(Mz), model (A)
favors larger values of Bsd Fs /GeV

Finally, we consider CP violation in the decays of neu-
tral B mesons. Figure 20 shows the predictions for sin2a
vs sin2P. Here, models (8) and (C) can be separated from
each other, since model (8) predicts larger values of sin2P
than model (C). This is largely a reflection of model (8)
having larger V»/V, b In fact., much of the model (C)
region with very low sin2P is excluded because V„b/V, b

is too small. As a demonstration that successful predic-
tions can be obtained simultaneously we provide an ex-
ample of a particular set of predictions. (See Table VI.)

In this section we have taken all superpartners degen-

2.5 0 1

0.08—

1.5— 0.06—

0.02—

I

B
23 Models

0 I ( I I I I

0.5
( I I I I ( I I I I I I I I I (

FIG. 15. Prediction for Bz in models (A), (8), and (C). The
range corresponds to 2o variations of the inputs (see Fig. 12),
and does not differ greatly from the 10. allowed regions. The su-
perpartners are taken degenerate with mass 200 GeV.

FIG. 17. V„b/V, b vs Bg in models (A), (B), and (C). The
range corresponds to 2o. variations of the inputs (see Fig. 12),
and does not difFer greatly from the lo. allowed regions. The su-

perpartners are taken degenerate with mass 200 GeV.
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FIG. 18. V„b/V, b vs V,b in models (A), (B), and (C). The
range corresponds to 20. variations of the inputs (see Fig. 12),
and does not differ greatly from the 1' allowed regions. The su-
perpartners are taken degenerate with mass 200 GeV.

FIG. 19. B& F& vs a3(Mz ) for models (A), (B), and (C). The
d

range corresponds to 20 variations of the inputs (see Fig. 12),
and does not differ greatly from the 10 allowed regions. The su-
perpartners are taken degenerate with mass 200 GeV.

TABLE VI. Examples of predictions for models (A), (B), and (C).

a,(MG~)
a3(MGvT )

MGvT/Gev
Msvsv /GeV

a3(Mz )
sin~~ w

Model (A)

0.0411
0.0411
0.0400

1.6S x 10"
200

0.110
0.2325

Model (B)

0.0412
0.0412
0.0396

1.6S x 10"
200

0.106
0.2325

Model (C)

0.0412
0.0412
0.0397

1.65x 10"
200

0.107
0.2325

A

B/A
C/A

r

0.80
0.026 55

1.223 x 10-"
0.931
3.946

0.55
0.045 44

1.485 x 10
0.139

—1.782

0.575
0.042 02

1.865 x 10-'
0.734
0.5125

M, /GeV
mb(mb )/GeV
m, (m, )/GeV

tanP

173
4.16
1.7841

55.16

159
4.26
1.7841

50.01

162
4.32
1.7841

49.75

m, (m, )/GeV
m, /MeV
m„/MeV

V,b

1.29
140
105.658

0.044

1.29
137
105.658

0.046

1.27
141
105.658

0.044

m, /md
m„/md

m, /MeV
V b/Vb

V„,

19.7
0.511
0.511
0.046
0.2210

21.8
0.451
0.511
0.081
0.2202

22.9
0.441
0.511
0.054
0.2214

sin2a
sin2P
sln2r

B, F,'/GeV'
d

0.92
0.32
0.39
0.08
0.033

0.65
0.98
0.53

—0.74
0.045

0.86
0.48
0.45

—0.03
0.037
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FIG. 20. sin2P vs sin2a for models (A), (8), and (C). The
range corresponds to 2o variations of the inputs {see Fig. 12),
and does not di8er greatly from the l~ allowed regions. The su-

perpartners are taken degenerate with mass 200 GeV.

crate at 200 GeV. These predictions of third generation
mixing and of CP violation are not greatly modified by
threshold effects at the weak and/or SUSY scales.

In conclusion, three models of the 23 texture reproduce
all the observed masses and mixings of the quarks and
leptons. The models give remarkably good agreement for
the values of (m, /mz ) vs (m„/mz ). They are best tested
by the combination of the predictions for V,b, V„~/V,„,
and Sx, and of sin2P vs sin2a.

VIII. CONCLUSIONS

In this paper we have explored the consequences of an
effective SO(10) grand unified theory with family sym-
metries which yield very simple and economical favor
structures predicting 7 of the 13 flavor parameters of the
standard model. In Sec. III we gave an explicit list of
eight assumptions which the theory must satisfy in order
that this maximal number of flavor predictions result.
Some of these assumptions we believe to be mild and well
motivated: they yield the simplest picture in which the
weak mixing angle is a significant prediction. Other as-
sumptions are stronger and could easily be violated: for
example, it may be that the pattern of family symmetries
allows further important flavor operators, or the two
Higgs doublets may not lie completely in a single ten-
dimensional representation. As each assumption is re-
laxed the whole picture is not destroyed, rather addition-
al free parameters must be added which successively
reduce the predictivity of the theory. We have no com-
pelling reason for why nature should choose the most
predictive case; nevertheless, it is appealing to suppose
that nature is simple and we find it quite striking that
such a predictive possibility is allowed by experiment.
%'e are excited by the prospect that a combination of ex-
periments, each designed to make accurate measurements
of parameters of the standard model, could reveal a very
simple group theoretic structure underlying the masses
and mixings of the quarks and leptons.

In this paper we have discovered and elucidated the
predictions of two classes of SO(10) theories which have
seven flavor predictions. Every model we have construct-
ed has just a single renormalizable Yukawa coupling
which is responsible for m„m&, and m, [13,14] and, in
most models, this results in a heavy top quark:
M, =180+15 GeV. We find this picture of third genera-
tion Yukawa coupling unification to be rather elegant;
however, in Appendix D we warn the reader that it is
quite possible to retain the elegance while losing the top
mass prediction.

Each of our models has three further operators in the
flavor sector, and the models fall into two classes accord-
ing to whether the resulting texture is of the "22"or "23"
type [shown in Eqs. (3.1) and (3.2)]. These additional
operators are nonrenormalizable, and have dimension
and flavor structure allowing the observed hierarchy of
quark and lepton masses and mixings to emerge as a
consequence of the small ratio of the grand to Planck
mass scales MG/Mz. The favor structure of the opera-
tors is dictated in a very straightforward way from the
observed pattern of nearest-neighbor mixing of the CKM
matrix: there must be at least one operator which mixes
the heaviest two generations 023 and at least one which
mixes the lightest two O&2. Furthermore, in Appendix 8
we prove that the fourth operator must be Oz2 or 023,
leading to the two different textures. A very general ar-
gument in Appendix A shows that the operator O&2 is
unique, and therefore common to both textures. For
models with the "22" texture the operator 02& must also
lead to unique Yukawa coupling relations. Hence the
multiplicity of models which we have discovered, nine for
the "22" texture and three for the "23" texture, is a
reflection of the many differing operators for the 23 en-
try.

How significant is the finding of this paper: that the
wealth of experimental data on the masses, mixings, and
CP violation of the quarks and leptons can be described
in terms of just four SO(10) invariant operators? The
operator search apparently ranges over a vast number of
possible operators. If models can typically be found for
any values of the masses and mixings then our result is
not particularly surprising or significant. This is not the
case; the argument is as follows. Models with the
minimal number of flavor operators must be of the "22"
or "23" texture. The number of possible operators for
033 023 022 and O&2 are 2, 152, 108, and =3 X 10, re-
spectively. Only one of the 033 operators can accommo-
date the observed value for m„/m„certainly it would
not be possible to accommodate any value. Of the
=3X10 possible O&2 operators, only one is consistent
with 60 MeV &m, &360 MeV, 0.2&m„/m& &1.5 and
the observed Cabibbo angle. If m„/m& had been, for ex-
ample, 3, our whole program would have collapsed. The
uniqueness of 0,2 we believe to be one of our most in-

teresting results. Next consider the operator 02& of the
"22" texture. It generates the "large" parameters
m, /mb and m„ /m „, but is not responsible for the
"small" parameters m, /m, and V,b, and hence must give
the Clebsch ratios close to the uniquely successful ones of
Eq. (5.5): y„:yz.y, =0:1:3.Suppose that the experimental



SYSTEMATIC SO(10) OPERATOR ANALYSIS FOR FERMION MASSES 3683

value of the muon mass had turned out to be twice the
usual number, then we would be seeking Clebsch ratios
close to y„:yd.y, =0:1:6. There are no operators which
give Clebsch factors close to this. If the muon mass were
doubled (or trebled} our program would fail. The success
and uniqueness of the operators 033 0/2 and 0,2 is
significant and by no means guaranteed. The situation
with the operator 023 is somewhat different-. It is not
unique: there are nine possible 23 operators in the "22"
textures and three such possible pairs in the "23"texture.
This operator generates V,b. If V,b were doubled we
could still find acceptable 023 operators for the "22" tex-
ture. However, if V,b were halved there ~ould be no ac-
ceptable operator and our program would again fail. The
value of V,b obtained in models 1-4 is the lowest which
we can obtain, and these models tend not to have
sufficient CP violation. A more accurate experimental
value of V,b is of very great interest: a reduced error bar
will tell us which, if any, Oz3 operator is correct. A low
experimental value for V,b would be sufficient to exclude
models 5-9, which give a range 0.045 & V,b & 0.055.

While models of both textures can be found which
agree well with data, we have a theoretical bias towards
the models with "22" texture, as those with the "23"tex-
ture involve a modest fine-tuning, between the coefficients
of 023 and Oz3, in order to understand the smallness of
V,b. The predictions for the models with "22" texture
are given with approximate analytic equations in Sec. V
and from a numerical calculation in Figs. 1-11. All pos-
sible models have been found which satisfy the search cri-
teria of Sec. III A. Of the nine "22"models, four (models
1-4}have difficulty in yielding sufficient CP violation in
the neutral K system. The remaining 5 models give
0.045 & V,b & 0.055. The predictions for the three models
with "23"texture are discussed in Sec. VII and numerical
results are shown in Figs. 12—20.

It will not be an easy experimental task to distinguish
between the models. Nevertheless, we believe that a real
test of these models is possible. Each model has seven
flavor predictions, with theoretical uncertainties of about
10%. Some theoretical uncertainties at this level are ex-
pected from physics at the grand unification scale and
hence, without a more detailed theory, probably cannot
be removed. It is therefore crucial that these models be
tested by the combination of all the predictions. The first
stage will involve testing whether any model successfully
accommodates improved data on M„V,b, and V„b/V, b

with an improved value of the strong coupling, which
must also be consistent with the m, /md vs m„/mz plot.
The second stage will be to test the predictions of the
models for the CP-violating angles sin2a, sin2P, and
sin2y in neutral B meson decay, and to test the predic-
tions for B B mixing, for both Bd and B,.

We have not considered neutrino masses in this paper.
Dirac neutrino mass matrices, which mix the left-handed
electroweak doublet neutrinos with the right-handed
singlet neutrinos, are already fixed by our analysis. How-
ever, in order to obtain Majorana masses for the right-
handed neutrinos (necessary for a see-saw mechanism)
additiona1 operators must be considered.

The predictions of this paper are the consequence of

two types of symmetries. The SO(10}grand unified sym-
metry allows us to view quarks and leptons of a given
family as different aspects of a single object, and hence re-
lates the ij entries of the Yukawa coupling matrices U,
0, and E. Unfortunately, this elegant grand unified sym-
metry is not sufficient to yield the predictions. In addi-
tion, most of the SO(10) operators which could contribute
to these Yukawa couplings should be absent. This can be
accomplished by using family symmetries, in the theory
defined at Mz, as shown by a specific example in Appen-
dix A. Indeed, if family symmetries are present one ex-
pects the majority of such operators to typically be ab-
sent. For example, consider a U(1} symmetry under
which the heaviest generation and the Higgs doublets are
neutral, but the lighter two generations have any positive
charges. The only allowed renormalizable Yukawa in-
teraction is that for the heaviest generation. All other
masses and mixings must be small effects induced by
higher dimension operators. The challenge is to under-
stand why the family symmetries should be those which
are needed to yield the pattern of non-renormalizable
operators which we have found to be singled out by ex-
periment.
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APPENDIX A

SO(10} grand unification provides a very powerful
reduction in the number of free Yukawa parameters: the
elements of D and E can be fixed in terms of those of U.
However, this parameter reduction by itself is not
sufficient to yield predictions: U is, in general, a complex
3X3 matrix with 18 parameters. Underlying the search
in this paper, for the SO(10} flavor sector with the
minimal number of operators, is the belief that such a
simple picture will emerge from a set of family sym-
metries. There must be some set of symmetries which
distinguishes between the three families and which ex-
plains why the majority of both the renormalizable and
nonrenormalizable superpotentia1 interactions are absent
at the GUT scale.

This is very straightforward at the renormalizable lev-
el. A U(1) symmetry with zero charges for the 163 and
10, and positive charges for the 16, and 16&, immediately
leads to a single renormalizable Yukawa interaction: 163
10 163. This illustrates that it is not difficult to arrange
for most couplings to vanish, giving sparse matrices of
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couplings. In this appendix we extend this idea to the
nonrenormalizable level and given an explicit realization
of family symmetries which leads to one of our models.
This involves going beyond the efFective GUT theory and
looking at how the renormalizable operators are obtained
by integrating out heavy states at the scale v&o or M~. In
addition to providing an understanding of the origin of
the flavor structure, this analysis shows that there are
corrections to these efFective operators, and we estimate
the size of such corrections.

In Fig. 21, we show the tree diagrams which lead to
one of the "22" texture models (model 9) with y= —', dis-
cussed in Sec. IV. The intermediate fermions obtain
large masses [of order U, o in (B) and (C), and even higher
in (D)] and mix with the light states by Higgs VEV's of
order MG. We also display the possible global U(1) fami-
ly quantum number (in the upper right) which prohibits
additional terms in the mass matrix. These diagrams are
to be understood as a perturbative technique for integrat-
ing out heavy fields and obtaining an approximate mass
matrix for the light states. A more detailed analysis of
such theories will be given in a future paper, which will
provide a complete theory including the SO(10) gauge
symmetry breaking sector [12].

To leading order in the small ratios MG/v, o or
v&0/M~, the mass matrices for the light fermions are

given in terms of the four operators:

033 163 10 163,

45~z

Oz3 16z10 163,
452

45~
Ozz —16z10 16z,

451

45) 45
O, z

= 16' 10 16z,

(A 1)

where S is an SO(10) singlet fields with VEV's of order
MG. Note that it is necessary to introduce the U(1) in the
fundamental theory at M~ since it is only at this level

that the ordering of operators can be constrained. . For
example, it is only at the renormalizable level that sym-
metries can guarantee that Oz3 in Eq. (Al) will be gen-

erated without also giving a similar operator with the 10
appearing next to the 163.

Having displayed the flavor symmetry structure which
leads to the desired operators we now discuss corrections
to the mass matrices. The first type of corrections comes
from other operators generated via diagrams similar to
those in Fig. 21: for example, the operator
0» =16&45&10 45, 163. Whether this operator makes an

163o 163O

1621

I

I

I

-1/2 1 6H2' ~60

I

q6 1

C

too

16Hr
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45e-L '

3/2

45e-L '

45 -0/2

1/2 16H
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45e-L '

16 ~

I
I

I
I
I

S-2

FIG. 21. Diagrams generating the operators
of model 9: (a) the Yukawa coupling for the
third generation; (b) generation of 0» via ex-

change of superheavy generations; (c) genera-
tion of 0» via exchange of superheavy genera-

tions; (d) generation of 0» via exchange of su-

perheavy generations. The superscripts label

the charges of the representations under a new

U(1) symmetry.
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important contribution depends on the relative size of the
ratios v,v/Mi, and v~/v, o. Another operator which is
generated from integrating out the superheavy 16& is

the (16~S 45' L 163)~. At first sight the wave-function
mixing generated by this operator is dangerous. Howev-
er, the new terms induced are actually higher order, as
shown by the exact diagonalization performed below.
Clearly, the family symmetries may give fermion mass
matrices which are dominated by just four operators, but
corrections from other operators are generically expect-
ed.

A second type of correction to the light fermion mass
matrices arises even in the limit that all operators beyond
the four dominant ones are neglected. We are consider-
ing theories with both superheavy and light 16 s. The di-
agrams of the form of those in Fig. 21 represent an ap-
proximation to the process of diagonalizing the mass ma-
trices. We illustrate this in the above example by per-
forming an exact diagonalization of the mass matrices of
the heavier two families. In this sector (including all the
relevant heavy states) there are two 16's and four 16's
which we denote as

a3 1
V43 V33 =

g 1+af+az+a3 g 1+Pf+P~

a& 1
V4i =

+i+a +a +a gl+P +P
where

45B LS
p) -, , pg 45

1 1

45B
a, az,

1

45, , S~ 4S, ,S '
a)= — 1+ +

45$ 45] 45]

with the ellipsis representing the contribution of the mas-
sive modes and

1
V34 =0,

Ql+a +a +a

l =1,2,

f„a= 1, . . . , 4 where

f)=16H i f~=16H i f3=16~ fi4=163

(A2)

(A3)

a3= —(piai+ pea~)

We can now evaluate the electroweak symmetry-
breaking mass terms due to the Higgs scalars sitting in
the ten-dimensional representation. We have

16310 163+16q10 16H =f410f4+f310f) . (A9)
and f3 and fii, are to leading order the light second and
third families, respectively. The fundamental mass term
in the Lagrangian is given by

fi™iafa
with the 2 X4 mass matrix

45) 45B L 0

45)mia 0 S 45B

(A4}

(A5)

The quadratic mass matrix m —=g;,rn;, m;b is Her-
mitian and can be diagonalized by a unitary transforma-
tion. In this case we have

m =

45) 45)45B

45)45B L 45)+45B

0 45)S

45iS

S
45 )45B L S45B

45)45B

S45B

45B —L

fa= Vhf~+ Vkf'3+

f3= V~3f~+ V33f3+ .

fl V41f4+ V31f3+

(A8a)

(A8b)

(A8c)

(A6)

where for simplicity the VEV's are taken to be real. The
eigenstates are given by

f,'= V,bfb and f, = Vb, fb . (A7)

If we denote the massless eigenstates by f3 and f~, we
find the exact solutions

033 —163(V~ 10V~+ V43 10V4) }163,

0 =16 (V', 10V' + V 10V', )16

O~~ —16'V3310V3) 16' .

(A10a}

(A10b)

(A10c)

To leading order we obtain the operators, 033 [Eq. (2.1}],
Ozz [Eq. (5.6f)], and Oz3, the third operator with y= —', in

Eq. (5.12c). The relative corrections to the leading-order
results are of order 45' L /45l or S /45, which may be
as large as 10%. It should also be noted that these
corrections include Clebsch factors which differ for up
and down quarks and leptons. Finally, it is instructive to
notice that if the "22" element vanishes in the up mass
matrix to leading order then this result is true for the ex-
act mass matrix as obtained above [Eq. (A10c)].

APPENDIX B

In this appendix we use experimental data to exclude
theories with the heavy 2 X 2 sector given only in terms of
two operators, 033+0/3 where 033 is given in (2.1) and
0/3 has the form of (2.2) and has dimension (6. The
operator 033 works very well for the heaviest generation.
The diSculty arises in finding a suitable Oz3 to account
for the four observables V,q, m, /m„m, /mb, and
m„/m, . This is largely because the first two of these

We now use Eq. (A8) to rewrite (A9) in terms of the
massless fields f4 and f3. This gives us our efFective
operators 0; . We also relabel the states f~ +163 and-
f3

—+16& in order to obtain formulas similar to that of
Eq. (Al). We have
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(82)

giving the GUT relations
I

XdXd
I

X„X„
(83)

ix„—x~i A, ,
(84)

Using the analysis of Sec. IV to scale the quantities on the
right-hand sides to low energies gives

t ms ~b9e 2(I —I )t b

m, mb
(85)

' 1/2m,—(I,-I, )/2~'g, e ' bX= ~,b
m,

(86)

Using experimental values for m„mb, and V,b, together
with the prediction for m, (a, ) which follows from 0»
and the values of the scaling factors r), (a, ), I,(a, ), and

Ib(a, ) we find the numerical values

0.55 (7&0.92,
m, m,

100 MeV 100 MeV
'

(87)

where variation is due to 0.11(a,(0.13. For the pur-
poses of this appendix we will discard models only if they
are in gross disagreement with (87); in particular, if they
are outside the range

0&X(2,
1&('& Do .

(88)

From the table it is immediate to see that the only
dimension-5 operators giving g& 1 are 162(45&/M)10 163
or 16210(45&/M)163.. they both give /=3. However, the
former gives y=O and the latter y=4 so they are not ac-
ceptable.

Now consider dimension 6 operators. Note that 45T z3"
may not appear since it gives m, =m, =m„=O. Further-
more, the appearance of 45& L is irrelevant: it does not

quantities are considerably smaller than the second two,
as shown in (5.4e).

The Yukawa matrices of the two heavy families 163
and 162 at the GUT scale are given by

xuB 0 xdB
U B A

0 B A
(81)

0 x,'B

x,B A

where the x; and x are the Clebsch factors resulting
from the operator 023. The two operator coefficients, A

and B, have been made real by phase rotations on 162 and
163. From these Yukawa matrices it follows that, at MG,

distinguish between the up and down sectors and hence
will not afFect g or y. Hence, we need only consider 45,
and 4524. Since 4524 leads to g& 1, there must be more
45, 's appearing in the numerator than in the denomina-
tor to ensure g& 1. At dimension 6 this implies that ei-
ther one or two 45, 's are in the numerator and none in
the denominator, which already implies g~ l. In fact,
dimension-6 models constructed from 45, and 452~ all
have y=0 or y & 2 and hence are excluded.

These arguments show that a correct description of the
heavier two families requires the addition of a third
operator. The alternatives are (a) add an operator mixing
162 with 16& ("22" models), (b) add one more operator
mixing 16& with 163 ("23" models), or (c) add one more
higher dimension operator mixing 163 with 163.

It is easy to see that the last option (c) will not help.
The higher dimension operator will make a ~20%
change in the 163163 entries of the mass matrices. Such a
change will alter the allowed ranges of g and y given in
(87) by =20%. However, we have already proven that
no model met the very much weaker constraints of (88),
and hence (c) will not yield an acceptable model.

This concludes the proof that we need to consider
theories of type (a) or (b).

What about anti-SU(5) theories? As we shall see later
they are excluded by considering the "12" entry of the
mass matrices.

APPENDIX C

In this appendix we show that for the theories intro-
duced in Sec. III, which have fermion masses described
by four SO(10) operators, the operator which gives rise to
the 12 element of the mass matrices is unique. This relies
only on the 33 operator being 163 10 163, and does not
depend on the form of the 22 or 23 operators. In fact it
applies to both the "22"and "23"textures.

From the determinant of the light 2X2 sector of the
mass matrices one derives

mdms

m, m„

2 2
mb d d Qd Qs 9v 2I, +6Ib —6I~

2
1 p e gb Qe 9p

(Cl)

Inputting m„m„, m„m&, and m, /m& =20 leads to a re-
sult for the strange mass:

'1/2 „g I +3Ib 3I

m, =180 MeV
d "v 'ld ls

ZeZe '9b 2.3

Thus a strange mass of 180 MeV results only if zdzd /z, z,
'

is close to unity [in fact, 1 to 1.7 as a, (Mz) decreases
from 0.13 to 0.11]. This is not a surprising result. Once
(A,„/A,, )G =3 has been arranged, we know from Georgi
and Jarlskog's work that the 12 entries should be the
same for the down and lepton matrices. Given that
several 45 VEV*s are expected to occur in the 12 opera-
tor, how can we arrange for zdzd =z,z,'? One possibility
is that the 12 operator involves only 45&. In this case the
Clebsch factors z,. and z,

' do not feel SU(5) breaking in the
e and d sectors so that zdzd =z,z,

' is automatic. At 6rst
thought, one might guess that there would be other ways
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to arrange a product of many 45's (involving 45'
45& a and 4524 as well as 45&} such that zdzd-—z,z,

'

occurs as an accident. In fact, it is very straightforward
to see that this is impossible. From the Clebsch table we
see that the appearance of 45T z in the 12 operator is for-

3

bidden as it leads to z, z,-'=0. Furthermore, the appear-
ance of either a 4524 or a 45~ L leads to a factor of 9 ap-
pearing in z,z,'/zdzd. Since there is no possibility of any
nonzero factor less than unity contributing to z,z,'/zdzd,
we can immediately use the result (C2) to conclude that
the 12 operator can involve only 45's with VEV's point-
ing in the SU(5) preserving direction: 45„ i.e.,

45) 45)0 ]2
= 16& 10 162 (C3)

mumc

mdm,

From the Clebsch table,
I

u u

Zd Zd

Hence we find

1

3

' n+m

n+m —6

(C5)

mu 1=09
md

m,

180 MeV
(C6)

where g = (0.6, 1, l. 1) for a, (Mz )= (0. 11,0. 12,0. 13).
Thus even allowing the very wide range 0.2
& m„ /md & l. 5, one can conclude that

n+m=6 or 7 . (C7)

The third and final part of the argument follows from
the prediction for the Cabibbo angle. From the KM ma-
trix of Eq. (4.3) one finds sin8c=~s, +s2e '~~. The 12
and 21 entries of the up mass matrix are symmetric so
that

$2=
1/2

u

' 1/2
1c mu

'Qu mc

However, this symmetry is not necessarily true for the

where n and m are positive or negative integers.
We can also use the strange mass prediction of (C2) to

exclude any model where SO(10} is broken to the anti-
SU(5) subgroup, so 45& lies in an anti-SU(5) singlet direc-
tion. In this case the z;,z must be replaced by the z;,z
relevant to the anti-SU(5) subgroup. Thus m, is propor-
tional to the zdzd/z, z,'=z„z„'/z„z'„. From the Clebsch
table one immediately sees that any 45 VEV gives this ra-
tio very far from unity: either zero or &9. The remain-
ing possibility, n =m =0, we exclude because it is com-
pletely unreasonable that in our framework the masses of
the lightest generation would arise from a dimension-4
renormalizable operator.

A stringent restriction on n and m can be obtained by
considering the determinant of the light 2X 2 submatrices
in the up and down sector:

2
t u u lu 9c 2 4(Ir Ib

bribe
' ' . (C4)

zdzd

down matrix so that
n —m 1/2

S)= md

3 ms

Because s2 is considerably less than sin8& one must have
s

&
in the neighborhood of sin8c. As +md /m,

=0.22+0.02 is actually centered on sin8c, having num
makes s, too different from sin8& to obtain a successful
result. In fact, the only case with num which comes
even close to working is n =4 and m =3. This case is ex-
cluded by combining the Cabibbo angle constraint with
the result of (C6) which gives m„/md &0.4. Hence, we
are left with the case n =m =3 and the unique operator

'3 '3
45) 45)

012= Pl 10 1 z (C8)

APPENDIX D

This appendix examines the supersymmetric threshold
corrections to Yukawa couplings. The top mass predic-
tion of Fig. 1 is large: about two standard deviations
above the central value extracted from precision elec-
troweak data in the MSSM. If searches for the top quark
prove that the top is indeed this heavy, the case for the
scheme proposed in this paper will be strengthened, but
by no means proved. If the top quark is found to be
much lighter, for example, 140 GeV, it is important to
know to what extent the framework of this paper is des-
troyed.

There are several mechanisms which could affect, to
varying degrees, our top mass prediction.

Even if none of the assumptions listed in Sec. III are
relaxed, there is an effect which can perturb the top pre-
diction. The equality A,, =A,b=A, , is exact at the GUT
scale in the limit that the higher dimension operators are
ignored. However, the operator 023 perturbs this rela-
tion, as shown in Eq. (6.1). In the "22" models this is
negligible (except for model 9), but in the "23"models it
is important, as can be seen in the predictions for the top
mass in Figs. 12-14. Other mechanisms affecting m, re-
quire that at least one of the assumptions of Sec. III be
relaxed.

It could be that GUT-scale threshold efFects, such as
an additional nonrenormalizable operator, upset the
GUT-scale relation A, , =A, b

=I, Such perturbations
could arise when assumptions 3, 6, or 7 of Sec. III are re-
laxed, and are considered in Appendix E.

The supersymmetric threshold corrections to A, b could
be significant if the last assumption of Sec. III is relaxed,
and it is this possibility that we explore in this appendix.

While the tree-level contribution to the b and ~ masses
are proportional to the small VEV U, there are one-loop
diagrams with internal superpartners which are propor-
tional to v2. Hence for tang=50 the radiative correc-
tions are naively =50% rather than =1%. Such radia-
tive corrections imply that the quark and lepton mass
predictions could depend on the soft supersymmetry-
breaking parameters which appear in these loop dia-
grams. This would make it impossible to give precise nu-
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merical predictions until the superpartner sector has been
discovered and studied.

As an example, consider a radiative correction to the b
quark mass which is 35% of the tree result, and which
subtracts from the tree result. This means that the tree b
quark Yukawa coupling, which is the input needed for
the top mass prediction, is now 35% larger, resulting in a
decrease in the top mass predicted from operator (2.1) by
about 30 GeV. The leading radiative corrections to the b
quark mass are from gluino and Higgsino exchange dia-
grams [14] shown in Fig. 22. In the gluino exchange dia-
gram there is a trilinear scalar interaction proportional to
p while in the Higgsino exchange diagram it is propor-
tional to A. For small p the gluino exchange diagram
yields

5mb

mb

2a, m'ta~ "I
3K m

(D 1)

where, in the limit that the two b squarks are nearly de-
generate with mass m, and the gluino has mass m

1+[x /(1 —x ) ]lnx
1 —x

(D2)

a)

d.c

H2
I
I

m

I

d.c / d;
lg
I
I
I
I \

I 1

b)

I

t

rJ' U3
/

/I
I
I
I r

We can divide the parameter space of the MSSM into
two regions according to whether these one-loop radia-
tive corrections cause substantial changes to the tree-level
predictions. If the corrections are substantial then some
of the fermion mass predictions will depend on the pa-
rameters m, m, p, and A. The region where these correc-
tions can be ignored is, roughly speaking, that where p,
and probably m and A, are less than the squark mass m.

mb

2@3 m (~2

4m B

2
m&

2
mp

(D3)

This region of parameter space is preferred when tanP is
large [14]. The Higgs potential of the MSSM involves
three parameters: p, , pz, and p3. One combination of
these is determined by the constraint of the observed Z
mass. The other two parameters can be taken as tanP
and the pseudoscalar mass m„[29]. For large tanP one
finds p3= m „/tanP. Thus large tanP forces p, 3 =IJB to be
small, which is most naturally accomplished by a com-
bination of approximate Peccei-Quinn (p/m =epQ«1)
and R (rn /m = 2 /m =8/m =ez « 1) symmetries. The
potentially large radiative corrections to mb, such as in

Eq. (Dl), are all proportional to epqextanP which is ex-

pected to be of order unity, because it is the above ap-
proximate symmetries which are the origin of small cotP:
cotP EpqER ~ Hence, these radiative corrections are not
typically expected to be sufficiently large to substantially
alter the predictions of the Aavor parameters and are ig-
nored in the body of this paper. Note, however, that we
cannot exclude the case where they are significant, which
would happen, for example, if rn /8 =5. In this case the
top quark could be much lighter than our prediction
shown in Fig. 1. Nevertheless, the other predictions sur-
vive with slight modifications, as discussed later in this
Appendix.

Diagrams similar to those which correct the b quark
mass (one of the external b quarks becomes an s quark,
and a photon is attached) lead to an amplitude for b ~sy
linear in tanP. Thus the possibility of sizable radiative
corrections to mb can be probed via b ~sy [16].

The suggestion [14] that the small value of mblm, is
due to approximate Peccei-Quinn and R symmetries
deserves further attention, both from the viewpoint of the
radiative mechanism for electroweak symmetry breaking
and the resulting experimental signatures (both charginos
are expected to have light masses = 100 GeV). What are
the origins of these approximate symmetries? An ap-
proximate Peccei-Quinn symmetry requires p to be less
than the size of the supersymmetry-breaking parameters.
These scales are logically independent; their equality is
often called the "p" problem. In one solution of this
problem the p parameter arises as a radiative correction
from the supersymmetry-breaking scale, and is expected
to be small [30]. The approximate R symmetry, on the
other hand, must result from the particular pattern of su-

persymmetry breaking.
Now let us consider radiative corrections to our results

in more detail. The diagrams of Fig. 22 lead to super-
symmetric threshold corrections to 5mb/mb, which are
naively a, /4m and A, , /16m, respectively, which are both
= l%%uo. These diagrams yield [14]

d.c X V3]
5mb

mb

2
m&

2 7

mp
(D4)

FIG. 22. Supersymmetric threshold corrections to the Yu-

kawa couplings of the down-type quarks from (a) gluino ex-

change and (b) charged Higgsino exchange. Tildes denote su-

perpartners and Vis the CKM matrix.

where A„B, and m&&2 are supersymmetry-breaking pa-
rameters, m„ is the mass of the pseudoscalar of the
MSSM, and m p characterizes the mass scale of the degen-
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crate scalar superpartners. The most natural expectation
is that A, -B—m I&z and m z & mo in which case
5mi, /mb &2% and 2/3%, respectively, so that the top
mass is changed by less than 3 GeV. The most natural
expectation is that these radiative corrections do not sub-
stantially change the predictions shown in Fig. 1. Never-
theless, it is not extremely unnatural for, for example,
m, &z/8-5 or 10, which could lower the top mass pre-
diction by 15-30 GeV. The sign of the diagrams is un-
known because the sign of p is unknown, in this section
we are interested in the sign which leads to a decrease in
m, .

The effects of 5m& can be understood as follows: the b

Yukawa coupling gets multiplied by a factor (1—g}, so
that in Eq. (4.10) i)b~i)b(1 —g). Thus the changes are
identical to those that would occur if the physical b mass,
mb, were multiplied by 1/(1 —g). For g positive this in-
creases mb, and the resulting decreases in M, and tanP
can now be read from Figs. 1(a) and 1(b).

The leading efFects of this A, b threshold correction on
the other predictions of the "22" models can now be ob-
tained from Eqs. (5.33)-(5.37) by multiplying mb by
1/( 1 —f ) —( 1+g) and using the corrected value for m, .
Subleading corrections arise because the Yukawa cou-
pling A has changed, inducing a change in the integrals

I~,e„
However, some of these predictions are also affected by

threshold corrections to other elements of the down Yu-
kawa matrix which result from Figs. 22(a) and 22(b). In
this appendix we consider these corrections in the follow-
ing approximation. We ignore the RG scaling of the
down-type squark mass matrix, and of the dawn-type A
matrix, except for the effect which makes b not degen-
erate with s and d. In this approximation the gluino ex-
change diagram conserves Qavor, so that its only addi-
tional efFect is to give equal threshold corrections to A,,
and A,„. This can be accounted for by multiplying the
predictions for m, and m& by 1 —g', where g' has the
same sign as g and is equal to it in the limit of squark de-
generacy. Hence the leading effects of the gluino ex-
change diagram are (I} m, multiplied by (1—0.8$), (2)
tanP multiplied by (1—1.7(), (3) V,& multiplied by
(1+0.4$), (4) m, multiplied by (1+g) /(1+ g'), (5)
m, /m& unchanged, (6) m„ /md multiplied by
(1—2.6g)/(1 +f ), (7) V„„/V,& multiplied by (1—0.8$),
and (8}J unchanged.

We see that if the supersymmetric threshold correc-
tions are surprisingly big, for example /=0. 1 —0.2, our
top mass prediction is largely lost, but the other predic-
tions are simply perturbed. The most interesting change
is for m„/md, since it is decreased and this improves the
agreement with experiment in all "22"models.

The Higgsino exchange diagram of Fig. 22(b) is typi-
cally smaller than the gluino exchange diagram of Fig.
22(a). The flavor structure of this diagram is more com-
plicated than for the gluino exchange diagram because
the charged Higgsino vertices contain a factor of the
CKM matrix. Nevertheless, the diagram is extremely

small unless the exchanged scalar is from the third gen-
eration, and the only operators generated significantly are
bb', sb', and db'. The flrst contributes to g as above,
while the others perturb V,b and V„b.

APPENDIX E

In this appendix we consider the effects of GUT-scale
threshold corrections perturbing the boundary conditions
on the Yukawa matrices. This could occur in many
ways; we will just consider some simple cases for which
there may be some motivation.

The Yukawa couplings of the third generation, U33,

D33 and E33 can be perturbed by the presence of an addi-
tional nonrenormalizable operator. This could allow
I,, )A, & at the GUT scale, which may be the easiest way
to allow radiative electroweak symmetry breaking. If
this extra operator gives contributions to the Yukawa
couplings which preserve SU(5}, for example,

033 16310 45I163, (El)

then the t Yukawa can increase slightly, by a correction
vio/Mi„compared with the b and ~ couplings, which
remain equal. Such a perturbation in the boundary con-
ditions leads to a very small change in the top mass pre-
diction [14]: about 2 GeV for v,o/M~=0. 2. Other pre-
dictions are also affected insignificantly. If 45I is re-
placed by 45„ in Eq. (El), the b and v couplings will no
longer be equal at the GUT scale. The relation (4.10}for
m&/m, will be multiplied by some correction factor,
(1—g), and this can substantially decrease the top mass
and perturb other predictions as described in Appendix
D.

Finally, we consider the violation of assumption 3, that
both Higgs doublets of the MSSM lie entirely in a single
10. Suppose that all Yukawa interactions are generated
by the couplings of a single 10, but this 10 contains only
components of the two light Higgs doublets. The other
components must come from some other representation
10', 120, 126, etc. The effect is to multiply the Yukawa
matrix U by one mixing angle and D and E by another.
The mixing angle which multiplies U can be absorbed
into the coupling constants, so the net result is to simply
multiply D and E by some number g. The effect of g is to
rescale tang. For example Eq. (4.10) for mb/rn, is un-

changed, but in Eq. (4.11) cosP must be multiplied by g.
With g very small there is no need for tanP to be large, so
electroweak symmetry breaking could occur without any
fine tuning. The one extra free parameter, g, means that
tanP can no longer be predicted. Even though the top
Yukawa can be predicted, the top quark mass prediction,
which is proportional to A,,sinP, is lost. The remaining
six Savor predictions for each of the "22" models are
given by the same expressions as before. The numerical
values for the predictions will change slightly due to the
change in the integrals I, b
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