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Pure phase mass matrices
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We study quark mass matrices whose matrix elements in a given quark sector differ only in their
phases and we describe how such matrices can be compared with quark masses and family mixing.
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I. INTRODUCl'lON

The pure-phase mass matrix [1,2] is a particularly in-
teresting realization of a democratic mass matrix [3]. Al-
though no known dynamical scheme generates this pic-
ture, the possibility that only a single Yukawa coupling
strength appears in a given fermionic sector is suSciently
attractive to warrant a better understanding of its impli-
cations for phenomenology.

We refer to a pure phase mass matrix as one with ele-
rnents

M" =eip"
lJ

We shall explore the possibility that such matrices de-
scribe the quark masses in both the down and up sectors.
The two sectors will, in general, have different phases,
and each of the two matrices has a different normaliza-
tion that we leave unspecified for the moment. We can
always choose the phase of states so that
$„=0=$z2=$33 and we do so henceforth.

We take for masses at 1 GeV in the up sector, m
&
=5. 1

MeV, m2 =1360 MeV, and for illustration, '
m3 =3X 10

MeV and, in the down sector, m, =8.9 MeV, m2=145
MeV, and m3 =5700 MeV. Let us define, w; —=m;. The
normalization we choose will make the sum of the masses
squared in both the down and up sectors equal to three.
Thus the w's are given by dividing out the sum of the
masses squared in each sector and multiplying by 3. We
can then set w3 equal to 3 —

w&
—w2. With this normali-

zation, we have in the up sector w&=8. 643X10
w2=6. 162X10;for the down sector, w& =7.29X10
w2 =1.944X 10 . It is also useful to work with the mass
ratios w&/w3 and w2/w3. These are given, respectively,
by 2.88X10 ' and 2.05X10 in the up sector and
2.43X10 and 0.64X10 in the down sector. If
w2/w3=ed and e„ in the down and up sectors, then
E'd =0.0255 and e„=0.0045. In each case w

&
/w 3 is

O(e ) (or smaller). We shall henceforth think of w2 as
O(e ) and w, as O(e"). The small quantity e will provide

II. PARAIMETRIZATION

The pure-phase mass matrix in Eq. (1.1) is not neces-
sarily Hermitian; it is simpler for our purposes to work
not with M as in Eq. (1.1) but with the Hermitian matrix
H:——,'MM . The diagonal elements of this matrix each
equal three, and the off-diagonal elements are given by

3H ~21+ ~12+ ~13 ~2321=e' ~
'

e
'

3H ~31 + ~12 ~32 + ~133&=e e e

3H 21 31 + 32+32=e e e

The exact eigenvalues of the matrix H are given by

2&3
wi = +2c +91 9 1

(2.1a)

(2.1b)

(2.1c)

1
Xcos —arcsin

3

wz= +2c, +92&3
9

3&3(4c,+c2 )

2+(2c, +9)
Sm

6

(2.2a)

a convenient expansion scheme for our discussion.
We have several different aims in this note. We want

to show in what way the hierarchy inherent in masses
and in the Cabibbo-Kobayashi-Maskawa (CKM) matrix
reveals itself in the pure-phase mass matrix. We want to
describe the full parameter space that is consistent with
the current values of the CKM matrix elements. In this
way we can provide a framework for any future dynami-
cal model that leads to a pure-phase mass matrix. More-
over, we can prepare to see whether improved experimen-
tal data on the values of the CKM matrix elements can
be accommodated in a pure-phase mass matrix. Finally,
the question of whether a pure-phase mass matrix can be
constructed with a reduced parameter set, for example,
whether it is symmetric or refiects some type of texture,
is a potentially interesting one. The groundwork we lay
in this note will allow us to explore such questions in fu-
ture work.

iFor a QCD scale of 150 MeV, a top quark mass of 3X10'
MeV at 1 GeV corresponds to a physical mass of some 140
GeV.

1
Xcos —arcsin

3

3&3(4c, +c2) +—+1,
2+(2c, +9)3 2

(2.2b)
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2 3
w3 = '1» 2c)+9

9

84 ( 12 013+023 ' (2.5d}

3~3(4c)+c2)
Xcos —arcsin

2 (2c, +9)
7r +1.
6

(2.2c)

In Eqs. (2.2), we use

c 1
—cos8 1 +cos82 +cos83 +cos84 +cos( 84 —81 )

+cos(84—83)+cos(84+82—8, )

+cos(84+ 82 83)+cos(84+82 81 83)

c2 =—2[3+cos(83—82)+cos(83—81)+cos(82—81 )

+cos( 84+ 82) +cos( 84 81 83 )

+cos(284+82 —8, —83}] .

(2.3)

(2.4)

These quantities contain only four linear combinations of
the six angles appearing in the mass matrix: namely,

2(9—c)}
N2= (2.6)

The three invariants of H are 3 [trace, w, +w2+w3],
2(9—c, )[w)w2+ w, w3+ w2w3 ], and c2 —2c, [determi-

nant, w)w2w3].
The eigenvalues di8'er only by phase factors of 120'.

When all phases vanish, we recover the primitive Nambu
symmetry, in which wl =wz=0, while w&=3. To the ex-
tent a perturbative expansion makes sense, with

w3 const, w2 =O(e ), and w, =O(e }, the expression
for the second order invariant shows that 9—c, =O(e ),
while the expression for the determinant shows that
c2 —2c, must be O(e ). The angles 8„.. . , 84 are in
turn each O(e}. Moreover, the masses can be developed
as well-behaved (invertible) expansions in 9—c, and

cz —2c &, and in particular the leading behavior is

81—=63+(()3»

82 —=0)3+43)

83 =((l)2+(()2)

(2.5a)

(2.5b)

(2.5c}

c2 —2c )

6(9—c1)
(2.7)

Following Branco, Silva-Marcos, and Rebelo [1],we note
that the matrix H can be written in the form

e ' (1+e +e )

3

(1+e +e )

3

e'"(1+e '"+e "4)

i((N)12
—

(N)13) i(81—84) —i 84 i(82 —83)
e (e +e +e )

3

(1+/ +e )

3
—i(8 —8 ) i8 —i(8 —8 )12 13(e 1 4+/ 4+/ 2 3

)

3

As the discussion above shows, the 8 variables are small. We can then write

—,'(e ' +e ' +e ' )=(1—X)e'~' (2.9)

where, as we shall describe in more detail in Sec. III, X is positive but small compared to 1, and the phase ge is likewise
small; indeed g is given to leading order by

g= —,'(x, +x2+x3) .

When we apply this to Eq. (2.8), we find

(2.10}

i(f(2+ a)

—i ($12+a)H = (1—(2)e 1

(1 b)
i($)3+P)

(
— i( f(2+/)3+5)—

(1 b}e—
&)2+4'13+S) (2.1 1)

If it should be desirable to keep diagonal phase angles, then we set 81=(()23+(()32 (()33 f22 82 t+1i1t11331 1t)33

83 4'12+ 421 1)l22 411» 84 $12 4'12+ 023 (( 22'
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The leading behavior of the phases a, P, and 5 are

a = —
—,'(83+84),

P= —
—,'(8, +8z—84),

5= ——'(8, +8z —83 —284) .
3

We now apply a unitary transformation U&.

1 0

(2.12a)

(2.12b)

(2.12c)

i(p&2+a)U)= 0 e

0 0

Then

0
'«~3+~)

e

(2.13)

FIG. 1. Triangle relations for the quantities a2, 62, and c&.

1 (1—a)
H'= U, HU—,

' = (1—a) 1

(1 b} (—1 —c)e

(1 b)—
(1—c)e'"

1

(2.14)

(We use the trace invariant only to replace w3 by
3—w, +wz. ) Combining these two equations, we can re-
place the second of them by

where the phase in the 23 and 32 elements is

Q=—a —P+5. (2.15)

6(a, b, c)= —w, wzw3 2abc—
—2(1—a)(1—b)(1 —c)(1—cosQ) (3.5)

Equations (2.12) show immediately that Q is zero to first
order in the 8;; we shall see in Sec. III that Q is at most
O(e'}.

III. PERTURSATIVE EXPANSION

where 6 is the triangle function, h(x, y, z) =x +y
+z —2(xy+xz+yz }.

With wz O(e ) and w, O(e ), we can compare the lead-
ing orders in Eqs. (3.3) to (3.5). The leading term in Eq.
(3.3}is O(e ):

Let us suppose that in any one sector the theta vari-
ables are of order e. We can then expand the factors in-
volving these quantities in powers of e:

—,
'

W2 =a2+ b2+ c2 .

The leading term in Eq. (3.5) is 0 (e }:

(3.6)

1
(

Iz]E+ I
F2+

lx
E3)3'

i(g e+g e+ )=(1—X +X + )
' ' (3 1)

b(az, bz, cz)=0 . (3.7)

Equations (3.6) and (3.7}are two constraints that allow us
to characterize the three quantities a2, b2, and c2 by the
one-parameter form

The absence of odd powers in the magnitude and even
powers in the phases is a general feature of this expan-
sion. We calculate

1
Xz =—(x] +xz+x3 x]xz —x]x3 —xzx3), (3.2a)

9

az=wz sin (p),

b2=m2 sin p ——
(3.8a)

(3.8b)

1
g] (x]+xz+x3 )

3
(3.2b)

2c =m sin p+—2 2 3
(3.8c)

The quantity X2 is non-negative. We do not specify X4
and (3 because they generally depend on higher order
terms in the theta variables.

We can apply this expansion to H', noting that
Q=a3 —p3+53, and that a=aze +a4e, and similarly
for b and c. The mass hierarchy imposes some useful re-
lations and limits among the variables a, b, c, and Q and
their perturbative elements. We use the invariants of H':

w, wzw3 =1—(1—a) —(1—b} —(1—c)z

+2(1—a)(1 —b)(1 —c)cosQ . (3.4)

w, wz+w, w3+wzw3 =3—(1—a) —(1—b) —(1—c)z,

(3.3}

Figure 1 illustrates this triangle as well as the relation
Qcz =diaz Qbz that fo—llows from it.

IV. DIAGONAL&XATION AND THE CKM MATRIX

We have described elsewhere [4] how the parameters of
matrices of the form H', as in Eq. (2.14), can be fit simul-
taneously to the observed masses and the observed values
of V. The Cabibbo-Kabayashi-Maskawa matrix Vcan be
formed from the unitary transformations U„and Ud that
diagonalize the mass squared matrices in the up and
down sectors, respectively. In particular, if UHU is
the diagonalized mass squared matrix, then V= U„Ud '.
The rows of U are the (normalized) eigenvectors of H.

Let us denote the jth eigenvector of H'~d by I vj„vjz,
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Vj3],
a'/„

and the complex conjugate of the jth eigenvector of
[flj1 Qj2y Qj3]. Then Vis

Q11 Q12 Q13 l Q Q V11 V21 U31
—iK

21 22 23 0 e 0 U 12 022 U 32

e
—iL

Q31 932 933 I . V13 U23 U33

(4.1)

12

"02

01

The central diagonal matrix, containing the two indepen-
dent parameters K and L, is the result of the successive
diagonal transformations U2U1U1 U2 . We have

0.2
g

0.4 «s

and

(( 12++ 1++ 2)ld ((( 12+iz1+iz2) I.=kd —k„ (4.2)

I =($13+i81+P2)ld —(413+&1+%}1„=4 In—(4.3)

Reference [4] describes allowed values of the parameters
a, b, c, and 0 for each sector as well as the quantities k
and 1 consistent with masses and the known values of V.
Note that kd and ki are not separately determined.

V. CONVERSION TO ORIGINAL PARAI4iETER SPACE

Let us make explicit the correspondence between the
parameters we have used in order to fit [4] the magni-
tudes of the elements of V and the original phase angles
of the ansatz. We find a set of angles, including a unique
set of the 8;, corresponding to the fitted parameters. To
do so, we work within a given sector; a subscript for the
sector should be understood. We compare the matrix ele-
ments that follow from the original form of H, Eq. (2.8),
with the form in terms of the fitting parameters, Eq.
(2.11). (We assume the ambiguity in finding say, kd and

ki separately in terms of the phenomenological parameter
k has been resolved as we like. } We have three complex
equations for the three nontrivial matrix elements:

(1—a)e'"=e "(1+e '+e '), (5.1a)

(1 b)e'=e "(1+—e '+e ' '
) (5.1b)

(1 c) in e
' 112 413

(
(

1 4)+ 4+ 1(e2 e3))

(5.1c)

These represent six real equations for the six quantities
8„.. . , 84, $,2, and p, 3 in terms of the phenomenological
quantities a, b, c,k, 1,n.

A perturbative view of this system reveals that to lead-
ing order 11)&2 and ((),3 are not separately determined. In
addition to the O(e) quantities we have so far used, we
note that a fit to the CKM matrix implies that k and I are

FIG. 2. Relation between the angles (l)12 and (()» that follow
from Eq. (5.9) with remaining parameters those of the example
in Ref. [2]. The values of those parameters are of no special in-

terest in this purely illustrative plot. At some locations of $13
several values of P,2 are allowed.

both O(e), so that ((),2 and (t)» are also O(e). Let us set
k'—:k —

1)),2, I'=1—
(()&3, n'=n —(1I)»—$,2). These quan-

tities are also O(e}, as are all 8 variables, while we recall
that a, b, and c are each O(e ). Then the O(e) and O(e )

terms in Eqs. (5.1) give the six equations

k'= —(83+84)/3,

2o +k '2 —
( 82 +82 ) /3

I'= —[(8,—84)+82)/3,

2b+1'2=[(8,—84) +82]/3,
n'= —[(8,—84)+82—83—84]/3,

(5.2a}

(5.2b)

(5.3a}

(5.3b)

(5.4a)

8,=-,'[—~~&4 —k' —3k ],
84= —,

' [3/3+4a —k' —3k'],

or 83~04, and

(5.5)

(5.6}

2c+n' =[(8, 84) +82—28283+8—3+84]/3 . (5.4b)

Equations (5.2) can be solved for 83 and 84 in terms of k'
and a; similarly Eqs. (5.3) can be solved for 8,—84 and 82
in terms of l' and b:

3With diagonal elements present, replace ((),2 with (()12
—

p&2 in
Eq (4.2) and ((),.3 with p» —

(()33 in Eq. (4.3).
4W1th nonzero diagonal phases, replace 1)t12

—
(()„by

412 413 422+433 1n A (5.1c).

5This is not obviously so. The 0 (e) in (()12 and (()„is associated
with the hierarchy present in the CKM matrix V and with the
sma11 size of the CP-violating parameter J.
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8, —84= —,
' [ &—3 tr 4b 1—' 3—1'],

82= ,' [&—3tr 4b —1' —31'],
(5.7}

(5.8)

or (8,—84)~8~.

When these results are inserted in Eq. (5.4a) we find

n'=l' —k' .

where we should recall k', and I', and n' are defined in
terms of k, 1, tt, and phases P; . We can then, for example,
solve for P,2 in terms of P». The result, which has
several solutions, is plotted in Fig. 2 for the values of
a, b, c,n, k, l of the example cited in Ref. [2].

VI. CONCLUSIONS

We have described the parameter space over which the
pure-phase mass matrix can be made compatible with
quark masses and mixing angles at present energies. It is

The quantities $,2 and ({)&3 drop out of this equation,
which becomes our earlier result that 0 contains no O(e)
contributions. The remaining O(e ) equation, Eq. (5.4b)
is a single constraining relating P, z and P», which when
we substitute n'= I' k' —can be written in the form

a+b —c = —,'[+(4b——1' )(4a —k' )—&31'+41—k'

(5.9}

worth emphasizing that, even within the restriction of the
mass hierarchy, a large region of the parameter space
remains available. We refer to Ref. [4] for a more com-
plete description of the fitting procedure.

The term "texture" has recently been used to describe
mass matrices with zeros in both the up and down sec-
tors. This description is not appropriate in a democratic
basis, and we prefer to use the term texture to describe
more broadly mass matrices with reduced parameter sets;
for example, the mass matrix may be symmetric, or cer-
tain elements may be simply related to one another.
Thus mass matrices with texture have predictive power.
While textured mass matrices may not be applicable at
present energies, it is entirely possible that texture may
appear at high energies, where some unifying symmetry
is present. The presence of such texture can be tested [5]
by running physical quantities back t~ present energies.
The question of texture in the context of the democratic
basis in general and of the pure-phase mass matrix in par-
ticular is worth further study.
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