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Electroweak gauge boson self-energies: Complete QCD corrections
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We present the QCD corrections to the longitudinal and transverse components of the electroweak
gauge boson self-energies for arbitrary momentum transfer and for different internal quark masses.
Compact formulas for both the real and imaginary parts are given in the general case as vrell as in some
physically interesting special cases. The dependence on the definition of the quark masses is discussed.
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I. II%IRODUCTION

The standard model of the electroweak and strong in-
teractions has achieved tremendous success in describing
all experimental data within the range of energies avail-
able today. In particular, it has been tested to the level of
its quantum corrections in the high-precisian experiments
at the CERN e+e collider LEP and the SLAC Linear
Collider (SLC) [1]. To allow for such precision tests, a
considerable amount of theoretical work has been done in
the last few years to calculate the relevant radiative
corrections [2]. In fact, in view of the remarkably high
accuracy of the experimental data, some radiative correc-
tions were required beyond the one-loop approximation.

Except for the QCD corrections to light quark pair
production in 8+e annihilation, which have been
known up to O(as) [3] for more than a decade and which
have been recently calculated to O(as3) [4], these two-
loop corrections were mainly concerned with the effects
of the top-bottom weak isodoublet. Indeed, in addition
to the latter QCD corrections and the well-known elec-
tromagnetic corrections [2], these genuine electroweak
effects are by far the most sizable: top quark induced ra-
diative corrections appear in the self-energies of the weak
vector bosons [5] and in the coupling of the Z boson to
bottom quarks [6] and lead to contributions which are
quadratically proportional to the large mass [7] of this
yet unobserved particle. Two types of higher order
corrections to the previous quantities have been calculat-
ed so far. The first one involves virtual Higgs boson ex-
change which leads to potentially large O(u m, /Mu, )

contributions [8]. Motivated by the large value of the
QCD coupling constant, the second type of corrections
are the two-loop O(aas) contributions which, for the
transverse components of the vector boson self-energies,
have been calculated in Refs. [9—13] and extensively dis-
cussed in Refs. [14—16], and for the Z boson coupling to
bottom quarks derived recently in Ref. [17].

However, because of the great technical diSculties that
one encounters when calculating at this level of perturba-
tion theory, a11 the previously mentioned results involve
some simplifying approximations. For instance, the

Higgs boson exchange contributions to both the weak bo-
son self-energies and to the Z-bottom quarks vertex, as
well as the QCD corrections to the latter vertex, were cal-
culated in the limit where the top quark is much heavier
than the weak vector bosons, an approximation which
might turn out to be very poor in view of the lower limit
on the top quark mass [7]. A better approximation has
been made in the case of the QCD corrections to the vec-
tor boson self-energies since results are available in the
limit of a vanishing bottom quark mass; this is certainly a
good enough approximation for practical purposes since
the bottom quark mass amounts to, at most, a few per-
cent of the top quark mass.

From a theoretical viewpoint, however, it would be
desirable to have a result with no approximation involved
except, of course, for the one due to the truncation of the
perturbative series. This would place analytical calcula-
tions in the standard model at a level comparable to what
is known in QED where, in a pioneering work, the au-
thors of Ref. [18] have derived exactly the vacuum polar-
ization function of the photon at two-loop order. In ad-
dition, an exact calculation might turn out to be manda-
tory in the case of a fourth generation, the existence of
which is still allowed by present experimental data if the
associated neutrino is heavy enough [1].

In this article, we present exact and compact analytical
expressions for the O(aalu) contributions of quark pairs
to the vacuum polarization functions of the electroweak
gauge bosons in the most general case: real and imagi-
nary parts of both the transverse and longitudinal com-
ponents, for different and nonzero quark masses and for
arbitrary momentum transfer.

The paper is organized as follows. In the next section
we summarize all the one-loop results which will be
relevant to our discussion. In Sec. III, we discuss the
dependence of the result on the definition of the quark
masses and provide the material necessary to derive the
vector boson self-energies in any renormalization scheme.
The expressions for the real and imaginary parts of the
vacuum polarization function in the most general case
are given in Sec. IV. In Sec. V, we display the expres-
sions of the self-energies in special situations of physical
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interest: equal quark masses, one massless quark and at
zero or very high momentum transfer. Finally, Sec. VI
contains our conclusions. In the Appendix, we will list
for completeness the expressions of the one- and two-loop
scalar integrals that we encountered in this calculation.

II. ONE-LOOP RESULTS

qpqv/q; I & =4 26' dimensions one has

1 P, V

Ilp(q )= g" —q II'J„(q ),
3 2E' q

|M V

lip(q )= 11'l(q ).

(2.3)

(2.4)

To set the notation and for the sake of completeness,
we rederive in this section all the one-loop results which
will be relevant to our discussion.

The contribution of a fermionic loop to the vacuum po-
larization tensor of a vector boson i, or to the mixing am-
plitude of two bosons i and j, denoted II„', is defined as

II J„(q~)= i fd—xe''i "(0~T''[J„'(x)J~ (0)]~0), (2.1)

where T* is the covariant time ordering product and q
the four-momentum transfer; J„',JJ are fermionic
currents coupled to the vector bosons i,j and constructed
with spinor fields whose corresponding masses are
m„mb. The definition of II'J„corresponds to +i times
the standard Feynman amplitude. The vacuum polariza-
tion tensor can be decomposed into a transverse and a
longitudinal part,

r

(2.2)

and the two components can be directly extracted by con-
tracting II„'J„(q~) by the two projectors g„„—q„q„/q and

The one-loop transverse and longitudinal components
can be written as (with s —=q )

II'r I (s) = Nc—[(u'u'+a'a ) sIIr+I (s)

+(u'u' a'a—J)m, mbII r r (s)] (2.5)

with N& the number of colors and v' and a' the vector
and axial-vector couplings of the gauge boson i to the fer-
mions expressed in units of the proton charge e =v'4~a.

The vector and axial-vector components of the vacuum
polarization function (with the coupling constants fac-
tored out) are then simply given by

IIT "(s)=sII+ (s)km, mbllr L(s), (2.6)

which exhibits the fact that II"' (s) can be obtained from
II ' "(s) by simply making the substitution
m, (mb)~ —m, ( —mb) as expected from y5 re6ection
symmetry.

At the one-loop level and for arbitrary fermion masses,
m, mb%0, the vacuum polarization amplitude, Fig.
1(a), reads

ol

a

a

FIG. 1. Feynman diagrams for the contri-
bution of quark pairs to the vacuum polariza-
tion function of a gauge boson at the one-loop
{a)and two-loop {b) levels.
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e" d "k
11'~ {q )= i—e N Tr

4~
(lt,'+ m, )y„(v ' —a'y5)(k —g+ m& )y„(v' —a y5)

(k 2 —m,2)[(k —
q ) —m&~]

(2.7)

where p is the t Hooft renormalization mass scale introduced to make the coupling constant dimensionless in n =4—2e
dimensions; we have also introduced an extra term (er j4m. )' (y is the Euler constant) to prevent uninteresting combina-
tions of ln4, y, . . . , in the final result. After contracting the amplitude with the tensors (g""—q "q "/q ) and q "q"iq,
and expressing the scalar products of the momenta appearing in the numerator in terms of combinations of the polyno-
mials appearing in the denominators, one is led to the calculation of two scalar one-loop integrals which, for complete-

ness, are given in Appendix.
The expressions of Ilr L (s) in the general case m, /m&%0 are then

Ilz (s)= 2+3a+3P 1 2 5 1 1—+a+p (p, +pi, )+—+—(a+p}——(a —p}
6e 4 3 9 3 6

(a —P) ln —+ A,
'~ [3(1+a+P)—A, ](lnx, +lnxb ),

12 P 12

II (s)= ——(a+P)(p +p )+a+P+ —(a —P) +—(A, —1)(a—P)ln —+—
A, (A, —1 —a —P)(lnx +lnx ),a+P 1 1 2 1 a 1

2e 4 a b 2 4 p 4 a b

II (s)=II (s)=———(p +p )+2+—(a —P)ln —+—A, (lnx +lnx ),1 1 1 a 1
T I. 2 a b P 2 a b

where we use the variables (P, p&, and x& are deSned similarly)

(2.8)

2 2
Nlg 7tlg 2a

1+a+P+ A,
'

A, =1+2a+ 2P+ (a —P)

(2.9}

(2.10)

From these general formulas, it is straightforward to derive the expressions of the self-energies in two special situations
of physical interest: (i) the two quarks have equal masses, which corresponds to the case of a neutral gauge boson (the
photon or the Z boson) and (ii) one of the quarks has zero mass, which corresponds to the case of a charged gauge bo-
son with one quark much heavier than the other (as for the top-bottom isodoublet). For completeness, we exhibit in the
following the expressions of the vector and axial-vector parts of the transverse and longitudinal components of the
gauge boson self-energies in these two limiting situations.

For mb =m„one has

II&(s)=———p, +——4a-''-(1+4a) (1—2a)lnv s 1 5 1/2 4a
3 6 3 (1+&1+4a )

II&(s)=— ——p, (1+6a)+—+8a+(1+4a) ln
s 1 5 3/2 4a
3 E 3 (1+&1+4a)

(2.11)

III (s) =Zsa ——p, +2+(1+4a)' ln
(1+&1+4a)

while for mb =0, one has

Ilr' (s)=—(2+3a) ——p, + +2a —a +(2+3a—a )lnVA 1 10 2 a
6 E' 3 1+a

Ilr, ' (s)=—a ——p, +2+a+(1+a) lnVA S 1 a
C 1+a

(2.12)

In many cases, it is of interest to evaluate the vacuum polarization functions at zero momentum transfer. This is the
cas«or instance of the radiative correction to the p parameter [5] which measures the relative strength of the charged

Note that the contribution of the longitudinal part in processes involving ferrnions in the initial and/'or anal states is always
suppressed by the masses of these fermions.
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to neutral current at q =0. In this limit, the contributions of a fermionic loop to the transverse and longitudinal com-
ponents simplify to

IIT'L(0)= —
2

(m.'+mb) —(—m.'+mbl+ —™'™b)(p.+pb)+ —'2 21n '2

@la Ntb mb

1 m +@lb Ala
+m, mb —+ 1 ——(p, +pb ) —— lna b

' 6 2 a b 2 ~2 ~2 ~2
a b b

(2.13)

where the plus (minus) sign refers to vector (axial) current. Note that, in this limit, the longitudinal and transverse com-
ponents of the vacuum polarization function are equal and that for a vector current with equal fermion masses m, =lb
(as it is the case for the photon} the vacuum polarization function vanishes.

In the opposite limit m„mb &&s, the vector and axial-vector components of the gauge boson self-energies simply

reduce to

II ' (s)- ———ln +—,II ' (s)-0.vg s 1 —s 5 yg
T 3 6 2 3 L

p
(2.14)

One sees that IIT I (s)=IIT I (s) as expected from chiral symmetry and that, in this limit, there is no mass singularity.
Note that Ilz "(s}are quadratically divergent for lql ~ 00.

In all the previous expressions the momentum transfer has been de6ned to be in the spacelike region, s &0. When
continued to the physical region above the threshold for the production of two fermions, s (m, +mb },the vector bo-

son self-energies acquire imaginary parts, the latter being related to the decay widths of the vector bosons into fermions.
Adding a small imaginary part i E to th—e fermion masses squared, the analytical continuation is consistently defined.

From the expressions Eqs. (2.8), the imaginary parts can be straightforwardly obtained by making the substitution

lnx, b~l nl xg, b I+i~

and one has

ImIIT+(s)= —
A,

' [1+a+P—
—,'A, ], Imllr(s}=mA, '

Imllr+(s) =—A,
'~

[A, —1 —a —P], ImIIL (s) =n.A,
'~

(2.15)

or, equivalently,

Imllz' "(s)=—sA, '~ (1+a+P)——A+2, ImIIL' "(s)=—sA, '~ k —1 —a —P+2
2 3 $2 s

(2.16)

The knowledge of the imaginary part of the polarization function, which can be calculated directly using Cutkosky
rules [19],allows an alternative way for obtaining its real part II(s): the latter can be expressed as a dispersive integral
of ImII(s). The connection between the dispersive approach and the results which are derived using dimensional regu-
larization has been discussed in Ref. [15] in the special cases m, =mb and mb =0 and more recently [16] in the general

case.

III. RENORMALIXATION AND SCHEME DEPENDENCE

At 0(aas), the two-loop diagrams contributing to the vacuum polarization function II„',(q ) induced by quark loops

(up to a factor +i) are shown in Fig. 1(b). In the t Hooft —Feynman gauge, using the routing of momenta shown in the

6gure and following the notation introduced in the previous section, one can write the bare amplitude as

d "k d "k
(3.1)

4~ (2m )" (2m )"

with

A'~ =Tr
1mv

%„'J„=Tr

(k'$+m, )yp(v' ~'y5)(k] g+ mb)y—b(k2 y+ mb )y—„(v' ~'y')(f2+ m, )y

(k, —kz) (k f —m, }(kz—m, )[(k, —q) —mb][(kz —q) mb ]—
(k, +m, )y„(v' —a'ys)(k, —g+mb )y„(v —a~y )(k, +m, )yz(it!2+m, )y

(k, —k2) (kf —m, ) (k2 —m, )[(k, —q) —mb]
(3.2)

This bare amplitude has to be supplemented by counterterms. By virtue of the @ED-like %'ard identity, the vertex and
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(a)

FIG. 2. Feynman diagrams for the one-loop
quark self-energy diagram (a) and for the con-
tribution of the mass counterterm to the polar-
ization function at the two-loop level (b).

fermion wave function counterterms cancel each other and only quark mass renormalization has to be included. The
latter is obtained by considering the diagram shown in Fig. 2(a}, the amplitude of which reads, in dimensional regulari-
zation,

16m e y,
y

d"k 'Y 4 &+rn }'Yz—iX(P )= —a&
4w (2n)" [(p —k) —m ]k

(3.3)

where p ls the four-momentum of the quark and m its bare mass. This expression can be decomposed into a piece pro
portional to (p —m) which will enter the wave function renormalization and another piece proportional to m which will

give the mass counterterm. After integration over the loop momentum, the latter is given by

& (p')=
' E

2

r(1+~) 1+ ~ —1 O(~)
e 1 —2e m

(3.4)

5m =m(m ) —m =

The mass counterterm will now depend on the renormalization procedure, i.e., on the definition of the quark mass. For
instance, in the on-shell scheme which is usually used to calculate radiative corrections in the electroweak theory [20],
the fermion masses are defined at p =m and correspond to the position of the pole of the fermion propagators. They
are referred to as the on-shell or physical masses and the counterterms will be given by

E'

&sm p, H 2 1 —2e/3
(3.5)

m 12 1 —2e

One then inserts this mass counterterm in the one-loop self-energies, as depicted in the diagrams of Fig. 2(b), which is
equivalent to calculating

11'J„(q')I„=—Sm. 11'i,(q') I»...—S~, 11'&„(q')I, ..., ,'Bm, 8mb
(3.6)

where the one-loop vacuum polarization function is given by Eqs. (2.7) and (2.8). The renormalized two-loop self-
energies will then read

II'J„(q )=II'J„(q )I~„,+III'J„(q )ICT . (3.7)

However, one can also employ a different definition for the quark mass. For instance one can use the modified minimal
subtraction scheme (MS) in which the mass is defined by just picking the divergent term in the expression of X (p ) (the
related constants ln4n, y, . . . have already been subtracted) or the running mass. Having at hand the result of the vac-
uum polarization function in the on-shell scheme, one can obtain the polarization function in any other scheme X: one
simply has to add to the expression of the two-loop self-energy Eq. (3.7} the quantity

BII"(q )IX=5m™II" (q )I, , p
+4ms™11"„(q )I, „,p,' Bm, 8mb

(3.8)

2A discussion of the phenomenological consequences of using a different definition for the quark masses will appear elsewhere [21].
Note that since at this stage we are only discussing the difFerence between two renormalization schemes, we do not need the 0(p)

terms in the one-loop result of the vector boson self-energies. These terms are of course needed to evaluate the renormalized two-
loop self-energies in a given scheme.
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where in terms of the quark mass m, & defined in the scheme X, one has

hm = 1—
XPl b

m. , b(m. ,b )
(3.9)

Decomposing the one-loop function into its transverse and longitudinal components as in Eq. (2.5), one obtains, for the
derivative of these components,

m, IIT (s)
~ » =———a(p, +pb )+a(P—a) ——a(a —P) ln —+—

A, a(1 —a+P)(1—2PA. )(lnx, +lnxb ),I in —1

mg

III (s)~»„~=———a(p, +pb)+a(2 —3P+3a)+ —a[3(a—P) +4a]ln—1 2 a

+—I, '~2a[1+3a —3P+2PA, '(1+P—a)](lnx, +lnxb ), (3.10)

1 1 1 a
m, m, mbIITI (s)~, „,=m, mb ———(p, +pb)+2+ —(3a—P)ln—

+—
A, '~2[1+2aA, '(1+a—P)](lnx, +lnxb)

and similarly for the piece involving m& which can be obtained by making the substitution m, ~m&. Hence, once the

complete result of the vacuum polarization function is known in the on-shell scheme, it is straightforward using Eqs.
(3.8)—(3.10), to obtain the corresponding results in any renormalization scheme. At this stage, a few remarks are man-

datory.

First, one notices in the previous expressions the oc-
currence of terms that are inversely proportional to the
velocity factor A.

'~ . In principle, after an analytical con-
tinuation to the physical region beyond the threshold for
quark pair production, s ~ (m, +mb ), these terms would

diverge for energy values near the production threshold,
A, -O. However, as we will see later, when evaluated in
the on-shell scheme, which is the only scheme where the
physical threshold is well defined, the renormalized two-
loop polarization function is free of these A,

' factors.
Near threshold, the dominant terms will be constants and
would correspond, once the vector boson self-energy is
normalized to its one-loop value, to the well-known A,

Coulomb singularities which require a nonperturbative
treatment; see, for example, Ref. [15]. Of course, the

terms can be present in the vacuum polarization
function when it is evaluated in a different scheme but in
this case, the threshold is not well defined since the
masses are not "physical" masses.

In principle one can define the masses m, and m& in
two completely diferent schemes; this can be useful if, for
instance, different scales are involved in the evaluation of
the vacuum polarization functions. Taking the example
of the top-bottom isodoublet, one can employ the on-shell
mass for the heavy top quark, which is suitable if one
~ants to discuss threshold and possibly nonperturbative
eFects [15];and use a running mass evaluated at the scale

q for the relatively light b quark, which, in general,
avoids the appearance of large logarithms for q &&m&

[22]. In the rest of our discussion, however, we will stick
to the on-shell mass scheme.

Finally, the scale at which the strong coupling constant
az is evaluated can, of course, be completely different
from the one chasen for the quark masses. In general, az

I

is evaluated at the scale of the problem at hand, i.e.,
as =—as(s). However, for heavy virtual quarks, the
effective coupling is usually taken at the mass of the
quark [23] and this choice can be justified by arguments
based on efi'ective field theory [24] (for a discussion on
this point see also the second paper of Ref. [15]). For in-

stance, in the case of the top-bottom isodoublet, the two-

loop @CD corrections to electroweak observables are cal-
culated with as(m, ) while for light quarks, one uses

as(q').

IV. EXACT TWO-LOOP RESULTS

In this section we give the expression of the vacuum
polarization function at order 0(aas) in the general case

m, /mb%0 and for arbitrary momentum transfer. The
result will be given in the on-shell mass scheme. %e will

follow very closely the notation and definitions intro-
duced in Sec. II; since confusion should be rare, we will

use the same notation for the one-loop and two-loop self-

energies and m, & will stand for the on-shell masses.
At 0(aas), the transverse and longitudinal com-

ponents of the vacuum polarization function II J„(q ) are
defined by (the color factor Nc is now included)

4An exception is the contribution of the light quarks to the

photon self-energy which often has to be evaluated at zero
momentum transfer. Since both q and m are small compared
to the QCD scale, one can no more use perturbation theory.

However, the problem can be circumvented by using a disper-

sive approach and relating the photon self-energy to e+e
hadrons low energy data [25].
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II)L (s}=— [(v'v 1+a'a J)silz L (s)
7r 7r

+(v'v —a'a )m, msilz L (s)], (4.1)

where Hz-L are the sum of the corresponding com-
ponents in the bare two-loop amplitude Eqs. (3.1)—(3.2)
and the mass counterterm which can be obtained from
Sec. III.

Similarly to the one-loop case, after contracting II'~„ in

Eqs. (3.1}by the tensors (g&' q
"—q'/q ) and q "q"/q2 and

expressing the scalar products of momenta appearing in
the numerators in terms of combinations of the polyno-
mials in the denominators, one is led to the calculation of
a set of scalar two-loop integrals. Most of these integrals
have been first calculated by Broadhurst in Ref. [26]; the
remaining integrals reduce after straightforward compu-
tations to the previous ones [27,10]. For completeness,
these scalar integrals will be given in the Appendix.

After a cumbersome computation, and taking advan-

tage of the symmetry in the change a~p, we can write
IIz L (s) in a relatively simple and compact form:

II+ = — +——+3ap — a +—(p +p )( 1 la —1 —9ap +3ap }+ — a3a 1 1 11 1 55 71
T

2&2 6 4 4 4 a b a b 24

——a + aP+ —a[G(x&)—G(x, )]+—1nx, lnx&[3(a+P)+2aP(4+a+P)]5 2 11 2 1

6 6 3 ' 4

+ lnx, [(a—P+A, ' )( l 1+19a+19P+12aP—5A, )+(a—P)(42 —5a —5P)]
12

2

+ ln x, [(1—3a —3P)[A, —1 —a —P+(a —P)A, '
]—9(a+P)+8aP] — a

12 4

+—[(a+P—2)A, —12aP]J'——[3(1+a+P)—A, ]X + [a~P],1 1

6 3

3 l+—3p, —
2&2

11 ll 3 2 ll m+ p, ——(p, +p&} + +a—

+—lnx, [a—P+(a+P+9)(a —P+A, 'i )]+—ln x, [1+a+P—
A, +(P—a)A, 'i ]

+—lnx, lnx&[3(1+a+P)+2aP] —(1+a+P)S—2S' '+ ja~P],

IIL = — +—3ap, — a +—(p, +p& )(11—9p, +3p& }+—a+ —a — aP+
2E

+—lnx (a —P+A, ~
) A, —1 —a —P——aP +(a—P) a+P+9 1/2 4 20

4 a 3 9
a

4

+—ln x [A(2A, —2—a —P) —3(a+P)—16aP+(2A, + 1+a+P)(a—P)A, 'i ]a

+—1nx, lnx&(a+P)(1 —2aP)+ —[4aP—(a+P)A, ]S+(1+a+P—A, )S' + [a~P],3 1

n L
3 1 11 11 3 2 3 m+—3p, — + p, ——(p, +pq) +——3a—

26

——lnx [a—P+(a+P —3)(a—P+A, 'i )]+—ln x, [1+a+P—I,+(P—a)A, i ]
3 i/2 1 2 1/2

0 2

+—lnx, lnx& [1+a+P—2aP] —(1+a+Pg —2S' '+ [a~P], (4.2)

with S and 2' given by

J=F(1)+F(x,xq ) F(x, ) F(xg ), — —

G(x,x&)——(P—a+A, 'i )G(x, )——(a—P+A, ' )G(xq) .1 1/2
(4.3)



3506 A. DJOUADI AND P. GAMBINO

In terms of the polylogarithmic functions [28] Li~(x)= —fOy 'ln(1 —xy)dy and Li&(x)= —f Oy 'iny ln(1 —xy)dy,
the functions Eand 6 are given by

F(x)=6Liz(x) —4Liz(x)lnx —ln x ln(1 —x ), G(x)=2Liz(x)+2 lnx ln(1 —x )+ ln x . (4.4)

These two functions also admit a simple and useful integral representation [26):
'2 2

F(x)= f dy ln —,G(x)=xF'(x) =I dy
0 1 p p 0 1

(4.5)

The imaginary parts of the vacuum polarization function are derived along the same lines as discussed previously in the
one-loop case. Using the fact that

Imlnx, &=m, Imln x, „=2m ln)x, ~),

Xy
inlxb I

—(a —P+A, ' } ln(1 —x&)+
1 —xb

Imp= @8'= —2n [4Liz(x, x& ) —2Liz(x, )
—2Liz(x& )+2 1n)x, x& ) ln(1 —x,x& )

—ln)x, )ln(1 —x, ) —ln)x&)ln(1 —xz )],
one obtains, for ImII~ I,

—Imil&(s) =—(11+19a+19P+ 12aP —5A )A,
' +—(a —P) [ln(1 —x& ) —ln(1 —x, )]

Imf'=mt'=n 4A,
' ln(1 —x,x&)+ in)x, x&)

—(P—a+A, '
) ln(1 —x, )+ ln)x, )

1 xgxb Q

(4.6)

+—[3(1+a+P) [(P—a )A,
' + 1+a+P+2aP —

A, ]+8a+ 26aP] ln)x, )

+—I3(1+a+P}[(a—P)A, '~ +1+a+P+2aP —A]+8P+26aP]ln)xz)

+—[(a+P—2)A, —12aP]8——[3(1+a+P)—A, ]cf,1 2
3 3

—ImIIz. (s)=(9+a+P)A, ' +[4(1+a+P)+2aP—A+(P —a)A, ' ]ln)x, )

+[4(1+a+P}+2aP—I,+(a —Pg, ' ]ln)x&) —2(1+a+P)8—4cP,

—ImIIL (s)=—(9A, —9—9a —9P—12aP }A,
'~ —[(a+P )A, —4aP]8+ 2[1+a+P —

A, ]&K
1 + 1

m
' 2

+—[(2A,+ 1+a+P)A, ' (a —P+ A,
' }—(A, +3aP)(2a+2P+ 3)—7aP]ln) x, )

+—[(2A, +1+a+P)A, ' (P—a+A, '
) —(A, +3aP}(2a+2P+3)—7aP]ln)xz),

—Imllz (s)=3(3—a —P)A, '~ + [4(1+a+P)—6aP —
A, +(P—a)A, '~ ]ln)x, )

+[4(1+a+P)—6aP —
A, +(a—P)A. ' ]in)x&) —2(1+a+P)d" 48' . — (4.7)

These expressions for the real and imaginary parts are the main result of this paper.
Close forms for ImIIz:L (s) in the general case m, &mh+0 have been also derived in the past by a number of authors

[11,29,30] (in the first reference only the transverse part is given) by directly calculating the QCD corrections to the
Qavor-changing decay of a vector boson. The results that we obtain here, using a completely diFerent method, agree
with those of Ref. [11]and also with Ref. [30] once some obvious mistakes in the integrals of their Appendix (J, and Jz)
are corrected; see also Ref. [31].

V. SPECIAL CASES

From the general formulas given in the previous section one can derive the expressions of the vector and axial-vector
components of the self-energies in various special situations of physical relevance. Here we a&ill exhibit these expres-
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sions in four different cases: (i) the two quarks have equal masses, (ii) one of the quarks is massless, and (iii) the quark
masses are much larger or much smaller than the momentum transfer. The results that we obtain in these special cases
provide several checks of the general expressions of the previous section and allow for a comparison with various results
available in the literature.

The real parts are given by

A. Casemb=m,

Ilz(s)=s —p+ — a+v'1+4a(1 —6a)lnx ——a(4+a)ln xv 1 55 26 2 2

2e 12 3 3

+—(4a2 —1}[F(1)+F(x)—2F(x))——(1—2a)&1+4a[G(x ) —G(x)] ',
3 3

Ilz (s)=s — +(1+24ap —22a) —(1+12ap —22a)p+
6a 1 55

2 2E' 12
19
6

a+4a —am

+(1+12a+4a )&1+4alnx+ —a(5+ 1 la+6a )ln x2
3

——(1+2a)(1+4a)[F(1)+F(x )—2F(x)]——(1+4a) / [G(x )—G(x)] ',
3 3

IIL (s) =2sa ——+ 6p — —+——6a ——H+3(3 —2a)&1+4alnx3 11 1 3 1

2 2 e 4 2
J

+(11—6p)p+(3+4a —6a )ln x —2(1+2a)[F(1)+F(x ) —2F(x)]—4&1+4a[G(x )—G(x)] ',
J

with x =4a/(1+&1+4a), and the imaginary parts are
r

ImII (s)= s —A,
'/ (1—6a) —2a(4+a)ln~x~ —(1—4a )J—2(1—2a)J'

(5.1)

ImII "(s)= s —A,
'/ (1+12a+4a )+2a(5+lla+6a )ln~x~ —(I+2a)AJ —2AJ'A 2~ 3 1/2

3 2
(5.2)

ImIIL (s)=4msa —A,
' (3—2a)+(3+4a —6a )ln~x

~

—(1+2a)J—2J'1/2

where

J= —4[Li2(x ) —2Li2(x)+21n~x~ln(1 —x ) —in~x(ln(1 —x)],

J'=2&1+4a 21n(1 —x ) —ln(1 —x)+ x(3x —1}
in(x

/

1 —x
(5.3)

The vector part of the longitudinal component vanishes in this case: this is expected to occur as a consequence of the
QED-like Ward identity.

In the equal mass case, Ilz (s) coincides, up to a color factor, with the irreducible part of the photon self-energy in
QED which has been calculated in the 1950s by the pioneers of Ref. [18]. Ilz: "(s) has also been derived using a disper-
sive approach in [11],and more recently in [13].

B. Casemb=0

In this case, the coefficients of Ilz z (s}vanish so that IIf z (s)= Ilz z(s) =s III z (s), and one obtains, for the real parts,

In fact, we have expanded the expressions of the previous sections around mb=m, and mb=0 retaining terms up to order
(mb —m, ) /s and mf /s, respectively. The rather lengthy expressions can be found in Ref. [32].
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IIT' "(s)=s — + 1 — a+6apv~ 1

2E 2E

11 55 71
1 — a+3ap p+ — a

2

2 5a ——a +(I+a) 1+—a ——a lnx+ —(1—3a)(1+a)ln x3 5 2 a 2

4 6 2 6 6

+—(2+a)(a —1)G(x)+—(a —2)(1+a) [F(1)—F(x)] ',
3 3

3II ~ "(s)=sa — +L
11 1 3 7 11 2 a 9+3p —+—+—a+ p

—3p — +—( I+a) lnx
4 e 8 2 2 4 2

J

+—(3+2u)(1+a) ln x+(1+a)G(x)—( I+a) [F(1)—F(x)]
2

with x =a/( I+a), and, for the imaginary parts,
r

ImII ' "(s)=ms 1+—a+ —a ——a ——( I+a) (4—Sa)ln(1+a) ——(Sa +4a —5)ln( —a)5 2 2 5 3 1 a
2 3 6 3 3

(5.4)

——(2—a)(1+a) 2Liz
2 z . a
3 a+1

—ln(1+a)ln

(5.5)

ImII '"(s)= —nsa(1+a) (1+a) ——+(5+2a)ln(1+a) —(3+7a+2a )ln( —a)9 2
I. 2

+2(1+a) 2Liz a+1
—in(1+a)ln 1+a

We see that in this limit, the self-energies are free of mass singularities as required by the Kinoshita-Lee-Nauenberg
theorem [33]. The expression of IIT "(s) in this special case has been obtained in Ref. [13]by means of a dispersion in-
tegration.

Note that the results for the real parts of the vector boson vacuum polarization function in these two special cases
slightly differ from those obtained some time ago by one of the present authors in [10]: the m terms are absent in the
expressions given in the latter reference [this is due to the fact that the (1+@6/12) factor in the mass counterterm Eq.
(3.5) has been omittedb]. However, this discrepancy does not affect the radiative corrections to physical quantities when
evaluated in the on-shell scheme, which is commonly used to calculate radiative corrections to electroweak observables.
Indeed, these m terms are related to the I/e poles which must cancel in physical quantities and therefore they do not
appear in the radiative corrections to observables such as the p parameter, the 8'boson mass, or the effective weak mix-
ing angle sin 8~.

C. Casess &&ma, ands «m.',
In the limit of zero momentum transfer, the expressions of III'T(s) simplify considerably, and one obtains [we use the

fact that G(x)+G(1/x) =2m /3]

II"'"(0)= (m z+mb~)+ — (m, +mb )
—3m, p, 3mbpb ——(m, p, +mbpb )

2e

2
ma

2
mb

2 2 2 2 2 2

+(m, +mb) + ln —m, mb4 m mb mb (mg mb)

2
mb

2
ma

3 1 11
km, mb ——2+—3p, +3pb

E
(P +Pb) +4(p. +Pt )

3 2 31

2 2 2 2 2
mapb mbpa mg b 2 a 1+3 ', , +3 (5.6)

We thank B.Kniehl for bringing this point to our attention.
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Ilr'L A(0, mb =0}=

+ 12p, —22p, + +H31

(5.7)
2m, —+—(11—12p, )

4 2

[here the plus (minus) sign refers to vector (axial)
current}]. As expected, the self-energies are regular in
this limit and one has again IIT'"(0)=IIL'"(0). In the
two special cases m, =mb and mb=0 this expression
simplifies to [II~(0}vanishes in the equal mass case]

6 1Iiri(0, m, =mb)=m, —+—(11—12p, )

corresponds to the photon and the Z boson self-energies,
and second, the case where one of the quarks has a negli-
gible mass with respect to the other, which corresponds
to the approximate contribution of the top-bottom iso-
doublet to the charged Fboson self-energy. The expres-
sions of the self-energies for asymptotic values of the
momentum transfer, s ~ 00 or s ~0, were also given.

Some of the results in the special cases that we have
considered here for the real parts of the vacuum polariza-
tion functions, as well as the imaginary parts in the gen-
eral case, are available in the literature and the compar-
ison with them provided very powerful checks of our cal-
culation in the general case.

+ 12p, —22p, + +—235 5

Note also the presence of the extra ~ terms compared to
Ref. [10]as discussed previously.

In the opposite limit ~s~ ))m, b, the vector and axial-
vector components are simply

1 —s 55IIr' "(s)-s —ln + —4g(3)
2e p2 12
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APPENDIX: SCALAR INTRGRALS

with g(3)=F(1)/6=1.202, in agreement with Ref. [34].
Here again, there is no mass singularity and the quadrati-
cally divergent components Ilr "(s) obey the chiral sym-
metry relation. The next term of this expansion, i.e., the
terms of O(m, b /s), can be found in Ref. [16].

In view of the several checks that we have performed
and of the various results available in the literature that
we recover in the special situations discussed above, we
have good confidence that the expressions that we give
here for the general case m, /mb%0 are correct.

VI. SUMMARY

In this paper, the contribution of heavy quarks to the
vacuum polarization function of the electroweak gauge
bosons, and to the mixing amplitude of two gauge bosons,
were calculated at first order in the strong interaction.
Both the transverse and longitudinal components of the
vacuum polarization functions were given in the most
general case: arbitrary masses for the quarks and finite
momentum transfer. Full analytical formulas for the real
as well as for the imaginary parts at O(aas) were
presented in the on-shell quark mass scheme. They are
given in a compact form in terms of polylogarithmic
functions which can be easily evaluated using standard
computer routines.

The dependence of the result on the definition of the
quark masses has been discussed in detail. We provided
the necessary expressions which allow, having at hand
the result in the on-shell mass scheme, to obtain the vec-
tor boson self-energies for quark masses defined in any
other renormalization scheme.

The expressions of the self-energies were then derived
in two situations of great phenomenological interest: first
the case where the two quarks have equal masses, which

In this appendix we will give for completeness the ex-
pressions of the one- and two-loop scalar integrals which
are needed in the evaluation of the two-loop vacuum po-
larization functions [26,27, 10]. We will closely follow the
notation of Ref. [10],but simplify further some of the ex-
pressions and correct a few misprints which occurred in
the Appendix.

1. One-loop integrals

These are needed in the calculation of the amplitude
both at the one-loop and the two-loop levels. Indeed,
when expressing the scalar products of momenta appear-
ing in the numerator of Eq. (3.1) in terms of combinations
of the polynomials in the denominators, the gluon propa-
gator [i.e., the (k, —k2) factor] cancels in some cases and
the two-loop amplitude reduces to the product of two
one-loop integrals. These one-loop integrals are

2 J n/2 k2 m2
( —q er)'I

ma

1 1= —a —+1—lna+e —ln a —lna+1+
2 12

K= i( —
q e")—'

w" ~' [k' —m.'][(k—q)' —mb]

1 1—+2+(a—P+A. '~ )lnx, —lna
2 E'

+—[a~P]+O(e) .1

2
(A2)

+O(e ) (Al)
(and similarly for Da where one has to replace
a= —m, /q by P= —mb/q ) and using the variables
x, b, A, defined in Eqs. (2.9) and (2.10),
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Note that in the expression of K, the O(e) term is not
needed: its total contribution, via terms like K, EDA,
KBK/Ba, . . . , vanishes in the final result. The deriva-
tives of E and DA with respect to a will enter the expres-
sions of the two-loop integrals and are given by d"ki d k2(X)=—( —qe~) 'I I X (A4}

2. Two-loop integrals

To simplify the notation, we shall use for the definition
of the two-loop integrals the following abbreviations:

1 z 1 z
1 —ulna+@ —ln a+

Ba e 2 12

[(1+a —P+ A,
' ~ )lnx,

2A,
' (A3)

and

2 2KI 2
=—kj 2

—m, ,

K0 ——(k, —kz)

Q1,2 (k 1,2 'q ) mb
2 2

(A5)

+(1+a—P—
A,

'~ )lnxb] .
With the help of the variables defined in Eqs. (2.9) and
(2.10), the two-loop integrals are

q P= — =(1 a+P)K—D +(1+a P)KD ——(D —D) ——K-Eo 1 2 A, 2

KIK2QiQ2
A B 2 A B

(q) KK
1 i 2

dDq
TA =Dz D„(1—a—+P}

( 2)2 K2K Ba

M = 1 1 1 1 —e
q2 &I&2&0

1 1 e dD„D„D„—2a
2a2 1 —2e Ba

RA =— =MA+ 1 —a+ VA,
1

o
(A6)

(ki —2kz) q lnx xb 1Ilxb
1+

1 xb

1 1 2 1 x, ln x, xbln xb
JA 1+6K + 3

2 2 6xa +Gxb
1 2 0 1 (1—x, ) (1—xg)

q L—: =——+ (2+e)K +M&—+X& —(1—a+P)J„+—[a~P],1 1 7 1 1

KIQ2K0 2 8 4 A A A

1 1

KIK2Q2K0 2
=—[(1—a+P)J L+M ]+%-A A A

1nx, 1nx,
SA —— 1+

K K Q, K0 A,
'

xb ~b xb lnxb
1+

1 —xb 1 —xb

—(1+e)K
Ba

+ A,
' G(x x ) ——(1—a+P+A, '~ )G(x )+—(1—a+P —

A,
' )G(x )8 b

2I=— =F 1 +F x,xb —F x, —F xb
I 2 1 2 0

The expressions of the functions F and G are given in Eqs. (4.4) and (4.5).
All the other two-loop integrals can be straightforwardly obtained by taking advantage of the symmetry in the inter-

change of the integration variables k, and k2 as well as in the interchange of the masses m, and mb.
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