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Generalized relativistic meson wave function
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We study the most general, relativistic, constituent qq meson wave function within a new co-
variant framework. We find that by including a tensor wave function component, a pure valence
quark model is now capable of reproducing not only all static pion data (f, (r )) but also the
distribution amplitude, form factor [F (Q )], and structure functions. Further, our generalized spin
wave function provides a much better detailed description of meson properties than models using a
simple relativistic extension of the S = L = 0 nonrelativistic wave function.

PACS number(s): 12.39.Ki, 13.60.—r, 14.40.Aq

I. INTRODUCTION

Since an exact solution to a bound-state problem in
QCD is still unavailable many approximate treatments
have been developed. Among them, the constituent
quark model has perhaps received the most attention and
is widely regarded as a very efBcient and effective tool in
description of hadronic phenomena [1—3]. The complex
low energy structure of QCD currently precludes an un-
ambiguous identi6cation of the complete degrees of free-
dom and it is therefore important to continue to advance,
re6ne and test the valence quark dominance approxima-
tion. Prospects are encouraging because new, precision
data provided by future CEBAF experiments will signi6-
cantly clarify this situation and also detail the role of ex-
otic quark and/or gluon configurations. However, before
the relative importance of valence versus exotic con6gu-
rations can be established, uncertainties in the descrip-
tion of hadronic amplitudes due to valence quark model
approximations must be reduced. In a previous study [4]
we investigated alternative model approaches by compar-
ing different relativistic formulations for the light pseu-
doscalar mesons. In particular, we developed and ex-
amined a covariant variable &ont approach which per-
mitted quantitatively assessing the relevance of Lorentz
covariance for any constituent formulation. We also es-
tablished that pion and the kaon static properties can be
well described by relativistic models utilizing constituent
qq meson wave functions represented by the product of a
noninteracting spinor component and a momentum space
orbital amplitude. It is believed that such models will be
able to describe low energy mesonic data to within 10—
20 %. Unfortunately, there is still a large energy gap be-
tween this region and the energy-momentum scale where
asymptotic freedom dominates [5] and a clear need exists
for an improved, QCD related quark model to describe
this intermediated regime. This is especially true for an-
alyzing electromagnetic form factors with Qz ) 2 —3
GeVz for which all quark models described in Ref. [4]
fail to describe the data. As mentioned above, however,
before making any exotic extensions of the quark model
an improved framework for the qq system must be devel-

oped. The purpose of this paper is to report one such
attempt which utilizes a more general quark meson wave
functions.

In this paper we extend our covariant variable front
quark model by incorporating a more general spinor
wave function with tensor components. Although not
an observable, the wave function is constrained by re-
sults from QCD studies of moments of the distribution
amplitudes [6—9]. Additional information comes from
meson structure functions measured in Drell-Yan exper-
iments [10—12]. In the next section we briefiy review the
basic assumptions of the covariant quark model, and de-
tail our extended valence meson wave function. In Sec.
III we analyze the quark distribution amplitudes and
structure functions for the low lying mesons and present
numerical results. Finally, we discuss and summarize our
major results in Sec. IV.

II. VALENCE QUARK MESON WAVE
FUNCTION

Following our previous paper we specify the quantiza-
tion surface Z by a timelike four vector n" with n = 1,
although the analysis is also appropriate for the case
when n" is null-like, nz = 0 [13]. The transverse and
longitudinal components of an arbitrary four-vector A"
are denoted as AT and AL„respectively, A" = (Az„AT)
and are defined by

AL, = n . A, AT
——A" —AL, n".

Since n . AT ——0, A& has only three independent com-
ponents which we label (A&+, A&s) and henceforth identify
by AT . We define the wave function 4' (kT;., A;; r, ),i =
1, . . . , N as the probability amplitude for 6nding N con-
stituents (quarks, antiquarks, gluons) with transverse
momenta kT;, helicities A;, and Havor-color components
r; in a meson state a (a = 1, . . . , 8 for the pseudoscalar
octet) with momentum PT = g,. kT;, Pr, = gM& + ]Pg]
by the matrix element
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(kTi j ~i j &i ~PT j ck) = (2~)'y 2PLh'(PT ) kTi) @ (kTi j &;j 'r;). (2 1)

kL, = mt+ kT. (2.2)

The single particle states are normalized according to

(kT, A', ~ [kT, A, 7.) = —(2z) h (kT —kT)hgph (2.3)
m

for fermions and

(PT) cdiPT b p) = 2(2z) PLS (PT, —PT )b~p (2.4)

Here the single particle states ~kT, A; T) describe effective,
massive constituents quantized on the spacelike surface
Z perpendicular to n" and the longitudinal momenta are
constrained by the on shell condition

for bosons.
The set of wave functions defined by Eq. (2.1) con-

stitutes a Lorentz group representation basis. In a for-
malism with a fixed quantization surface, Lorentz trans-
formations depending on interactions do not leave E in-
variant. Interactions do not conserve particle number
and therefore as the system evolves different Fock sectors
mix [14]. This in general leads to complicated transfor-
mation properties for the wave functions under the ac-
tion of interaction-dependent generators of the Lorentz

group. A simplification is usually made by using an in-

teraction &ee transformation rule for the wave function
in a given Fock sector [15]. The valence qq wave func-
tions describing a meson state with four-momenta P and
P' = AP = C(P ~ AP)P, respectively, are thus related
by

(kT;, A;;7;) = ) DP, P (Rgr) (2.5)

with k! = Ak; and Dq~ (R15 ) denoting the matrix repre-
sentations of the Wigner rotation Rgr in the spin space
expressed in terms of qq momentum variables,

relativistic wave function is then derived from Eq. (2.5)
to be

R1v = Rw (k'T) = Z(AP -+ P)Z(P m AP)C(P m P)

and P = (M, O) being the meson rest frame momentum.
Using this approximation the meson state is defined in a
standard way and contains only qq valence component.
Equations (2.1) and (2.3) then lead to the wave function
normalization:

((k,T, A;)
—= ~2

2 ml m2 2

XU(klT Al )75v(k2T A2)

(2.7)

where A are the Gell-Mann SU(3) flavor matrices, I is
the identity matrix in the color space, m1, m2 are the
quark and antiquark constituent masses, respectively, M
is the qq invariant mass,

~(ki) = (k1 + k2) —[klL(klT) + k2L(k2T)]

+(k17 + k2T), (2.8)
with k;L(kT) given by Eq. (2.2) and the spin-independent
orbital wave function Ck(M) usually assumed by Gauss-
ian,

) f[dk;r]g~St (k;r;k; )%'d(k, r;br;r) = b b,
A, ~

(2.6)

In general, approximations and specifically Fock space
truncations destroy covariance. Here the truncation gen-
erates noncovariance by the emergence of an unphysical
dependence of matrix elements upon n". In [4] we de-
scribe a method for restoring covariance by allowing the
quantization surface Z, or equivalently the quantization
vector n", to transform actively under Lorentz transfor-
mations by relating n" to the meson external momenta.

The normalization equation (2.6) is identical to the
corresponding nonrelativistic expression in the meson
rest kame, since the relativistic wave function is con-
structed to reduce to the nonrelativistic one in this kame.
For the ground-state pseudoscalar octet the form of the

~2
4(M) = N exp (2.9)

The overall normalization constant N is determined &om
Eq. (2.6).

As explained above the explicit form of the transverse
variables will depend on the choice for n" which in turn
will be specified after selecting which matrix element is
to be calculated with the wave function of Eq. (2.7). The
wave function specified by Eq. (2.7) has also been exten-

d3k 2

[dkr[r = [dk;r)p = 3(2r) b (Pr ) k r). '

t
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t, (k, ;a) =) u(k „X,)r„~(k „a,), (2.10)

sively studied in [4] for fixed quantization schemes. Here
we study the extension of Eq. (2.7) to the most general
Dirac structure for the qq system. We write the spinor
component ((k,T, A, ) of the wave function in the general
form

with the Lorentz 4 x 4 matrices I'„represented by combi-
nations of Dirac matrices and the constituent momenta,
k, . Using the Dirac equations for the free u and v spinors
it is easily shown that the sum in Eq. (2.10) reduces to
two terms involving either ps or gi, I|2]ps. The most
general wave function 4 for a pseudoscalar meson can
thus be written in the form

@ (k;T, A; r, ) = y..., ~2 u(k», A, ) (~,4»(M) + [$„$2]ps47 (M)) ii(kT2, A2)./~2 (ml —m2) 2
(2.11)

We shall assume that the two spin independent wave
functions appearing in Eq. (2.11) can be parametrized
with a Gaussian shape of Eq. (2.9) having the same mo-
mentum size parameter p:

4p(M) = 4(JH), 4T(M) = rpT 4(M). (2.12)
1

Since the tensor term in Eq. (2.11) explicitly involves
higher powers of the constituent longitudinal and trans-
verse variables whose ranges are related to M and P,
respectively, we have chosen the MP factor as the rel-
ative normalization between the 4P and O'T terms in
Eq. (2.12). The dimensionless, numerical coeficient rI 7
will then be determined by fitting various properties of
the pion. In the rPT ——0 limit the wave function of
Eq. (2.11)reduces to the one of Eq. (2.7) and corresponds
to the S = L = 0 state in the meson rest kame. The ten-
sor term introduces an L = 1 orbital component which
mixes the S = L = 1 lower with S = L = 0 upper com-
ponents of the Dirac spinors to give an overall J = 0
state.

B. Distribution amplitude

The quark distribution amplitude for a meson n, gP ((),
can in principle be obtained from the moments ((") [6],

(r) = fdn ~ (c)

which are formally defined by the matrix elements

(3.1)

tor size parameter P used in our previous calculations
with m~ = P = 250 MeV and vary rpT to optimize
the form factor description. It is significant to note that
the tensor term drastically modifies the form factor be-
havior especially in the high momentum transfer region
Q2 ) 2 GeV . Further as shown in Fig. 1 the general-
ized model provides an agreement with the data in this
region without altering the correct low Q2 behavior. As
shown below the importance of the tensor term is further
demonstrated in the analysis of the distribution ampli-
tude and the structure functions.

III. NUMERICAL RESULTS ++ ++

(oly(o) ~ q, —g „, " g„.&(0)IP; ~)

A. m electromagnetic form factor

Before detailing the quark distributions given by the
generalized wave functions including the additional ten-
sor component 4T we shall present new results for the
pion electromagnetic form factor. The form factor calcu-
lation for both noncovariant and covariant variable &ont
models has been previously summarized [4]. For sim-
plicity we maintain the same quark masses and oscilla-

= if ((")b ~P"P„, P„„+trace, (3.2)

where the trace terms corresponding to higher twist op-
erators have been omitted. Here f is the meson decay
constant and the normalization is such that ((s) = 1.
The expansion of the quark field operators, g, g in terms
of constituent qq creation and annihilation operators (see
Eqs. (2.11) and (2.12)) leads to

~6 dsq2 1 mim2 /2qT kiL —k2L )
fa (2s)' /Ma gk, Lk2L(M —(mi —m2) ) &Ma Ma )

k, Lm2 + k2Lm, , 2[(k,L + k2L) —(mi + m2) ] t (m ™2)(kiLm2 k2Lml) ~
X ~PT

fA+I 2 p(mi + m2) (kiL+ k2L)m, m2 )
(3.3)
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FIG. 1. Pion electromagnetic form factor. Solid line shows
the result obtained with the qq wave function of Eq. (2.12)
for rJ z ——1.0. Dashed line is the result of the covariant
model of Ref. [4), dash-dotted snd dotted lines sre the results
of relativistic models from Refs. [2,3], respectively. Data is
taken from Ref. [21].

TABLE I. x and K mesons decay constant calculated with
the formula of Eq. (3.3). The two set of results correspond
to the use of spin averaged, constituent meson masses M and
dynamical masses M, respectively (m„= mq = 250 MeV,
m, = 480 MeV, P = 250 MeV, r~r = 1.0)

M

Exp.

f [MeV]
101
75

932

f» [MeV)
137
1O4

113

calculated from Eq. (3.3) using ((o) = 1 (see also Sec.V in
R«. [4]). In /CD, it can be shown that the physical part
of the distribution amplitude P (() is restricted for —1 (
( ( 1 [6] and for large n the moments in Eq. (3.2) behave
as (p) ~ 1/n2 implying that gP(( ~ +1) I 0. In order
to reproduce this feature in our model calculation we
make the replacement

~ ~ = 4I + 4r, =
V ml + Iql ~~

+ gml + Iql I.

(3.5)

In Table I we list values for both x and K mesons decay
constants calculated from Eq. (3.3) using spin averaged
meson masses M = 610 MeV and M~ ——790 MeV and
compare with results using dynamical masses for M de-
termined by Eq. (3.5). Note that the experimental values
lie almost midway between the two methods. The sen-
sitivity to the mass prescription for normalized quanti-
ties such as moments of the distribution amplitude (P)
or structure functions, which we analyze in the follow-

ing subsection, is even smaller. Substituting Eq. (3.5) in
Eq. (3.3) we make the following change of variables:

with qT = (qT, , qT ),
3 2qT kgL, —k2

(3.6)

m,'+ qT' ~

JH = kgb, + k2L„ (3.4)

and M being the meson mass. The decay constant f is

For fixed q&+ the variable ((qT ) maps the domain of the
variable q&, —oo & q& & oo into the 6nite interval —1 (
((qT ) ( 1. The expression for the distribution amplitude
can now be obtained from Eqs. (3.1), (3.3), (3.5), and
(3.6) and is given by

d2

f~ (2&) Q~ Qk)L, k2L, (A —(mq —m2) )
O(M)

kqL, m2+ k2L, mI 2[(kqL, + k2g) —(m~ + m2) ] ( (mI —m2)(kxL, m2 —k2L, mI) t

X ~PT
!!

1—
m] m2 P(my + m2) (klL + k2I )mlm2 J

(3.7)

with k;I, and M, now functions of q&+, (, obtained from
Eq. (3.4) using Eq. (3.6) to express q&s ——q22, ((). J(qz+, f)
is the Jacobian of the transformation from (q&s, q&+) to
((, qT, ). The explicit forms of the functions, k;L, (q&+, (),
M(qT, () and J(qT, () are given in the Appendix.

In Figs. 2 and 3 we plot the function P(() for qr and
K mesons, respectively. In Fig. 2 the solid line gives our

prediction for the set of parameters m~ = P = 250 MeV,
rPT ——1.0 which best describe the form factor shown in
Fig. 1. The dashed line is the prediction for the pion
distribution amplitude without the tensor term in the
wave function of Eq. (2.11),i.e., with rI 7 = 0. The wide,
camel-like shape of the distribution amplitude obtained
for rPT ——1.0, a value that optimizes the form factor
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FIG. 2. Pion distribution amplitude with (ri T = 1, solid
curve) and without (rI z = 0, dashed curve) the contribution
from the tensor term in the qq wave function.

FIG. 4. r~T dependence of the pion distribution amplitude.

description, is similar to that provided by the /CD sum
rule approach [6] for the matrix element of Eq. (3.2),
however, the predictions for the lowest moments ((2) =
0.27, ((4) = 0.13, are smaller than the ones of Chernyak
and Zhitnitsky ((f )cz = 0.40, g' )cz = 0.24) yet closer
to those obtained in Ref. [7] and lattice calculations [8,9].
The asymmetry in the K distribution amplitude in Fig. 3
is due to the large SU(3) breaking due to the strange
quark mass (m, = 480 MeV). Notice the sensitivity of
the pion distribution amplitude to rI z which is shown
in Fig. 4. The largest sensitivity is observed for rI z
0.5 where the interference between the pseudoscalar and
tensor terms is significant.

C. Structure functions

Structure functions contain important hadronic infor-
mation and are obtained &om inelastic processes. Ac-
cordingly we wish to further test our approach by com-
puting the meson structure functions and comparing
with available data usually extracted Rom Drell-Yan lep-
ton [10,11] or charged hadron production [12] on nu-
clear targets using mesonic beams. The extraction of the
structure functions from hadron production experiments

0.4 &

is typically more complicated and somewhat model de-
pendent due to uncertainties in the hadronization mecha-
nism. In this paper the experimental pion structure func-
tion was extracted kom the Drell-Yan muons produced
by 252 GeV pions on tungsten [11].The theoretical cross
section for muon production as a function of longitudinal
momentum fraction (E; of the muon pair is given by

d2o. 4vrn2 [f„"(zi)Gp(z2) + f, (zi)G~(z2)]
dQ d(/ 9Q4 (Ec2 + 4Q2/s) 1/2

zi, 2 = [+~& + (~F + 4Q /s) ]/2 (3.8)

where Q and s are the mass of the muon pair and the
square of the c.m. energy, respectively, and o. is the
electromagnetic fine structure constant. f (,)(zi) is the

pion valence (sea) quark structure function and G (,) (z2)
parametrizes the nuclear contribution. Assuming isospin
symmetry for ~ we have

f„(z) = zu(z) = zd(z),
f, (z) = xu, (x) = xu, (z) = = zs(z). (3.9)

~,""(z Q') = d~e*"(pl[@;~"@*(~)&;~"&*(0)]lp)2 — 1

The nuclear contributions can be similarly parametrized
in terms of valence and sea quark distributions of individ-
ual nucleons. The normalization (K factor) is measured
to be K 1.75+0.13 while a perturbative analysis to first
order in o., gives K 1.4. The structure functions are in
principle functions of x, and Q2, however, since we are de-
scribing the average data for 36.0 & Q2 & 72.3 GeV we
have suppressed the explicit Q dependence. The meson
structure functions can equivalently be defined in terms
of a diagonal matrix element involving the commutator
of two vector currents [16]

(3.10)

oo
—0.5 0.0 0.5 1.0

FIG. 3. Same as Fig. 2 for the K distribution amplitude.

with x = p. q/M2, Q2 = —q2 ) 0 and i referring to a par-
ticular fiavor. Since it is known that the total longitudi-
nal momentum of the hadron is only partially distributed
among quarks, the constituent quarks which are assumed
to carry the entire momentum of the hadron cannot be
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identified with the partons contributing to deep inelas-
tic structure functions. In the scaling limit, Q ~ oo,
Eq. (3.10) can be calculated using a short-distance ex-
pansion of the bilocal operator. In perturbative /CD
scaling violations can be described in terms of a con-
volution of the partonic distributions defined at a scale
of reference Qo (( oo and the Altarelli-Parisi splitting
functions which characterize the single parton response
amplitudes for the change of scale due to radiation of
gluons [17]. Here we also use the convolution approach
[18] to relate our constituent quark model to the parton
model. In a convolution model the quark distribution
function for a hadron o., q;, is represented by a product
of the distribution function of a constituent quark, Q„,
in a hadron and the probability for a constituent quark
to fragment into a /CD parton i, q;~„,

1 d
&'(* q') = —„q.(* Qo)q'i. I,

—q'I()o') (&»)

The constituent quark distributions are defined through
Eq. (3.10) with the /CD fields replaced by an efFective
constituent quark/gluon basis at Qo2 1 GeV . The Q2

evolution of q, g (z/y, Q2/Qo2) is governed by perturbative

/CD. However for any value of Q2 phenomenological in-

put is still required. For the average Q2 50 GeV of
the Drell-Yan data the valence and sea quark distribu-
tions are

0.4

0.3—
0 ~ ~ ~

&&
~ ~~

~ «g p v ()I )g
C~~( ~ Ja) )i%(

~ s ~ +~ v g Q ~

0.2

0.1

00 I I'
0.0 0.2 0.4 O.e 0.8 |.0

FIG. 5. Valence quark pion structure function

f„(z) = zq„(z) (curve convention same as in Fig. 2). Data
is taken from Ref. [11].

g2 J
Q:(*)=

2
', J(qT', ()IC'(~)l'

quark distributions q and q, to the data. The matrix
element which determines the constituent quark distri-
bution functions obtained from the light cone expansion
of the current product in Eq. (3.10) has a very similar
structure to Eq. (3.2) that defines the quark distribution
amplitude. Using the techniques developed in the previ-
ous section the following expression for Q„(z) is easily
derived:

(3.12)
x 1+rpf'

—(mi + m2) (3.15)

For the valence quark contributions in x, q = qp
——q„—,

while for the sea q, = qp ——q&
——~ ~ q-, . The number and

momentum sum rules are, respectively,

f
1

dzq„(z) = 1,
0

1 1

2 dzzq„(z) + 6 dzzq, (z) = 1 —g,
0 0

(3.13)

where g represents the fraction of the gluon momen-
tum in the pion currently measured as g 0.47 [11].
The parton distributions in a constituent quark, q;/, are
usually normalized to describe the relevant features of
the low-x hadron scattering phenomenology. The Regge
behavior at small z motivates the parametrization [18]

For a = x, mq ——m2 the integrand is a symmetric
function of g = 2z —1 yielding Q„— (z) = Q& (z). For the
kaon, m2 ——m, ) mq ——m„= mg and the nonstrange
and strange quark distributions correspond to ( = 2z —1
and ( = —2z+ 1, respectively. Again JH = M(qz+, f)
and J(q&+, () are specified in the Appendix.

In Fig. 5 we plot valence quark structure functions
for the pion calculated in our model with rpT ——1.0

0.15

r (~+ -', )
q-g-(z) =

q (,) ~(~) ~(1—*)" '

q.g-(z) = —(1 —*) (3.14)

0.10

0.05

with the parameters A, D, and C constrained by the
momentum sum rule of Eq. (3.13):

0.00
0.0 0.2 0.4

I I I I I I I I

0.8 0.8 1.0

1 C
2A+ 1

+6—=1—g .

Each can be determined by comparing the calculated

FIG. 6. Sea quark pion structure function. Solid line gives
our model prediction with rI z ——1, dashed line shows exper-
imental parametrization, f, (z) = 0.173(1—z) ' of Ref. [11].
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FIG. 7. Valence light quark (dashed line) and strange
quark (solid line) kaon structure functions.

(solid line) obtained from the form factor fit and the
result without the tensor component having r~T ——0
(dashed line) and compare with data. The comparison
suggests the importance of the tensor term at large x,
0.6 & z & 0.9 where the sensitivity to the constituent
quark distributions is the highest. In Fig. 6 we also com-
pare our results for the sea quark distributions (solid line)
with the curve used for experimental fitting (dashed line).
The value C = 0.086 for the parameter in Eq. (3.14)
is obtained by requiring the theoretical and experimen-
tal curves to agree at x = 0. Fitting A by the valence
quark distribution yields A = 0.75 and the sum rule of
Eq. (3.13) then gives D = 4.0. These numbers are in a
good agreement with the ones obtained &om the unpo-
larized nucleon structure function fits confirming hadron
independence of the splitting functions q;~„(z) [18,19]. In
Fig. 7 we also show our predictions for the strange (solid
line) and light quark structure functions (dashed line) in
kaon.

IV. SUMMARY AND CONCLUSIONS

Within the &amework of our covariant variable front
quark model, we have generalized the constituent, qq pion
wave function and have studied the distribution ampli-
tudes and structure functions. The meson observables
analyzed in the paper, i.e., elastic form factors, decay
constants, distribution amplitudes, and structure func-
tions have been selected in the ordered of increasing com-
plexity of the underlying matrix element. In principle all
matrix elements involve QCD (partonic) fields and it is
the mapping onto the effective (constituent) valence sec-
tor which, without a complete solution to the underlying
dynamics, requires a model treatment. In our opinion
we have implemented this mapping in a consistent way
for all of the observables listed above. In the simplest
case of the elastic form factors and decay constants ma-
trix elements of local operators are involved so that no
intermediate states appear and no explicit knowledge of
the dynamics is required. In such a case we have directly
approximated matrix elements of local QCD operators
at Qo few GeV hadronic scale by matrix elements

of local eff'ective operators evaluated in the impulse ap-
proximation in the valence quark hadronic basis. The
moments of the soft distribution amplitudes that corre-
spond to the leading twist operators can be treated in
exactly the same manner since higher Fock space states
do not explicitly contribute in this case. The situation is
more complicated when considering deep inelastic struc-
ture functions, as one (i) begins with matrix element of a
nonlocal operator, W„„,and (ii) needs to extrapolate the
matrix elements to a scale of large momentum transfer
Q 50 GeV . Despite the fact that in the high-Q limit
operator product expansion (OPE) can be used to ex-
press the structure functions in terms of matrix elements
of local operators the latter cannot be evaluated &om the
valence wave function alone due to a large momentum
scale mismatch. A possible solution to this problem is
provided by the convolution model which has been used
in Sec. III. In the convolution model the matrix elements
of QCD operators at large momentum scale in the im-

pulse approximation receive contributions from hadronic
wave functions describing low momentum valence con-
stituents at QO2and from the constituent quark structure
through QCD evolution to large momentum Q2. The
convolution model and factorization approach both re-
spect the basic assumptions of our mapping from QCD to
constituent quarks which have been summarized above.
Furthermore in the convolution model the sensitivity of
the calculated structure functions to details of the con-
stituent quark structure and to the constituent valence
wave function are well separated between small and large
x, respectively. Thus even with the necessity of the con-
stituent quark structure functions we were still able to
test the hadronic valence wave function by going to the
large-z region.

The extended model provides excellent agreement with
the experimental data for the structure functions and the
electromagnetic form factor as well as a good description
of the decay constants. The improved description is due
to a tensor component in the wave function which is a
relativistic correction in the rest frame. We have also
computed the structure functions and the distribution
amplitudes with the wave function of Eq. (2.11) in a light
cone quantization scheme and find results are similar to
the variable front model. The results will be presented
elsewhere. This confirms &ont independence of our re-
sults and is consistent with a previous assertion [4] that
difFerent &ont formulations do not lead to significant dif-
ferences in the predictions for various mesonic proper-
ties. The magnitude of the tensor term which optimizes
both the form factor and structure function now indi-
cates a camel shape distribution amplitude with the dip
at ( = 0 although not as profound as the one suggested
by early QCD sum rule calculations, but quite similar to
recent nonlocal QCD sum rule calculations and lattice
results. Since the shape and the moments of the quark
distribution amplitude are very sensitive to the interfer-
ence between the pseudoscalar and tensor components of
the wave function the detailed knowledge of the former
will provide important information on the structure of
the meson wave function. As mentioned in the Intro-
duction, the distribution amplitude is not directly mea-
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surable, however, information on the magnitude of the
lowest moments can be extracted from the meson form
factor describing the hadronic part of the e meson + ep
transitions [6,20]. Finally, distribution amplitude studies
provide an effective forum for theoretical comparisons of
alternative model formulations which can provide signif-
icant insight into /CD dynamics.

APPENDIX

The variable change of Eq. (3.6) gives

[ i(v~)(I —[!)'—[ 2(~T')(1+ [!)'
tIT [IT q

)t8(1 —p)[qq(q~~)[1 —() + pqq[q~~)(1+ $))

where
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"~[qq' &) =
y ql(qq) + [qT(qq'~))'

~(eT () = &it, (eT () + &zL, (&T &)

and the Jacobian J(q&+, () is given by

J(VT () =21 &,
[['+(&[)'—2(P&V] —

1 &,
&tP 24, —

(& ), 2& &
+2(1 —('),

with
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