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In gauge theories such as the standard model, the electric charges of the fermions can be heavily
constrained from the classical structure of the theory and from the cancellation of anomalies. We
argue that the anomaly conditions are not quite as well motivated as the classical constraints, since
it is possible that new fermions could exist which cancel potential anomalies. For this reason we
examine the classically allowed electric charges of the known fermions and we point out that the
electric charge of the v neutrino is classically allowed to be nonzero. The experimental bound on
the electric charge of the v neutrino is many orders of magnitude weaker than for any other known
neutrino. We discuss possible modi6cations of the minimal standard model such that electric charge
is quantized classically.

PACS number(s): 11.30.—j, 14.60.Lm

The quantization of the electric charges of most of the
known fermions is a well established experimental phe-
nomenon. An approach to a theoretical understanding of
this phenomenon has emerged in recent years based on
the standard model [1]. The standard model is a gauge
theory with the gauge group

SU(3), SU(2)L, U(1)y,

which is assumed to be spontaneously broken by the
vacuum expectation value (VEV) of a scalar doublet

(1,2, 1) [whose U(1)y charge can be normalized to
1 without loss of generality due to a scaling symmetry;
g ~ gg, Y ~ Y/ri, where g is the U(l)y coupling con-
stant, and Y is the generator of the U(1)y gauge group].
The gauge symmetry of the Lagrangian can be used to
choose the standard form for the vacuum:

The VEV of P breaks SU(2)L, SU(l)y [but does not break
SU(3), of course] leaving an unbroken U(1) symmetry,
U(1)g, which is identified with electromagnetism and its
generator Q is the linear combination [which annihilates
the VEV of Eq. (2)]:

q = I&+ Y/2.

(The normalization of q is undetermined, and we have
taken the convention of normalizing it so that the charged
W bosons will have charge 1.)

There are two quite distinct ways in which the
standard model constrains the electric charges of the
fermions. Firstly, there are a set of constraints that fol-
low &om the consistency of the theory at the classical
level (such as the requirement that the Lagrangian be
gauge invariant), while there are other constraints that
follow from the consistency of the theory at the quantum
level (i.e., the anomaly cancellation conditions). We first
discuss the classical constraints. The invariance of the
Yukawa Lagrangian (or equivalently, the electromagnetic
invariance of the fermion mass terms and the quark Ha-

vor mixing terms in the weak interaction) constrains the
electric charges. For example, the electron mass term in
the Lagrangian is invariant under U(1)q if and only if
the electric charge of the left-handed electron is equal to
the charge of the right-handed electron. A similiar ar-
gument holds for the quarks, so that for one generation,
there are four electric charges: the charge of the electron,
the charge of the neutrino, the charge of the up quark
and the charge of the down quark [2]. A second piece
of information about the fermion electric charges can be
obtained by observing that the left-handed fermions are
in SU(2)L, doublets. Since SU(2)1, and U(1)y are a di-
rect product (i.e., act independently of each other), the
members of the SU(2)L, doublet have the same U(1)y
charge and thus the difference of the electric charges of
the members of the SU(2) r, doublet is just the difference
of their Is eigenvalue (which is just equal to 1 with our
normalization). Hence we have the information that the
electric charge of the electron neutrino minus the elec-
tric charge of the electron is 1, and the electric charge
of the up quark minus the electric charge of the down
quark is equal to 1. So in each generation there are only
two unknown electric charges, which can be taken as the
electric charge of the neutrino and the electric charge of
the down quark.

Since the Cabibbo-Kobayashi-Maskawa (CKM) matrix
is nondiagonal, there are additional classical constraints
&om the Savor-mixing terms in the standard model La-
grangian. For example, the W boson couples a u quark
to an 8 quark, as well as a u quark to a d quark. If we
demand the Lagrangian to be invariant under U(l) g, the
existence of these terms tells us that the s and d quark
electric charges are equal. A similiar mixing happens of
course with the third generation quarks, so that the elec-
tric charge of the b quark must be equal to the electric
charges of the 8 and d quarks. Hence each of the three
known generations of quarks have exactly the same elec-
tric charges. No such mixing has been observed in the
lepton sector, and in the minimal standard model there
can be no such mixing as the neutrinos are massless in
that model. Hence the constraints from mass and mixing
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together with the SU(2)L, doublet structure of the left-
handed fermions tell us that there are four classically un-

determined electric charges in the standard model. These
four undertermined electric charges can be taken to be
the electric charges of the three neutrinos and the down
quark [we denote these four electric charges as Q(v ),
Q(v„), Q(v ), and Q(d)]. All of the other fermion electric
charges can be uniquely determined in terms of these four
classically undetermined parameters. Experimentally, it
is known that

Q(d) = —1/3+ b„b«10-",

Q(v, ) = 0 6 b ., b„. ( 10 ",

Q(v„) = 0 + 8„„, 8„„(10

Q(v)=0kb„. , b„( 3x10

(4)

Q(v. )'+ Q(v~)'+ Q(v-)' = o.

The equation only involves the neutrinos, since there
is no contribution from the charged fermions (this is
because the classical constraints derived from the exis-
tence of nonzero masses for the charged fermions implies
that U(1)q is vectorlike for the charged fermions). The
[SU(2)1,]2U(1)q anomaly cancellation condition implies
that

Q(v. ) + Q(v~) + Q(v-) + 9Q(d) = —3. (6)

Thus there are novf only two undermined electric charges.
One further independent equation can be obtained &om
the mixed gauge-gravitational anomaly cancellation [9],
which says that

Q(.)+Q(.)+Q( -) =0

Thus we are left with one undetermined electric charge,

where the experimental bouiids (i.e., the b parameters)
come from experiments on the neutron charge [3], exper-
iments on the neutrality of matter [4], and experiments
on v„e scattering [5]. The experimental bound on the
electric charge of the v has not been specifically studied
previously (as far as we are aware) and the constraint
given in Eq. (4) comes &om an analysis in Ref. [6], which
examines the experimental bounds on the electric charge
of a hypothetical exotic "minicharged" particle [7].

At this stage one can argue that further constraints
can be obtained by assuming that gauge anomalies can-
cel. Anomalies imply the loss of a classical symmetry
in the quantum theory [8]. If we assume that triangle
anomalies cancel, then we have two constraints that are
not independent of the classical constraints. They are the
[U(1)q] and [SU(2)] U(l) q anomaly conditions. The
cancellation of the [U(1)q]s anomaly gives the constraint

which it turns out must be taken as a lepton charge [since
Eqs. (7) and (6) uniquely determine Q(d) = —1/3 and
hence all the quark charges have been determined]. Thus
one must conclude that the minimal standard model does
not have electric charge quantization. There is one Bee
parameter. Thus an understanding of electric charge
quantization requires new physics beyond the minimal
standard model. Various ways of extending the standard
model so that electric charge is quantized have been dis-
cussed in the liturature [1]. One can simply add some
terms to the standard model Lagrangian, which yield ad-
ditional constraints. Perhaps the most obvious (and also
well motivated) way to do this is to add neutrino masses.
For example, one can add three right-handed gauge sin-
glet neutrinos with Dirac and Majorana mass terms. One
can assume that there is a nondiagonal CKM-type ma-
trix for the leptons which will imply that each genera-
tion of leptons have equal charges (just like in the case of
the quarks). In addition, Majorana masses for the right-
handed neutrinos will fix the charge of the neutrinos to
zero. This extension of the standard model would then
have every electric charge (ratio) completely determined,
and hence electric charge quantization would be under-
stood in terms of the internal consistency of the theory.

There is one important point that should be men-
tioned. The quantum constraints, which are the anomaly
cancellation equations, are not quite as well motivated
as the classical constraints. For example, all of the clas-
sical constraints seem to be very strong constraints in
the sense that we know for certain that the electron
has a mass. We know for certain that a coupling of
R" to u and d and u and s exists, etc. Therefore, un-
der the assumption that electric charge is conserved, our
conclusions derived from the classicai structure of the
theory, such as Q(u) —Q(d) = Q(v, )

—Q(e) = 1 and

Q(d) = Q(s) = Q(b), seem to be unchallengable. On the
other hand, the anomaly constraints are not definitely
true. For example, there could exist a set of "mirror"
fermions, which have the same gauge quantum numbers
as the standard fermions (except that left and right chi-
ralities are interchanged) but are too heavy to be seen
yet in experiment. In this case, there would be no non-
trivial anomaly cancellation equations. So, we feel that
it is an interesting question as to whether gauge theories
with U(1) factors, can have electric charge quantization
classically, i.e., whether the classical constraints can be
suf6cient to determine all of the electric charges.

So, if we ignore the constraints from anomalies, then
as discussed above there are four classically underter-
mined parameters in the minimal standard model. One
can see from Eq. (4) that two of these parameters are ex-
tremely well constrained (to within 10 2i), one of them
is moderately well constrained (to within 10 ) and one
of them, the electric charge of the w neutrino, is not well
constrained [10] (note, however, that there are signifi-
cant indirect bounds on the electric charge &om astro-
physics if the ~ neutrino has a mass less than about 25
keV [7]). Since it is theoretically possible for the charge
of the w neutrino to be nonzero and, since as far as we

are aware, a nonzero 7. neutrino electric charge has never
been searched for in experiments, we propose such an ex-
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periment to put to the test the standard assumption that
the v neutrino is neutral.

Of course the minimal standard model may not be
complete. It is interesting to look for ways to modify
the model so that electric charge is quantized classically.
If right-handed neutrinos, exist and they have Dirac mass
terms with the usual left-handed neutrinos, and we as-
sume that nontrivial mixing eKects in the weak interac-
tion occur (just like in the quark sector), then, in this
case, Q(v, ) = Q(v„) = Q(v ), so that there are only two
classically undetermined electric charges, which can be
taken to be Q(v, ) and Q(d). If there is a Majorana mass
term for one or more of the right-handed neutrinos then
one obtains the additional constraint that Q(v, ) = 0.
Thus, in this case, there is only one undetermined elec-
tric charge, which can be taken to be the electric charge
of the down quark, Q(d).

Following our philosophy, we need to modify the La-
grangian so that Q(d) is uniquely determined. Another
way of thinking about the problem is in terms of global
U(1) symmetries. At the classical level, the minimal
standard model Lagrangian has four global symmetries
U(1)L... U(1)L,„, U(1)L, , U(1)~, and one local symme-
try U(1)y. At the classical level, there is no theoreti-
cal reason why any combination of Y and L„L„,L,B
cannot be the one U(1), which is gauged. This means
that there is a four parameter uncertainty in the U(1),
which is gauged. When we modify the lepton sector by
adding right-handed (gauge singlet) neutrinos and in-
clude mass and mixing terms for the neutrinos, then this
new Lagrangian has, in general, only one global sym-
metry, which is baryon number U(1)~. Hence at the
classical level, any combination of Y and B is a U(1)
symmetry and can be the U(1), which is gauged. To ob-
tain correct electric charge quantization, we must mod-
ify the theory such that baryon number is violated (but
with Y left conserved of course). Unlike the case of the
lepton sector, we cannot do this by simply adding Ma-
jorana mass terms. This works for the leptons, since
Majorana masses violate the global lepton number (but
conserve standard hypercharge). However, for quarks,
any Majorana mass would violate both baryon number
and standard hypercharge (leaving some linear combina-
tion conserved, which would consequently not correspond
to the electric charges of the real world). Assuming only
the standard model gauge symmetry, then the simplest
way that we know about to modify the theory to obtain
electric charge quantization is to add a new scalar such
that its interactions violate the baryon number symmetry
(but conserve hypercharge) [11].The scalar must interact
with quarks if it is to violate baryon number. Assuming
the usual renormalizable dimension four (Yukawa-type)
coupling, then there are only a finite number of possible
quantum numbers for the scalar. Since the scalar will
couple to a fermion bilinear, it follows &om gauge invari-
ance that the quantum numbers of the scalar are those
of the fermion bilinears. For example, a scalar gq cou-
pling via the interaction term l: = AoiQr, (fL,) implies
that o'i transforms the same way as QI. (fr, )' Thus we.
can simply list the possible scalars in terms of fermion
bilinears with SU(3), SU(2)1, U(1)v representations

as follows:

(7y

g2 ~
g3

g 4

g5

g6

g7 ~
gs

CTg ~

Ql(fL) -(»1+3 —yd)

Qr, eR unfed, (3 2 —3 —yd)

Ql (Ql )' (3+ 6, 1+3, —2 —2yd),

uR(dR) - (3+ 6, 1, —2 —2yd),

u~(e~)' dg(vR)' (3, 1, —yd),

uR(vR)' (3~ 1~ —2 —yd),

dRfL ™QivR ~ (3, 2, —1 —yd),

uR(uR) (3+ 6, 1, —4 —2yd))

dz(dz)' (3+ 6, 1, —2yd)

l: = Ai fl,odR+ A2Ql, o'vs + H.c., (10)

where gauge invariance of this Lagrangian term implies
that

o (3, 2, -yd —1).

The hypercharge of o is constrained to be —1/3 (which
means that yd is constrained to be —2/3) by the scalar
potential terms

b,V(g, o) = Ao P+H.c. (12)

Thus, the interactions of g fix the undertermined hyper-

where our notation for the standard model fermions (+
right-handed neutrinos) is

fr, (1,2, —1), e~ (1,1, —2), v~ (1,1,0),
Q~ (3 2 1 + yd), uJi (3 1 2 + yd), (9)
dR (3, 1, yd),

with the generation index suppressed. We will assume for
simplicity that there exists only one exotic scalar. Note
that the above interactions do not, by themselves break
the baryon number, since the scalar can carry baryon
number. We need to break the baryon number in the
scalar potential. Note that, since all of the scalars are ei-
ther in the 3 or 6 representation of SU(3)„ the smallest
dimensional term, which breaks baryon number and con-
serves SU(3), is the trilinear term os. [Note that there
is no quadratic or quatic term, which breaks the baryon
number and conserves SU(3),.] Any crs term will also vi-
olate standard hypercharge. The only possible renormal-
izable term must involve three o's and the Higgs doublet

Since the Higgs doublet has hypercharge 1 (in our
normalization), a os/ or crsPt term will imply that the 0
scalar must have hypercharge —1/3 or 1/3, respectively.
The only candidate for g is gy, since any other choice will
clearly lead to the wrong hypercharge assignments. [For
exaxnple a aisle would constrain the hypercharge of oi to
be —1/3, which will consequently constrain yd = —1/3.
Then using Eq. (3), we would find that the electric charge
of the d quark would by —1/6, which would lead to incor-
rect electric charges for the hadrons and of course does
not correspond to the real world. ] Thus, we conclude
that under the assumption of only one exotic scalar, elec-
tric charge can be quantized classically. FUrthermore the
quantum numbers of the scalar and the form of the inter-
actions of the scalar are uniquely determined. The scalar
couples leptons to quarks through the Lagrangian terms
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charge of the d quark, resulting in a model with electric
charge quantization at the classical level. Note that we
must choose the parameters in the scalar potential such
that 0' does not get any VEV, while P of course gets a
VEV. It is straightforward to show that this is possible.
We leave the details as an exercise to the reader.

Since 0 violates baryon number, interactions involving
cr will induce baryon-number-violating processes. The
process, which should place the most stringent limit on
the mass of ~, will be the experimental bound on pro-
ton decay. Observe that any Feynman diagram leading
to proton decay must involve the baryon number violat-
ing os/ interaction. The leading order diagram for the
proton decay involves one of these interactions and thus
contains three cr fields (note that when the VEV of P is
included, the as/ interaction contains a as interaction
term). One can easily see that the simplest diagram giv-
ing proton decay leads to the decay P ~ sr+ + v+ v+ v.
The order of magnitude of the decay width for this decay
can be evaluated Rom simple dimensional arguments:

t'(y)'M„" l
I (P M 7I + v + l/ + v) = 0 M~2 )

'

where M„ is the proton mass, and M is the o scalar
mass. Thus, applying the existing experimental limit on
the lifetime of the proton we find that the mass of o. is
constrained to be greater than about 105 GeV.

Finally note that this model may be easily modified so
that only the electric charge parameter Q(v ) is undeter-
mined. The o field can be introduced with interactions
described above to fix Q(d) = —I/3. In the lepton sec-
tor it is possible that the third generation does not mix
with the first two generations and that the third gener-
ation neutrino (i.e. , the 7 neutrino) is a Dirac fermion
(note that a Majorana fermion must have zero electric

charge if electromagnetism is unbroken). In this case,
the resulting model would have Q(v ) classically undert-
ermined. Its mass can be large enough (i.e., greater than
about 25 keV [7]) to evade the astrophysical constraints.
Thus, we emphasize again the importance of putting the
standard assumption of a electrically neutral v to the
test.

For completeness we mention that a different type of
mechanism for obtaining electric charge quantization in
a theory with a U(l) gauge factor is possible if the gauge
group is enlarged so that a discrete symmetry interchang-
ing the quarks and leptons is assumed. The resulting
quark-lepton symmetric models can have a U(1) factor
in the gauge group, which can be completely fixed clas-
sically [12].

In conclusion, we have discussed the issue of electric
charge quantization in the standard model. There are
two diferent ways in which the minimal standard model
constrains the electric charges of the fermions. There are
constraints that follow &om the classical structure of the
theory and those that follow &om the quantization of the
theory (i.e. , anomaly cancellation). We argue that the
classical constraints are very well motivated constraints,
while the anomaly conditions are not as well motivated,
since new (heavy) fermions could exist, which cancel any
potential anomalies. We examined the classically allowed
electric charges of the fermions in the minimal standard
model. We made the observation that the electric charge
of the w neutrino may be nonzero and that the current
experimental constraints on the charge of the w neutrino
seem to be very weak. In fact, there may be no exper-
imental searches for a charged w neutrino at all. If this
is the case, then we argue that experiments should be
undertaken to test the neutrality of the 7. neutrino. We
then examined ways in which the standard model could
be modified so that the electric charges are quantized
correctly classically.
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