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Nature of the thermal phase transition with Wilson quarks
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We describe a series of simulations of high temperature QCD with two fiavors of Wilson quarks aimed

at clarifying the nature of the high temperature phase found in current simulations. Most of our work is
with four time slices, although we include some runs with six and eight time slices for comparison. In
addition to the usual thermodynamic observables, we study the quark mass defined by the divergence of
the axial vector current and the quark propagator in the Landau gauge. We find that the sharpness of
the X, =4 thermal transition has a maximum around ~=0.19 and 6/g'=4. 8.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

Lattice simulations are an important source of infor-
mation on the behavior of quantum chromodynamics at
high temperature. Most work has been done with
Kogut-Susskind quarks because of the exact remnant of
chiral symmetry. Since the exact chiral symmetry of
Kogut-Susskind quarks is a U(l) symmetry, there is some
question about how well the results reproduce the real
world with its SU(2) chiral symmetry. In the continuum
limit the complete chiral symmetry is restored. However,
in the continuum limit the results should be independent
of the regularization used for the quarks. To test this it is
important to study high temperature QCD with the other
common form of lattice quarks, the Wilson quarks.

The first simulations of high temperature QCD with
two flavors of Wilson quarks revealed a potential
problem —for the values of 6/g for which most low
temperature simulations were done, 4.5 ~ 6/g + 5.7, the
high temperature transition occurs at a value of quark
hopping parameter sc for which the pion mass measured
at zero temperature is quite large [1,2]. In other words, it
is dificult to find a set of parameters for which the tem-
perature is the critical temperature and the quark mass is
small. Further work confirmed that the pion mass is
large at the deconfinement transition for this range of
6/g [3,4]. (A recent study has concluded that for four

time slices the chiral limit is reached at a very small value
of 6/gz=3. 9 [5].)

Screening masses for color singlet sources show an ap-
proach to parity doubling in the high temperature phase
similar to what is seen with Kogut-Susskind quarks [2,3].
Also, measurements of the pion mass show a shallow
minimum at the high temperature transition [6].

Previous simulations with Wilson fermions have locat-
ed ~„the value of the hopping parameter at which the
high temperature crossover or phase transition occurs, as
a function of 6/g for N, =4 and 6. The critical value of
the hopping parameter, ~„for which the pion mass van-
ishes at zero temperature has been located with some-
what less precision [1,2,6,7,3,4]. Some measurements of
hadron masses have been carried out on zero temperature
lattices for values of tt and 6/g close to the tc, curve, al-

lowing one to set a scale for the temperature, and to esti-
mate tc, in the vicinity of the thermal transition [3,4,8].

In more recent work at N, =6 we have observed coex-
istence of the low and high temperature phases over long
simulation times, and we have extended these observa-
tions in the present project. The change in the plaquette
across the transition is much larger than for the high
temperature transition with Kogut-Susskind quarks [4].
This unexplained behavior, as well as work by Hasenfratz
and DeGrand on the effect of heavy quarks [9],has led us
to extend our work.
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This paper reports on a series of simulations with Wil-
son quarks at high temperature, in which we have studied
a number of indicators for the nature of the phases. Us-
ing 8 X4 lattices, we have extended earlier studies of the
location of the thermal transition or crossover to
a =0.20, 0.21, and 0.22. In the range of 6/g and a that
have been studied earlier, we have done extensive simula-
tions on 8X8X20X4 lattices, with additional work on
12 X6, 12 X24X6, and 8 X20X8 lattices. For one
value of 6/g we made a series of runs on 6X6X20X4
lattices to make sure that the effects we see are not due to
the spatial size of the lattice. In this article we will con-
centrate on the results with four time slices. Simulations
with N, =6 and 8 are still underway and will be described
later.

We see a number of inexplicable effects. At large P and
small ~ the crossover from the confined phase to the high
temperature phase is smooth. Beginning at
(P,s }=(5.1,0. 16) and extending down to about
(P, ~) =(4.51,0.20) the crossover becomes abrupt, though
probably not first order. A rapid crossover is seen in the
plaquette, real part of the Polyakov loop, fg, the entro-

py, and the quark mass derived from the axial vector
current. For P(4.5,~)0.20 the transition once again
becomes very smooth.

Section II discusses the quantities we measured, and
Sec. III summarizes the simulations and the results. Con-
clusions are in Sec. IV.

II. MEASURED QUANTITIES

In our simulations we have measured the expectation
values of the Polyakov loop, the space-space and space-
time plaquettes, the chiral condensate gg, the entropy,
screening masses for meson sources, the quark mass
defined by the divergence of the axial vector current, and
quark propagators in Landau gauge.

The expectation value of the Polyakov loop, (P), is
simply interpreted as exp( F /T), where —

Fv is the free
energy of a static test quark. With dynamical quarks
(P ) is always nonzero, but it increases dramatically at
the high temperature transition. We also measured the
space-space and space-time plaquettes (CI„)and (CI„).
In our normalization these are equal to three on a com-
pletely ordered lattice.

The energy, pressure, entropy, and gg with Wilson
quarks are obtained by differentiating the partition func-
tion with respect to the temporal size, the spatial size,
and the quark mass, respectively. Details are given in the
Appendix. We study the entropy to lowest order in g and
gP, using the formulas

(s,a'&
aN,

1 as, 1 as, 1 as, 1 as,+— +— +-
3N,3N, „Ba,3 Ba„3Ba 3 Ba,

, +4(C,—C. ) ta„—a„))
N2N, x

(2)

and

1
(sfa & =mfa +pfa

aN,

]cNf 1 1Re 2Tr t 22e ——Xg; )M

If we sum over x, y, t slices, and measure distance in the z
direction, this becomes

, g &0r W«}fr r «)&
x,y, 2

=2m g (l(rs«0)mrs«»)) .
x,g, f

We define II(z ) as the pion correlator with a point sink,

II(z ) = & W(0)1(r,f(z ) & (6)

and A (z ) also the axial vector current correlator:

~(z)= ( W(0)yr, r,«z) ),

where s~ and sf are the gluon and fermion entropies, re-
spectively.

We measured screening masses for meson sources with
quantum numbers of the ~, 0, p, and a &. These measure-
ments are a standard hadron spectrum calculation, ex-
cept that the propagation is in the z direction. We used a
wall source covering the entire z =0 slice of the lattice,
with the gauge fixed to a spatial Coulomb gauge which
maximizes the traces of the x, y, and t direction links.
After blocking five to ten measurements together to mini-
mize the autocorrelations, we fit all the propagators to a
single exponential using the full covariance matrix of the
propagator elements.

A quark mass can be defined from the divergence of
the axial current [10,11]. The basic relation is a current
algebra relation

~p & mrs«0}ersr pe(» }& =2mq& As«0}A's«» }& .

(4)

and

(gP) =, Re(Tr
s t

where W(0} is the wall source at z =0. At long distances
both II(z) and A(z) will fall off as exp( —m z}. There-
fore we perform a simultaneous fit to the two propagators
on a lattice periodic in the z direction using three param-
eters, C, m, and m:
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II(z) =C sinh(m ) [exp( —m z )+exp[m „(N,—z ) ]j,

A(z)=C2m [exp( —m z) —exp[m (N, —z)]] .

(8)

where

A = g sin [p„/2],
@=1,2,0

8 = g sin~[p„],

(13)

(14)

(10)

With our choice of the source the first Dirac com-
ponent of the propagator, G

„

is real:

1 —2a g cos(p„}
G = P

1 —2a g cos(p„) +4a g sin (p„)
P P

Then, for nonzero z values,

L

G(p„pz,z,po)= g exp[i2~kz/L, ]G(p„pz,k,po)
k=I

=L, (1 6a+4a A ) 4a(B—+1)—
8a(1 —6a+4a A )

cosh[ ma (z —L, /2) ]
X

sinh(ma ) sinh(maL, /2)
(12)

The factor of sinh(m ) in Eq. (8) comes from using the
lattice difference f(z+1) f(—z —1) for the derivative in

Eq. (5). Note that II(z) is periodic in z while A (z } is an-
tiperiodic. We use the pointlike axial vector current
g(z )y 5y„f(z) rather than a point split current. These are
quark masses in lattice units; to convert to continuum
quark masses requires a lattice-to-continuum renormal-
ization. See Ref. [17]for a discussion of this point.

The quark propagator in the Landau gauge was also
measured. This propagator has been studied with
Kogut-Susskind quarks in Ref. [12]. We chose a source
constant in the y direction and a 5 function in x, z, and t
with only the real part of the first Dirac component
nonzero (in the Weyl basis we use). Because of the 5
function all possible momenta in x, z, and t directions
were excited. To distinguish among the different momen-
ta we performed a Fourier transform of the propagator in
x and t directions (taking into account that it has to have
odd frequencies in t direction). This gives the propaga-
tion of the quark in the z direction as function of k„and
k„i.e., the dispersion relation of the screening propaga-
tor. In order to keep the amount of generated data at a
reasonable level, the propagator was saved only for on-
axis momentum values of k„and k, . This enabled us to
measure the on-axis dispersion relation of the quark
screening mass, in particular the screening mass
difference of the quark and light doublers.

The form to which the spatial propagator is fitted is
usually motivated by the form of the free propagator.
We suppose that at large distances, each separate
momentum component of the spatial propagator resem-
bles the corresponding free quark form, but with its own
renormalized quark mass, or in this case of Wilson fer-
mions, with a renormalized K.

In momentum space the free Wilson propagator is

1 —2ag cos(p„) —i2agy„sin(p„)

z
1 —2ag cos(p„) +4a g sin (p„)

P

and

@=1,2,0

1/2
4a B+ ( I 8a—+4a A )

8a(1 —6a+4a A )
(15)

At zero momentum (on a low temperature lattice where
the lowest Matsubara frequency is close to zero) this rela-
tion turns into

1 —6K
ma =ln

2K
(16)

The mass vanishes when K~ —,
' as expected. Inverting

this for K gives

K-
2exp[ma]+6 '

which, for small masses, reduces to the naive relation,

(17)

K-
2ma+8

(18)

that one expects looking at the terms of the Lagrangian.
For large lattices the lowest doubler mass becomes

1 —2K
mad, „b1„=lim ln

@~1/8 2K
=in[3]=1.09861 . (19)

For Kogut-Susskind fermions [12] the free propagator
turns out to be a sum of two terms, having parts with an
alternating sign in z direction. For Wilson fermions, with
our choice of the source, the propagator is a single ex-
ponential, or hyperbolic cosine, on a finite lattice.

Furthermore, the sign of G, at k =0 changes at a.,=
—,'.

Therefore, measuring the sign of the propagator can be
used as an indicator of whether K is effectively greater or
less than K, .

One can infer from Eqs. (13)—(15) that the only effect
of finite spatial lattice size is the discretization of the mo-
menta. For a given momentum all lattice sizes give the
same value of the screening mass. For a smaller lattice,
the range of allowed momenta is more restricted, of
course.

To be specific let us look at what happens with our lat-
tice size: 8 X20X4. This is shown in Fig. 1. At K, the
lowest momentum screening mass is at its minimum. If
one increases K the screening masses start to converge to
a single value close to one at K=O. 152. At this point the
dispersion relation is Sat.

The sign of the propagator with this source depends on
the momentum. Generally, the value of K at which the
sign changes increases with the momentum. For zero
momentum it occurs at K, ; for the smaHest nonzero
momentum in our lattice size it takes place at
a=(2+~2 —&3)/11=0.1374. The amplitude for the
doubler does not change sign in this K range.
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8.0 k =(0,0,0, kn /4), ma =0.6610,

k =(0,0,0, +3m /4), ma =1.0711 .
(21)

1.5—
Hence, the temporal doubler's screening mass is smaller
than that of the spatial doubler.

III. SIMULATIONS AND RESULTS

1.0—

0.5
0.05

I
I
I

I I I I I i I I I I 1 I

0.10 0.15 0.80

FIG. 1. The spatial screening mass at difFerent spatial mo-
menta for free Wilson fermions as a function of x for an
8 X20X4 lattice. At sc, = 8 the higher masses are for higher

momenta.

k =(0,0,0,n/4), ma =0.6610,

k =(m/4, 0,0,m/4), ma =0.8906,

k =(n/2, 0,0,m/4), ma =1.1171,

k =(3n/4, 0,0, n/4), ma =1.2149,

k =(n, O, O, n/4), ma =1.2411 .

(20)

For purely temporal momenta the free field screening
mass is

For our lattice size, inserting the appropriate momenta
to Eq. (15) one obtains the following quark screening
masses at x, =—,':

Simulations were run on the Intel iPSCl860 and Para-
gon, and the nCUBE-2 at the San Diego Supercomputer
Center, on the Thinking Machines Corporation CM5 at
the National Center for Superconducting Applications,
and on a cluster of RS6000 workstations at the Universi-
ty of Utah. We used the hybrid Monte Carlo algorithm
with two Savors of dynamical quarks in all our simula-
tions [13]. The parameters of our runs are listed in
Tables I, II, and III.

For the 8 X20X4 runs we used trajectories with a
length of one unit of simulation time and made measure-
ments after every second trajectory. The step size for
these runs ranged, in the normalization of Ref. [14],from
0.033 for the largest 6lg and smallest ~ to 0.02 at the
other extreme. Acceptance rates for these runs range
from 70% to 90%, with an average over all the runs of
87%. For computation of the fermion force in the updat-
ing and the propagators in the measurements we used the
conjugate gradient algorithm with even-odd incomplete
lower upper (ILU) preconditioning [15]. The conjugate
gradient residual, defined as iM Mx b i/—ib i where M is
the preconditioned matrix, b is the source vector, and x is
the solution vector, was 10 . Runs were made at
6/g =5.3, 5.1, 5.0, and 4.9 with N, =4. At 6/g =5.3
we also made a series of runs with N, =6. At 6/g =5. 1

we ran two points with N, =8 and at 6/g =5.0 two
points with N, =6. We also ran a series of simulations at
6/g =5. 1 on 6 X20X4 lattices to verify that the spatial
size of the lattice was not seriously affecting our results.

TABLE I. Table of runs at fixed 6/g with varying a. "(h )"and "(c)" indicate hot and cold starts.

Nr 6/g 2

4.9
4.9
4.9
4.9
4.9
49
49
4.9

0.180
0.181
0.182
0.1825
0.1825
0.183
0.183
0.184

Traj.

650
320
810
824(c)
780(h)
624(h)
810(c)
610

Ignore

100
100
100
100
100
100
600
100

dt

0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

Accept

0.88
0.94
0.90
0.86
0.88
0.90
0.87
0.93

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

0.173
0.175
0.177
0.178
0.180
0.182

0.175
0.180

540
500
400
474
630
256

240
360

100
100
100
100
100
100

80
60

0.025
0.02
0.02
0.02
0.02
0.02

0.02
0.0167

0.86
0.92
0.90
0.94
0.92
0.86

0.94
0.87

5.0 0.175 350 0.0167 0.91
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At 6/g =5.3 a series of short runs on 6 X4 lattices was
made for very large sc.

For reference we show a phase diagram for the
relevant range of a and 6/g in Fig. 2. Previous work
showed that as ~ increased from 0.16 to 0.19 along the
E, =4 high temperature crossover line the pion mass de-
creased, suggesting a closer approach to the high temper-
ature transition in the chiral limit [3]. More recent work
by Iwasaki et al. , beginning from the 6/g =0 limit, sug-
gested that a high temperature transition for zero quark
mass might be found at a =0.225 [16]. We have done a

series of runs on 8 X4 lattices in which we varied 6/g at
~=0.20, 0.21, and 0.22 to extend the previous work. As
expected, the number of conjugate gradient iterations re-
quired in the updating increases as a increases in this
range, and the size of the possible updating time step de-
creases. Thus these runs have limited statistics. In Fig. 3
we show the plaquette and Polyakov loop as a function of
6/g for the various values of ~. Notice that the transi-
tion appears to be sharpest at v=0. 19, becoming smooth-
er for larger and smaller ~. Even in those cases where the
transition is very abrupt, we do not see the sorts of meta-

TABLE II. Table of runs at 6xed 6/g with varying ~. "(h )" and "(c)"indicate hot and cold starts.
Most of the X, =4 runs were on 82X20X4 lattices. The run indicated with a 0 at N. =O. 168,6/g =5.3
was done on a 8 X40X4 lattice.

N N„y 6/g 2

5.1

5.1

5.1

5.1

5.1

5.1

5.1

5.1

5.1

F 1

0.165
0.167
0.169
0.170
0.171
0.172
0.173
0.175
0.177
0.179

Traj.

1120
2660
460
700
980

3380
500
460

1800
660

Ignore

100
100
100
100
100
100
100
100
100
100

0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025

Accept

0.89
0.89
0.87
0.90
0.89
0.87
0.85
0.86
0.88
0.88

5.1

5.1

5.1

5.1

5.1

0.169
0.170
0.717
0.172
0.175

860
1000
1360
1120
720

200
100
100
100
100

0.0333
0.0333
0.0333
0.0333
0.0333

0.82
0.85
0.81
0.83
0.81

5.1

5.1

5.1

0.167
0.173
0.177

512
279
440

100
100
100

0.025
0.02
0.02

0.82
0.87
0.66

4
4
4
4
4

4
4
4
4
4
4
4
4f
4
4
4

5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5 ' 3
5.3
5.3
5.3

0.155
0.157
0.158
0.159
0.160
0.161
0.162
0.163
0.164
0.165
0.166
0.167
0.168
0.168
0.169
0.170
0.172

2400
660

1239
660

1777
480
480
680
460
720
660
912
540
840
380
380

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

0.0333
0.0333
0.0333
0.0333
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025

0.78
0.76
0.89
0.89
0.88
0.88
0.83
0.87
0.90
0.88
0.87
0.86
0.89
0.80
0.86
0.79
0.87

12
12
12
12
12
12

5.3
5.3
5.3
5.3
5.3
5.3

0.155
0.160
0.165
0.166
0.167
0.168

320
552
666

1403
760
603

100
60

216
400
302
200

0.0177
0.0177
0.0177
0.0177
0.0177
0.0177

0.88
0.91
0.85
0.84
0.84
0.85
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stability and tunneling characteristic of strong first order
transitions. We do find cases where equilibration takes a
long time. The worst case was in the run at 6/g =4.9
and re=0. 1825. In this case we have plotted two points,
from hot and cold starts. These points are marked by ar-
rows in Fig. 3. However, these two runs eventually con-
verged to similar values, lying in between the values in
the early parts of the runs. The time history of the Po-
lyakov loop in these two runs is shown in Fig. 4.

We now examine the 8 X20X4 runs in more detail.
Figure 5 shows the real part of the Polyakov loop as a
function of a for the different values of 6/g . For
6/g~=5. 3 we also include values for N, =6 to show how
the transition point moves as N, increases. For all of
these values of 6/g we see the expected sharp increase in

the Polyakov loop at a value of ~ less than a„where ~, is

the value at which the squared pion mass vanishes on a
zero temperature lattice. We estimate a, at these values
of 6/g from published values of a., in Refs. [7] and [4]
and a recent measurement at 6/g =5.3 by the
HEMCGC group: a.,(5.3)=0.16794 [17]. From a quad-
ratic fit to these values, shown by a line in Fig. 2, we find

z, (6/g ) =0.1687(2) at 5.3, 0.1795(4) at 5.1, 0.1861(12)at
5.0, and 0.1941(40) at 4.9.

Although not a physical quantity, the nu ber of conju-
gate gradient iterations used in solving M Mx=b indi-
cates how singular M is on the average. This quantity
has been used as a probe of the physics in Ref. [16]. In
Fig. 6 we show the average number of conjugate gradient
iterations used in an updating step, where a linear extra-

TABLE III. Table of runs at fixed a with varying 6/g . "(h )" "(c)"indicate hot and cold starts.
The acceptance rate gives the average over all runs in the sample kept for measurement, whether or not
dt was changing during the runs.

+x,y, s 6/g. 2

4.75
4.755
4.76(c)
4.76(A)

0.19
0.19
0.19
0.19

Traj.

578
1504
837
362

Ignore

100
750
500
100

0.014286
0.014286
0.014 286
0.014286

Accept

0.912(13)
0.960(6)
0.948(11)
0.962(12)

4.32
4.36
4.40
4.44
4.48
4.50
4.52
4.54
4.56
4.60
4.64

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

156
172
188
152
368
244
841
566

1324
365
244

50
50
50
50
50

100
150
150
200

50
50

0.02
0.02
0.02
0.02
0.02
0.014286
0.014286
0.014286
0.014286
0.014286
0.02

0.83(4)
0.83(3)
0.79(3)
0.77(4)
0.69(3)
0.84(3)
0.773(16)
0.72(2)
0.941(7)
0.937(14)
0.959( 14)

4.10
4.20
4.26
4.28
4.30
4.32
4.34
4.36
4.40
4.44
4.50

3.80
3.90
3.96
4.00
4.04
4.06
4.10
4.20
4.30
4.40
4.50

0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

74
267
586
478
454
227
259
281
197
249
120

59
56
39

119
161
119
234
90
58
90

122

50
50

100
100
100
50
50

100
50
50

15
30
25
80
50
40
50
50
50
50
50

0.01
0.005
0.005
0.005~0.0025
0.005
0.005
0.007 143
0.0025 —+0.007 143
0.0025-+0.01
0.007 143~0.01
0.05—+0.01

0.001
0.002—+0.0004
0.002—+0.0005
0.004~0.002
0.004
0.003 333
0.005
0.007 143
0.005~0.007 143
0.01
0.01—+0.02

0.79(8)
0.90(2)
0.85(2)
0.82(2)
0.904(16)
0.94(2)
0.943(15)
0.960(14)
0.95(2)
0.977(9)
0.94(3)

0.93(4)
0.69(9)
0.36(13)
0.50(8)
0.71(4)
0.78(5)
0;86(3)
0.98(3)
1.00(0)
0.95(3)
0.96(2)
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FIG. 4. Time history of the real part of the Polyakov loop for
runs with hot and cold starts at 6/g =4.9 and a =0.1825.
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FIG. 2. Phase diagram showing estimates for the high tem-
perature transition and a, . Circles represent the high tempera-
ture transition or crossover for N, =4, squares the high temper-
ature transition for N, =6, and diamonds the zero temperature

Previous work included in this figure is from Refs.
[2,6,7,3,4]. We show error bars where they are known. For
series of runs done at fixed x the error bars are vertical, while
for series done at fixed 6/g the bars are horizontal. Points
coming from this work are shown in heavier symbols. The solid
lines are fits to ~, for N, =4 and to ~, used in interpolating and
extrapolating.
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I
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I

I

polation of the last two time steps was used to produce a
starting guess for the solution vector. For 6/g =5.3 and
N, =4 there is very little effect on the number of itera-
tions at Ir, . As 6/g is decreased for N, =4 there is an in-

creasingly sharp peak in the number of iterations at a, .
Notice also the sharp peak in the N, =6 results for
6/g =5.3.

Figure 7 shows the average plaquette in these runs.
Our normalization is such that the plaquette is three for a
lattice of unit matrices. The plaquette also shows a sharp
rise as the high temperature crossover is passed. Notice
that for 6/g =5.3 we have results for N, =4 and 6 show-

ing that this increase is in fact due to the time size of the
lattice, or the temperature.

The chiral condensate gf is less useful for Wilson
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FIG. 3. The plaquette and Polyakov loop as a function of
6/g for various values of sc. The diamonds are previous results
of Ref. [3] for a=0. 12, 0.14, 0.16, 0.17, 0.18, and 0.19. For
~=0.12 and 0.14 data from long runs as well as some data from
short runs collected while generating hysteresis loops are
shown. The octagons at ~=0.20, 0.21, and 0.22, are new results
from 8 X4 lattices. The squares come from runs on 8 X20X4
lattices. These runs were done at fixed values of 6/g with vary-
ing x. They have been mapped onto this figure by fitting the
6/g, ,x, line (with a fit shown as a line in Fig. 2), and moving the
points in the sc,6/g plane parallel to this line. Specifically, we
plot the points at 6/g, l „.„,=6/g,„„—B(6/g, )/BK, (a,„„—tc, ).
The fit for a, at 6/g'=5. 3, 5.1, 5.0, and 4.9 is 0.1579, 0.1713,
0.1772, and 0.1827, respectively.

0.0
0.15 0.16 0.17 0.18

FIG. 5. Expectation value of the Polyakov loop as a function
of ~ for the various values of 6/g . Results are shown for N, =4
for 6/g =5.3, 5.1, 5.0, and 4.9 (octagons). For 6/g'=5. 3 we

also show results for N, =6 {diamonds). The crosses along the
6/g =5.1 line are results on a 6 X24X4 lattice at 6/g =5.1,
to show that the spatial size of the lattice is not greatly affecting
the results. The dotted symbols extending the 6/g =5.3 line
are short runs on a 6 X4 lattice, showing that the behavior is
smooth out to very large a. The vertical lines mark the zero
temperature a, for 6/g =5.2, 5.1, and 5.0, respectively. [For
6/g =4.9, «, (T=O)=0. 194.]
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FIG. 10. Quark mass from the axial current as a function of
K for the various values of 6/g . Points marked with question
marks indicate runs where we were unable to get consistent Sts
as a function of distance. The plus signs on the m~ =0 line are
the zero temperature a, for 6/g =5.3, 5.1, and 5.0.

agator A(z) is very small. Additionally, there is a ten-
dency for the efFective quark mass, or the quark mass
coming from a fit over a short distance range, to increase
with distance from the source. In cases where we were
unable to get a fit with a satisfactory g or where the
quark mass was not convincingly independent of dis-
tance, we plot the point with a question mark in Fig. 10.
To pursue this further we ran one of the difficult points,
6/g =5.3 and a=0. 168, on a 8 X40X4 lattice, allowing
us to measure the ratio out to a distance of 20. Figure 11
summarizes the results. In this Sgure we show the
effective pion mass obtained from II(x) and A(z) by
fitting to two successive distances, and the quark mass

obtained from simultaneously Stting both propagators at
the two successive distances (a one degree of freedom fit).
Unfortunately, in all other cases the lattice was only 20
sites long and we have to draw conclusions from dis-
tances less than ten. In Fig. 10 we see that when the
E, =4 lattice enters the high temperature regime the
pointlike axial current quark mass no longer agrees with
the low temperature lattices (X,=6 and 8). The plusses
at m =0 in Fig. 10 are estimates for the zero tempera-
ture ~, . The axial current quark masses go through zero
at a less than the zero temperature ~, . When the axial
current quark mass vanishes, the system is in the high
temperature phase for P & 5.0, while at P=4.9 k, appears
to coincide with the point where the axial current quark
mass vanishes, within experimental uncertainty. Note,
however, that the pion scr'eening mass in the confinement
phase is still nonzero at the transition point at /=4. 9.

In Fig. 12 we show the squared pion screening masses
in these runs. Again we see an increasingly sharp dip at
a., as 6/g decreases and lr increases. The appearance of
the cusp at P =5. 1 coincides with the beginning of the re-
gion where the transition is abrupt. Screening masses for
the m, p, 0, and a

&
mesons are shown in Figs. 13, 14, and

15. In all cases we see the screening masses coming to-
gether as the high temperature transition is crossed.
However, we do not see any indication that the m —o or
p

—a, splittings in the high temperature regime are de-
creasing as 6/g decreases. Although the smaller pion
masses in the cold regime suggest that chiral symmetry is
being approached as we move toward smaller 6/g2 along
the ~, line, we do not see this trend in the high tempera-
ture screening masses. Also notice that there are nonzero
splittings between the parity partners at the points where
the axial current quark mass is zero. Thus the vanishing
of this quark mass is not an indicator for complete chiral
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FIG. 11. Pion effective screening masses from II(z) (circles)
and from A(z) (squares), and the effective quark screening mass
from their ratio. The results are from an 8 X40X4 lattice with
6/g =5.3 and re=0. 168.

FIG. 12. Pion screening mass squared as a function of ~ for
the various values of 6/g . Again, the circles are for N, =4, the
diamonds for N, =6, and the crosses for N, =8. The bursts are
zero temperature pion masses from the HEMCGC Collabora-
tion at 6/g =5.3.
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FIG. 13. Meson screening masses for 6/g =5.30. The
points connected by solid lines are for N, =4 and the points con-
nected by dashed lines for N, =6.

FIG. 15. Meson screening masses for 6/g =4.90 at N, =4.
The two points at a =0.1825 are from cold and hot starts.

symmetry restoration in the system.
To investigate the contributions of the doublers to

thermodynamic quantities such as the entropy we mea-
sured the effective masses from the quark propagator in
Landau gauge at a few values of a and 6/g . We find
that fitting the quark screening propagators is more
difficult than fitting the meson propagators. In part this
is because the quark propagators fluctuate more from
configuration to configuration. There also seems to be a
systematic trend toward larger effective quark masses at
larger distances. With these caveats, the masses of the
physical quark and the lightest doublers are given in
Table IV. The fits were selected by choosing the largest
fit range that gives an acceptable confidence level. The
ranges and confidence levels are also given in Table IV.

0=7T, 0=0', O=p, -:'--=a)

0 i I i i » I i i i i I i i i i I

0.165 0.170 0.175 0.180

FIG. 14. Meson screening masses for 6/g =5.10 at N, =4.

IV. CONCLUSIONS

The most naive expectation regarding the thermo-
dynamics of two flavors of Wilson quarks at fixed N, is

that there would be a line in the ~,P plane at which a
confinement-deconfinement transition occurs, that the
transition would be smooth {crossover or second order},
that the pion mass would smoothly decrease along that
line, and that at some point, possibly corresponding to
the point where the transition line crossed the zero tem-
perature a, —P line, the pion mass would go to zero. At
that point one would have a finite temperature
confinement-deconfinement or chirally restoring transi-
tion analogous to that seen in staggered fermions. Simple
arguments [9] would put this point around P=5.0 at
N, =4.

These naive expectations are not borne out by the data.
The chiral limit is reached at a very small P value if it is
reached at all. However, near P=5.0, N, =4 Wilson
thermodynamics displays a number of features which
have no analogs in staggered fermion systems. The tran-
sition becomes very sharp, though not first order as far as
we can tell. A cusp in the pion screening mass appears as
one crosses from the confined to the deconfined phase.
The axial vector quark mass becomes strongly N, depen-
dent at this point and for small N, does not go to zero at
its zero temperature a value {at fixed P}. The sharp tran-
sition persists down to P=4. 5,@=0.20 or so, at which
point it once again becomes smooth. As far as we can
tell, the zero temperature K=K point plays no role in any

N, =4 effects we have observed.
It is tempting to speculate that the crossover line in the

a, 6/g plane is close to some phase boundary where the
transition is steepest. We are currently exploring this re-
gion with 1V, =6, where preliminary results indicate a
change in the nature of the high temperature transition
around this value of K.

Indicators for the nature of the high temperature phase
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TABLE IV. The screening masses for the quark and the lightest doublers. hma, (,) is the difference of the spatial (temporal) dou-
bler screening mass to the quark screening mass at the lowest momenta. The sign is for G(k, =m/4). The fits were done simultane-
ously to all three propagators taking into account the cross correlations. The confidence level q and the range of each fit is also
displayed.

0.165
0.167
0.172
0.177
0.155
0.160
0.167

5.10
5.10
5.10
5.10
5.30
5.30
5.30

Sign ma(0, m/4)

1.13(4)
1.13(4)
0.97(16)
1.05(9)
1.06(2)
0.89(4)
0.92(6)

ma (~,n./4)

2.3(4)
2.4(5)
1.5(3)
1.28(15)
1.63(13)
1.38(9)
1.51(9)

ma (0,3'/4)

1.8(2)
1.8(3)
1.5(2)
1.33(11)
1.65(11)
1.22(5)
1.36(7)

Ama,

1.1(4)
1.3(5)
0.5(3)
0.23(19)
0.57(13)
0.49(9)
0.59(11)

Ama,

0.7(2)
0.6(3)
0.6(4)
0.27(15)
0.60(11)
0.34(7)
0.44(10)

0.47
0.14
0.43
0.69
0.68
0.84
0.57

Range

3—10
3—10
4—10
4—8

3—9
3—10
3—9

APPENDIX

Expressions for the energy, pressure, and gf are found
by differentiating the partition function with respect to
1/T, volume, and quark mass, respectively. First, we
write the action with adjustable lattice spacings in all
directions. Introducing dimensionless parameters Q„,we
write the lattice spacing in the JM direction as a„=aQ„.
Clearly this is redundant, since we have five parameters a
and Q„to specify four lattice spacings, but it is con-
venient and symmetric. In the conventional notation of
Karsch, )=a;/a„where all the spatial a's are the same.
When we are done taking derivatives, all the Q„will be
set to one.

The partition function is

Z= Ue'
where the gauge action is

(A 1)

Q QyQ Q]
Z 2 Z

x p) v gpv QpQv
(A2)

give a somewhat mixed picture. It is clear from the
meson screening masses and from Pg that chiral symme-
try is at least partially restored at high temperature.
While the axial current quark mass goes to zero the err. —
and p

—
a& splittings in the screening masses remain

nonzero. Quark propagators in the Landau gauge sug-
gest a large constituent quark mass at the transition, at
least for 6/g =5.3 and 5.1. This is consistent with ear-
lier work [3] where at the N, =4 crossover point near
these (P,a) values the zero temperature pion was found to
be quite heavy.

Notice that the series of runs at 6/g =5.3 extends to a
significantly larger than the zero temperature ~„and
there is no noticeable effect on any of the measured quan-
tities when this ~, is crossed. (In fact, we have done
short runs on 8 X4 lattices for ~ as large as 0.19 at
6/g2=5. 3 and seen no efFects. ) The sign of the propaga-
tor of the zero momentum quark, shown in Table IV, is
consistent with the sign of the axial current quark mass.
Both of these quantities are behaving in the way one
would expect in a free field theory at ~ )a, .
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where „,is the plaquette in the pv plane normalized to
three for unit matrices. We allow a different gauge cou-
pling g„in each plane. The fermion action is

nf
Sf = Tr 1nMtMf (A3)

where

(A4)

where

4„=( 1+y„)U„(x)6 „+&+( 1 —y„)U„(x—P )5

The Q„in the coefficien of 9„takes care of the dimen-
sional scaling of the first derivative. Notice that we have
made a somewhat arbitrary choice in M when we scaled
the irrelevant second derivative part with Q„in the same
way that we scaled the first derivative part. The e„in the
coefBcient must be adjusted to get correlation functions
to be Euclidean invariant. Its role is similar to the
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2ma =~ (A6)

Karsch coefficients C and C, in the gauge action.
Presumably e„hasa power series expansion in g just as

C and C,. Once again we have more parameters than
we need: four e„and sc for four directions. This parame-
trization is convenient because it includes the customary
~ and, later, v, as parameters. We can fix the ambiguity
well enough for our purposes by requiring that e„=1
when all the a„areequal. In other words, if all direc-
tions are scaled by the same factor the only thing that
changes is ~.

Let ~, be the value of ~ at which the pion mass and

quark mass vanish, at least on an infinite lattice. Follow-
ing free field theory, we introduce a quark mass

where A, is not one of p or v and

t}g
C =—

tlai
(A15)

—2X ~ gob
= —2Co —2C, = (A16}

The contributions to the energy and pressure from Sg
and SI add. Doing the differentiation, and then setting
the a„to one, the gluon energy is

where A, is one of p or v.
Because stretching both the time and space directions

is equivalent to changing the lattice spacing, C and C,
are related to the p function:

so that

M= 1

~, '+2ma
2mu+K, ' —y "y„

p

(A7)

&s& =
3 g i (Cl„—CI„)+6C0„+6C,O„

N, N, „g
(A17)

Here K,
' will be a function of the couplings g„„andthe

scale factors a„.In free field theory, K, '=2+„a„'.
(e&= 1 in free field theory. }

We find the energy, pressure, and 1(i' by differentiating
the partition function:

Here Cl„and Cl„arethe space-space and space-time pla-
quettes, again normalized to three for a lattice of unit
matrices.

For the gluon pressure, we find

1 t}lnZE'=
~p V, m const

' (A8) p a = g 2(C3„—0„)—2C (Cl„+20„)
N, N, g

1 BlnZp=
P ~V p, m const

' (A9)
—2C,(22„+0„)) (A18)

1 t}lnZ

y, V.o.st
(Alo)

and

1

tlP Na Ba,

a
t}V 3N, g a t}a,

(Al 1)

(A12)

Here V is the volume, V=a g;N;a; =a N, a, pis.
the inverse temperature, p=aN, at. Here the energy and
pressure derivatives are taken with m constant, rather
than with K constant. This is because K, depends on the

a„,so that if we distort the lattice while holding ~ fixed,
the quark mass, and every physical mass, will vary sharp-
ly.

We also consider the linear combination s+p, the en-

tropy:

4 1
s,a4 =e,a4+p, a4

aN,

(A19)

The entropy is obviously zero at T=0.
Just as the gauge couplings vary with the lattice spac-

ings, K, and e„vary with the lattice spacings as we try
to hold m fixed. There is an explicit dependence of K,

'

on m plus a dependence of ~, ' on g, where g is varying
with the a„.Now it clearly does not matter which direc-
tion we stretch the lattice, since sc, is defined on the
infinite lattice, so

t}KC t}KC

Ba, Ba„a = 1 a
X,aaa (A13)

Therefore

Alternatively, it may be easier to vary the volume by
varying only one of the spatial lattice spacings

The gauge energy and pressure are standard [18—20].
Following Ref. [18],we define two derivatives:

=3
t}a,Ba a =& a =1

P

(A21)

Bgp~C
Ba&

(A14) There are two independent derivatives of the e„,analo-
gous to C and C,. Define
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and

BEP

CEp

EpB = ", pPv.
BcK

„

(A22)

(A23)

a'A = Tr lmV~M
2 Bma

I &f 1 BM t BMTI
2 M~M Bma Bma

aMTr
2 M~ Bma M Bma

(A24}

To compute fg we can just set a„ande„to one at the
beginning:

The two parts are complex conjugates, so keep only one
and take twice the real part. Using Eq. (A7),

a pp= 3
Re Tr t, 2ma+~, 'gg„+2Nf

N,'N, 2 Mt (a, '+2ma )'

4K' 1
Re Tr —1

N, N,

1

K~ +2ma

(A25)

where in the last step we used 1/a, '+2ma =a. Looking at the derivation shows that the 1 in Eq. (A25) comes from
differentiating the 1/x, +2ma outside the parentheses in Eq. (A7). Had we taken the fermion matrix to be

E'pM= 2ma+v, ' —g "g„
p P

this term would be absent. Since this latter form is closer to the usual continuum Lagrangian, we prefer

Rs(Tr & )

(A26)

(A27)

as our expression for fg.
Now for the fermion energy, difFerentiate Eq. (A4) and then set a„ande'„to one:

s t

—2 N 1 —1 , ~ 1
Re '2ma+s. , ' —gut' ' +

N, N, 2 M ~ (~, '+2ma) „"Ba, a., +2ma

(A28)

Ba, '

Re 1—
N,'N, 2 Ba, M

90—P+c —gB 8; (A29)

where in the last step we used 1/a, '+2ma =K.
For the fermion pressure,

pfa 4 1 Nf 1 BM2Re Tr
2 M~ Bu,

Re
3N N, 2 M (a, '+2ma)

2ma+~, —g 8„BK~

BK~~g ~ Pgt+ (A30)

BK, '
Re

3X 1V, 2 Bu,
(A31}t + ) 3B 80+(28 +8,)QB; x8; )

. —
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Just as for gf, the 1 term in ef and pf comes from
differentiating the overall factor of K . It can be includ-
ed or not, as desired. It will cancel when the finite parts
of the energy and pressure are calculated by subtracting
the zero temperature result from the nonzero tempera-
ture result. However, the (1/M )(Btc, '/Ba, ) term will

not cancel out, since fg is temperature dependent. In
practice (Trl/M ) is fairly close to (Trl) =4X3, so
numerically it may be best to leave the 1 in. Then we
would use

terms involving B, and B will be higher order in g than
the "1"term, and we have neglected them in Eq. (3).

Obviously, the big problem in getting the energy and
pressure separately is to find BK, '/Ba„and B, and B
From Euclidean invariance, t)tc, /Ba„is independent of
p. The variable K,

' depends on the a„in two ways.
First, there is an "explicit" dependence. From examining
the fermion matrix, Eq. (A4), we see that if all the a„are
scaled together with g held fixed, K, is proportional to a.
Thus

1

M M
(A32)

p explicit

KC
(A35)

to express the energy and pressure just in terms of the ex-
pectation values of the spatial and temporal components
of@ .

Much of the difficulty cancels out if we look at the en-

tropy, or sum of energy and pressure:

1
SfQ =6'fQ +pf Q

4 4 4

QN,

2 KN 1
Re Tr

&
[I+(B,—B )]

(A33)

Secondly, there is an "implicit" dependence of K,
' on a„

coming from the fact that K, depends on g, and we ad-
just the g„„aswe adjust the ct„.Again, Euclidean invari-
ance says

t)K 1 BK

Ba„,(,„., 4 t)ln(a)

so only the P function appears:

BKq 1 t)K~

t)a„,„„,4 t) ln(a)

The relation t)6/g 2

4 t)6/g t) ln(a)
(A37)

BKc

Ba,

t)Kc—3
Ba,

(A34)

resulted in all the derivative terms canceling.
(Remember, by t)/Ba, we mean a/t)a„+t)/t)a +a/atz,
vary all the spatial a; together. ) As usual, the entropy is
obviously zero at T=O, where Q;=No. Since no zero
temperature subtraction is required for the entropy, the

We could proceed by estimating Btt, '/86/g from our
data at various values of 6/g, or from correlations of the
hadron propagators with the plaquette. Similarly, we
could take a P function either from perturbation theory
or from some set of lattice simulations. We will not solve
this problem here, so we will only quote the entropy rath-
er than the energy and pressure separately.
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