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Multipole amplitudes in the one-photon radiative transitions of the singlet D state of charmonium
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We calculate in potential models the angular momentum helicity amplitudes and from them the radia-

tion multipole amplitudes of the one-photon radiative transitions of the charmonium singlet D state,
namely, 1'D2~1'Pl+y and 1'D2~1'Sl+y. The M2 and the E3 multipole amplitudes in the

parity-changing transition 'D2~'P, are of order U'/c' compared to the E1 amplitude and are indepen-

dent of the specific potential we use. They only depend on k/m where k is the photon energy and m is

the mass of the quark. On the other hand the M1, E2, and M3 multipole amplitudes in the parity-

conserving transition 'D2~'Sl are all of order U'/c' and depend on radial integrals which could depend

on the potentials. We numerically evaluate these multipole amplitudes in the potential model of Gupta,
Radford, and Repko and find that the E2 amplitude is the most dominant one. We also calculate the de-

cay rate for the transition 1 'D21 'S&+y and find it to be about 63 keV. So if the 1 'D2 state of char-

monium is narrow, as expected in potential models, this transition will have a significant branching ratio,
although the most dominant transition is probably 1 'D2 ~ 1 'P

&
+y.

PACS number(s): 13.40.Hq, 12.39.Pn, 14.40.Gx

I. INTRODUCTION

The singlet D state of charmonium, namely, the 'D2, is
interesting in several respects. First, even though its
mass is supposed to be above the charm threshold, it is
expected to have a narrow width since the strong transi-
tion 'D2~D+D is forbidden by conservation of parity
and the predicted mass [1] of 'D2 is such that the strong
transition 'D2~D+D* or D'+D is energetically for-
bidden. The 'D2 states can be directly formed in pp col-
lisions now being studied at Fermilab by the E760 group
[2]. The predominant radiative decay modes of the state
are 'D2~'P&+y, which has a width of about 600-'700
keV [1],and 'D2 ~1 S, +y, which as we shall see has a
width of about 60 keV. From angular momentum and
parity conservation, the radiation multipole amplitudes
involved in 'D2 ~ 'P, +y are E1, M2, and E3 and those
of 'D2~1 S, +y are M1, E2, and M3. In a recent pa-
per [3], we have shown that all the multipole amplitudes
in the transition 'D2~'P&+y can be extracted from the
angular distribution of the two photons in the cascade
process

pp 'D2 'Pi+y) 'So+yi+y2 .

We have also shown [3] that the multipole amplitudes of
the transition 'Dz~1 S&+y can be extracted from the
angular distribution of the photon and electron in the
cascade process

pp~'D2~1 Sl+y~e++e +y .

In this paper we calculate these multipole amplitudes in
potential models. In potential models the M2 and E3
amplitudes in the 'D2 ~ 'P

&
transition are of order v /c

or k jm compared to the El amplitude. In fact, we will
find that the M2 and E3 amplitudes depend only on
k/m, where k is the energy of the photon and m is the

mass of the quark, and not on the wave functions or the
specific nature of the potential. On the other hand, all
the multipole amplitudes M1, E2, and M3 are of order
u jc . In other words, in the nonrelativistic limit this
transition will not occur. Also, these multipole ampli-
tudes depend on certain integrals involving radial wave
functions. Hence they could depend on the specific form
of the potential. We numerically evaluate these multipole
amplitudes in the potential model of Gupta, Radford,
and Repko [4] (GRR). We find that the E2 amplitude is
about 12 times as large as the M1 amplitude and about 4
times the size of the M3 amplitude. We also derive an
expression for the total decay rate of 'D2~1 S&+y in-

cluding the contribution from all the multipole ampli-
tudes. This should be contrasted with the expression we
derived in Ref. [1] where we only took into account the
M1 contribution to the decay rate. It turns out that the
E2 and M3 contributions to the decay rate are quite
significant, and these contributions change the previously
[1]calculated decay rate of 2.1 keV into 63 keV.

The format of the rest of the paper is as follows. In
Sec. II we present our expressions for the parity-changing
and -conserving one-photon transition amplitudes of
quarkonium to relative order 1 jc in an arbitrary poten-
tial model. Using the results of Sec. II, in Sec. III we
derive expressions for the angular momentum helicity
amplitudes and from there the expressions for the E1,
M2, and E3 multipole amplitudes for the transition
1'D2~1'P, +y. In Sec. IV we derive the angular
momentum helicity amplitudes and the M1, E2, and M3
multipole amplitudes for the parity-conserving one-
photon transition 1'Dz~1 S, +y. We also give the ex-
pression for the total decay rate of this transition, includ-
ing contributions from all the multipole amplitudes. In
Sec. V we make numerical estimates of the multipole am-
plitudes and of the total decay rate of 1 'D2 —+1 S, +y
using the potential model of Gupta, Radford, and Repko
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[4]. Finally, the Sec. VI we make some concluding re-
marks.

II. PARII Y-VIOLAl'ING AND -CONSERVING
ONE-PHOTON TRANSITION AMPLITUDES

OF QUARKONIUM
IN AN ARBITRARY POTENTIAL MODEL

A = A (rj, t) (lb)

and so on.
In Eq. (la}, as well as throughout this paper, we put

fi=c =1. For quarkonium, e, = —e2=+eq and

m& =m2=m. The commutator term between rJ and Hp
includes all the relativistic correction terms in Hr except
for some spin-dependent terms. The contributing spin-
dependent terms are given by the terms after the first
term in Eq. (la}. Next we express the interaction Hamil-
tonian in terms of the relativistic internal and center-of-
mass variables of Krajcik and Foldy [5]. In terms of

I

1/2

Let Hp be the Hamiltonian of the isolated quarkonium
state and Hr the interaction Hamiltonian which
represents the interaction of the quarkonium with the
quantized radiation field. To relative order 1/c, the in-
teraction Hamiltonian Hr can be written as

2

Ht=i g ( A [r,HO]+[r, H0] A~)
1

2C

2 2

s, 8, —g '
s, (E, Xp,. )

J=~ mJC =& 2m C

2

2 2'i''( if "Ef)
J=14m2C2 J J

2

3 3[pj' I'BJ]+
J —

&
4m. c

In writing Eq. (la), we assumed that the quarks have no
anomalous magnetic moments. It is also understood
that, in Eq. (la},

where

Iw &=Is &,eIP&,

and

p2(EI )2+P2 EI +
A

p4

8(EI )3

(2b)

Let us assume that the initial state is an eigenstate of h

with eigenvalue E„and with total momentum equal to
zero, whereas the final state after the photon emission is
an eigenstate of h with eigenstate Est and momentum

equal to —k, where k is the momentum of the emitted
photon:

(5)

where Ik, a, ) h is a single-photon state with momentum k
and polarization vector a, . If the system consisting of the
quarkonium and radiation field is in state Ii ) at time
t =0, the probability amplitude of finding it in state

If )
at time t, in first order time-independent perturbation
theory, can be written as

T(t) = i f '(f IH—,(t') Ii &dt' (6)

in the interaction picture. Next we write this transition
amplitude in terms of the relativistic internal variables
and separate the parity-odd and -even amplitudes. If T,
and T, are the parity-odd and -even amplitudes, respec-
tively, they are given by the expressions [6]

these variables, the Hamiltonian of the isolated quarkoni-
um takes the form Ho=+h +P expanded to relative
order v /c, where h is the internal Hamiltonian and P is
the total momentum of the quarkonium. Since h and P
commute, the eigenstates of Hp can now be written as

(2a)

and

T,(t)=
V co

I(CO COZZ )S
e dt'

0

leqtoe„A a, e r — [(k r) p —i(k r}k+2(k r)(SXk) —k (SXr)] 8
r & 4mk I

(7)

T,(t)=
V p' co

1/2
8q k 1

m(
(kXa ).s 1+ — ——(k.r) +ik (k.r)s (sXp)

2m 2m 8 4m

eq 1 BU (0) eq I (Q) CgP~+ )t(k.r)a (sXr)+ (s .p)k (sXp) 8 f e " dt'.
4m r Br 2m

(8)

We assume box normalization in a box of volume V with
periodic boundary conditions. In Eqs. (7) and (8), r and p
are internal variables [5,6] defined as

r= lim(r, —r2),
P~O

p= limp& = —limp2,
p~p p —+0

(10)

where P is the total momentum. Also, in Eqs. (7) and (8),
the variables u or k represent the energy of the actual
emitted photon and
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co~~ =E~ —Eq,I I 1

whereas

~a~ Ea (12)

The relation between E„and E„or E~ and E~ is given

by Eq. (3). Furthermore,

and

S=s1+Sz (13)

III. HELICITY AND MULTIPOLE AMPLITUDES
IN THE TRANSITIGN 1 'D2 ~1 'I')+y'

Let us assume that the 'Dz is formed at rest in the pp
co11isions. Even if it is not, we can always calculate
everything in the 'Dz rest frame and compare the results

S=S1 Sz,

where s1 and sz are the spin operators of the quark and

antiquark in the c.m. frame where P =0.
In Eq. (7), the first term e r is the dominant term

which comes from the commutator term in Eq. (la)
where in the expansion of the vector potential Aj we re-

ik.r.
place e ' by 1. The second and third terms also come
from the commutator term, where the exponential term

ikr
e ' is expanded to second order in (lr r }. These are the

so-called finite size corrections. They are of relative or-
der v /c compared to the dominant term e r in the tran-

sition operator. The fourth and fifth terms in Eq. (7)

come from the second and third terms in Eq. (la}.
In Eq. (8} we have only included terms proportional to

s=s, —sz as they alone can connect the spin-singlet 'Dz

state and spin-triplet S1 state. We also assumed that
the interaction-dependent part of the Lorentz boost
operator [5—7] W'" and the terms of relative order 1/c
(called h'"} in the internal Hamiltonian are independent
of s=s1 —sz. These assumptions are certainly valid in

any potential model of quarkonium so far used. The only
nonrelativistic term in the transition operator of Eq. (8) is

the term involving 1 in the first term. Obviously, this
term does not contribute between 1'Dz and 1 S1 states
since the spatial wave functions are orthogonal in this
case. All the other terms in the transition operator are of
relative order v /c . So all the nonvanishing multipole
amplitudes M1, E2, and M3 in the transition
1 'Dz ~1 S, +y are of relative order U /c . This situa-

tion should be contrasted with that of 1 Dz~1 P1+p
where the dominant multipole amplitude is E1 since it
survives even in the nonrelativistic limit, whereas the
higher multipoles M2 and E3 are of relative order U ~/c ~.

It is interesting to note that the last term on the right-
hand side of Eq. (8) comes from the relativistic terms of
order 1/c in the relativistic relations between the con-
stituent and center-of-mass variables of Krajcik and Fol-
dy [5].

In Secs. III and IV, we apply Eqs. (7) and (8) to calcu-
1ate the helicity and multipole amplitudes in the transi-
tions 1 'Dz ~1 'P, +y and 1 'Dz ~1 S, +y of char-
monium.

with the experiment through a Lorentz transformation.
Let 'P, and the photon y be emitted in the +Z and —Z
directions, respectively. The component of the angular
momentum of 'Dz in the +Z direction is called v. The
helicities of 'P1 and y are called o. and p, respectively.

By angular momentum conservation

A, =A „(v=0,1,2) . (16)

So there are three independent helicity amplitudes in this
decay. We normalize them so that

v=0
(17)

The relation between the helicity and multipole ampli-
tudes a& is given by [8,9]

' 1/2
2k+1A„— al,

I=1
(kl; lv —1~2v& . (18)

The coeScients of this transformation form a real orthog-
onal matrix so that

2 3

v=0
(19)

a, is the E1 amplitude, az the M2 amplitude, and a3 the
E3 amplitude.

In order to calculate the angular momentum helicity
amplitude Az, we will consider the process

1Dzz~ P11+7-»1

where 'P1 and y have the helicities +1 and —1, respec-
tively. Since the photon is moving in the —Z direction
with negative helicity,

k= —kz,
(20)

(x+iy)'= — (x iy) . —
V2

We will represent the state of 'Dz and 'P, by their angu-

lar momentum quantum numbers jrn so that

I'&„&,=)22&,

The transition probability amplitude of Eq. (7) now be-

comes

(15)

The transition amplitude of 'Dz —+'P, +y„ in this
kinematical configuration is called the angular momen-
tum helicity amplitude A, or simply A of our previous

paper [3]. In Ref. [3] we had shown, using parity invari-

ance,
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8qT(t)= v'V to

' 1/2

— x —ig + kz p —ip 22 e
2 42m"'o (22)

» deriving Eq. (22) «om Eq. (7), we have made use of the fact that the 'D2 and 'P, states are spin-singlet states and
therefore the terms involving the total spin 8 do not contribute to the matrix element. Next we will express the transi-
tion operator in terms of the irreducible tensor operator components. For this purpose we define the following highest
weight tensor components:

T33 x+p+, T22=x+(rXp)+, T»=( ', )' —r p+, T'» =(—', )' x+(r p), x» =x+

For any vector operator A, we define the components

A+ (A +iA ) A (A» iAr) A3 Ag
1 1

2 " '' 2

(23)

(24)

Once we have a tensor operator Tl, of rank k and component q, we can find the other components from the highest
weight component by the formula

[J,TI, ]=v'k (k + 1 )+q ( 1 q) TI, —

ik 1 1
BA 11 ' X1—1+ T1—1 T1—12m 10 2 10

T(t)=
to

After some lengthy algebra, we are able to express the transition helicity amplitude as
' 1/2

(25)

ik ik 1 ~ i(a —co~„)t'+ T2, + T3 l 22 fe "dt'.
6m 2m 15 o

Next we use the Wigner-Eckart theorem

& jmlTtvlj'm'&=& jm kqlj'm'&& jllTl llj'& .

Now the matrix element in Eq. (26) can be written as

(26)

(27}

A z
=

& 1 1
I
1 —1;22 &

—
& 1llxl 112 &+

+&11I2—1;22& &1IIT2ll2& +&1113—1'22&
6m 2m 15

(28)

A l
= (10I 1 —1;21)C,+ (10I2—1;21)C2

+& lol3 —1;21&c,
(29)

where C1, C2, and C3 are the quantities in the square
brackets in Eq. (28). Similarly,

The angular momentum helicity amplitude given by Eq.
(28) is called A z since it is not normalized as in Eq. (19).

The arbitrarily normalized helicity amplitude A', can
be calculated from the transition amplitude of the process
'D21~'P10+y 1. Since the photon is moving in the
—Z direction with negative helicity, the transition opera-
tor will be the same and only the initial and final states
will change. The helicity amplitude A 1 can now be writ-
ten as

2k+1
k=1

' 1/2

(kl; l, v —ll2v& . (31)

2k+1
k=1

( l, v —ilk, —1;2v) . (33)

Using the symmetry properties of the Clebsch-Gordan
coeScients,

(Jlmlsj2m2IJ3m3 &

' 1/22J3+1=(—1) ' ' . &j3m3,jl —mllj2m2&,
2g2+1

(32)

we can also write Eq. (31) for j'=2 as
' 1/2

3
A' = g (1—ilk, —1;20)c, .

k=1

Comparing Eq. (33}for v=2 with Eq. (28), we obtain
(30)

The unnormalized multipole amplitudes ak are related to
the helicity amplitudes A '„by the equation [8,9]

+
2

(&1IITlll2& —
—,'& lllTlll2&) (34)
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(35)

2m 35
(36)

The multipole amplitudes ai, normalized as in Eq. (19)
are related to a& as

I
aa

y[y la l2]l/&
(37)

Since a z and a 3 are already of order k /m, we can neglect
(az) and (a3) to order k/m in Eq. (37). Also, since ai
by definition is chosen to be positive, we have to choose
the positive square root in Eq. (37}:

Qg— I
Q1

(38)

Moreover, to first order in k/m, we can neglect the terms
proportional to k/m in Eq. (34) in evaluating az and a3
to first order in k/m. Then,

Q1 1 (39)

a =—
2

'k

6m 5 ( lllxill2)

m v'35 & lllx

(40)

(41)

& 1llx, ll2 & =+
33/10

(43)

( lllT3ll2) = — —(3I~+8I~) .
5 7

The reduced matrix elements in Eqs. (40) and (41) were
evaluated before [10],and they can be expressed in terms
of the two radial integrals Iz and Iq defined before [10]:

Iz = J r drR, &(r)R ~z(r),
0 (42)

4
8R 1g)I4= r r R1p r

0 dr

In terms of these integrals,

The M2 amplitude az is purely imaginary and depends
only on the ratio of the photon energy to the quark mass,
namely k/m, and is independent of the specific potential
used, except through its effect on the quark mass used.
The E3 amplitude a& may depend on the specific poten-
tial since the ratio of the radial integrals Iz and I4 may
depend on the potential used. As we will see in Sec. V for
the GRR [4] and Buchmuller-Tye [11]models, these radi-
al integrals have practically the same numerical values.
We also find that the relative strengths of both the M2
and E3 amplitudes are rather small, of the order of about
8% of the F. 1 amplitude.

IV. HELICITY AND MULTIPOLE AMPLITUDES
IN THE TRANSITION 1 'D& ~1'S&+y

In this transition, to conserve parity, the photon y has
even parity since the 'Dz and S1 states both have parity
P =( —1) +'= —1. This should be contrasted with the
case we discussed in Sec. III, namely, 1'D& 1'P, +y,
where the photon had the odd parity to conserve parity
in the transition.

As before, we will assume that the 'Dz state is formed
at rest in pp collisions. Let the 1 Si state (otherwise
known as g) and the photon y be emitted in the +Z and
—Z directions, respectively. The component of the angu-
lar momentum of 'Dz in the direction of Z or 1(t momen-

tum is called v. The helicities of P and y are called cr and

p, respectively. The transition amplitude of the process
Dz ~g +y„ in this kinematical configuration is called

the helicity amplitude A, . Even though v can take five

integer values from —2 to +2, only three A 's are in-
dependent since A is equal to A, because of parity in-
variance [12]. We will take the three independent angu-
lar momentum helicity amplitudes to be A0, A „and A &.

Even though we are representing the helicity amplitudes
in the two decays 1 'D, ~1'P, +y and 1 'D, ~1'S, +y
by the same symbols, they are, of course, quite different.
In the former case they are parity odd and in the latter
they are parity even amplitudes. These angular momen-
tum helicity amplitudes A, are related to the M1, E2,
and M3 multipole amplitudes a, , az, and a~ through Eq.
(18), and they satisfy the normalization conditions of Eqs.
(17) and (19).

In order to calculate the helicity amplitude A z, we will
consider the process

k 24
a

m 35
3 I41+—
8 Iz

Substituting Eqs. (43) in Eqs. (40) and (41), we find

. k
Qp —l

m 103/6
(44)

(45)

1 4i+y i—
where f and y have the helicities + 1 and —1, respective-
ly. So just as in Sec. III the photon's momentum vector k
and the polarization vector e satisfy Eqs. (20) and Eq. (8)
now reduces to

T,(t)= 3/P' co

' 1/2

i(s„is ) 1+ —— ——k z + — z (sXp)„—i(sXp)
eq" k p 1 z 3 ik eq

2m
" 2m 2m &2 4m'

elk 1 QU Cqkq
2
— z (SXr)„—l(SXr)y + -' 3(p„—Epy}(SXp)y B

4 2m' r dr

I

0
(46)
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Next we will express the transition operator in Eq. (46} in terms of the irreducible tensor operator components. For
this purpose we define the following highest weight tensor components:

p» =p+(s Xp)+, Q» =x+ (s X r)+, M, i
= 1+

2m 2m
s+, Q33 —x+x+s+

(47)
L»=x+(sXp)+, p»=[pX(sXp)]+, Q»=(r s)x+, L»=[(sXp)Xr]+, Q'»=r s+ .

Now the transition operator can be expressed entirely in terxns of the different components of the irreducible tensor
operators defined in Eq. (47). Using the Wigner-Eckart theorem of Eq. (27), we can express the matrix element of Eq.
(46) entirely in terms of the reduced matrix elements of the tensor operators and the Clebsch-Gordan coeScients. After
collecting together tensors of the same rank, we finally obtain for the matrix element of Eq. (46) the expression (which
we will call A z, since it is not normalized)

U(0)

, &lllp, ll»+ ', 1 —— Q, 2 +
4 2m 3 8 2m 2 r Br m

e k2
+ '

& lllggll2& — '
& lllgg II2&+

ek ek 1 gU«& ek3~2
+& 1ll2 —1;22& -', & lllp2II2& — ', 1 —

Q2 2 — '
& lllg2II2&

2 2m' ' 4 2m' r r ' 24m

+ ', & lllL II2& + & lll3 —1;22& '
& lllg II2&

4 2m 4 15m
(48}

In deriving Eq. (48) from the matrix element of Eq. (46), we represented the state vectors of 1 'D», 1 S», and y, by
the symbols I22), I

1 1 ), and
I
1 —1), respectively.

The arbitrarily normalized angular momentum helicity amplitude A ', can be calculated from the transition amplitude
of the process 1 Dz& ~1 S&0+y &. Since the photon is moving in the —Z direction with negative helicity, the transi-
tion operator will be the same as in Eq. (46) and only the initial and final states will change. The helicity amplitude A,
can now be written as

A I
= (10I 1 —1;21)Ci+ (10I2—1;21)C2+ (10I3—1;21)C3, (49)

where C„C2, and C3 are the quantities in the square brackets in Eq. (48).
Similarly, the arbitrarily normalized helicity amplitude A 0 can be calculated from the decay 1 Dip~ 1 S~ ~+)

and it can be written as

3
A' = g (1—ilk, —1;20)C (50)

The unnormalized multipole amplitudes a &, u z, and a 3, the M 1, E2, and M3, respectively, are related to A „' (v=0, 1,2)
by the relation of Eq. (33). So we get

ie k ie~k 1 gU«& ie k
3&lllpxll»+ ', 1 — {? 2 +

4 2m 8 2m 2 r Br m

k+ '
& 1

I I g ) I I» — '
& 1 I I g g I I»+ (51)

1BU''
)2 2m' 4 2m r BP

e,k'&2 E8q k
& ll I Q2 I I2 &+

24m 4 2m
(52)

& lllg, ll» .
4 15m

(53)
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k ~ dR1sJ2= f R(Dr dr,
2mc 0 dr

d ~is2

2 2 0 2

1 dR, s
R r2dr,

r dr
J =—

3

g U(0)
J4=

2 R1s R Dr r.
2mc r

In terms of these radial integrals, the arbitrarily normal-
ized M1, E2, and M3 amplitudes are

leq k
a', = — ' (J, +J,+J,+J4),

12mc
(55)

leq k
Q2=

12mc
&5Ji+ —J2&10

—6
2m

5

leq kai= — (2J, ) .
12mc

1/2
6J3+ J4
10

(56)

(57)

The multipole amplitudes normalized according to Eq.
(19) are given by

Using the definition of the highest weight components of
the spherical tensors and calculating their matrix ele-
rnents using wave functions from any potential model, we
can express all the reduced matrix elements in Eqs.
(51)-(53) in terms of four radial integrals given in terms
of the nonrelativistic radial wave functions of the 1S and
1D states of charmonium. The four radial integrals are

J1= R1SR1Dr dr,
0

IJ)+J2+J3+J4I'

+ &5J, + J2 —6
&10

1/2

+4IJ I'

1/2 2
6J3+ J4&10

(59)

then Eq. (58) leads to the following expressions for a, , a2,
and Q3..

a, = ir—i(J, +J~+Ji+J4),
6 2ma = i'—&5J + —J —62 I ~1() 2

' 1/2
6J3+ —J4v'10

(60)

(61)

a 3
= i ri—(2J

&
) . (62)

Equations (60)—(62) give the normalized M 1, F2, and M3
amplitudes entirely in terms of the radial integ rais
defined by Eqs. (54). Unlike the E 1, M2, and E3 ampli-
tudes in 1 'D2 ~1 'P1+ y where the M2 and E3 ampli-
tudes are of order k/m compared to the El amplitude,
the Ml, E2, and M3 amplitudes in the relativistic Ml
transition 1 'D2~1 S, +y are all of the same order. In
fact, in the GRR potential model [4] the E2 amplitude
turns out to be numerically the largest as we will see in
the next section.

The total decay rate for the transition 1 'D2~1 S, +y
can be written in terms of the arbitrarily normalized mul-
tipole amplitudes Q 1, Q 2, and Q 3 as

Qka„= (k =1,2, 3) .
QIaII'+ Ia,'I'+IaiI'

If we define

(58)

'"
[Ia', I'+Ia', I'+Ia', I'] . (63)

When we substitute the expressions (56)—(58) for a', , a~,
and a 3 in Eq. (63), we obtain

e
'D2-'si+r 9O e

2 2 ~'

a) IJi+J2+J3+J4I + V'5J)+ J2 —6

' 1/2 2

J+ J, +I2J I'
&10 '

(64)

When we compare Eq. (64) with Eq. (18) of Ref. [1],we
find that in Ref. [1] the contribution of the M2 and E3
amplitudes to the decay rate was neglected. The contri-
bution of the M2 and E3 amplitudes to the total one-
photon decay rate of the 'D2 state is quite significant. In
fact, as we will see in the next section, including the con-
tributions of the M2 and E3 amplitudes, the total decay
rate for 1'D2~1 S1+y of charmonium turns out to be
about 63 keV. On the other hand, neglecting the M2 and
E3 contributions, the decay rate predicted in Ref. [1]was
only about 2 keV. So including the M2 and E3 contribu-
tions is crucial in getting a reliable estimate of the
1 'D2 —+1 S1+y transition rate.

V. NUMERICAL ESTIMATE OF THE
MULTIPOLE AMPLI'I IDES AND THE DECAY

RATES OF THE 1 Dg ~ 1 Pg +g AND

1 D2 ~ 1 Sg +y TRANSIT'IONS OF CHARMONIUM

We use the potential model of Gupta, Radford, and
Repko [4] to calculate the multipole amplitudes and de-
cay rates of the transitions 1 'D2 ~ 1 'P, +y and
1'D2~1 S, +y of charmonium. %e used the values

m, =1.32 GeV, @=1.94 GeV, cx, =0.36, k =0.15 GeV,
and c =0.392 GeV for the parameters in their model
since they give an extremely good fit of the energy spec-
trum of charmonium. The predicted mass of the 1'D2
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state in this model is 3822 MeV [1]. The wave functions
were obtained by the variational calculation using a trial
wave function whose radial wave function is a polynomial
of degree 10 times an exponential function. The varia-
tional parameters are the coefBcients in the polynomial
function. The constant in the exponent is determined by
satisfying the virial theorem [4]. We obtain the following
numerical results for the two radiative transitions.

i (0.2804)

&10.2804I'+ I3.27781'+ I0 77441'

=i(0.083),
.3.2778a2= —i

' = —i(0.970),
3.380

.0.7744
a~ = i——' = —i(0.229) .

3.380

(71)

(72)

(73)

A. 1'D2~1'P)+y

Using the wave functions of the GRR model [4], we
obtain the following numerical values for the radial in-

tegrals Iz and I4 defined by Eqs. (42):

I2 =0.664 fm,

I4= —0.890 fm .

If we take the mass of the 1'P, state to be 3526 MeV
[2,13,14], the energy of the emitted photon will be ap-
proximately

k=M~ —M& =3822 MeV —3526 MeV=296 MeV .
2 1

(66)

If the mass of the c quark is 1.32 GeV,

—=0.22 .k
m

(67)

So the M2 and E3 amplitudes of Eqs. (44) and (45) be-
come

a2 —i —=—i(0 081),.9
m10 6

(68)

k 24
Qg-

m 35
3 I41+— = —0.075 .
8 I2

(69)

Sa the M2 amplitude is purely imaginary and the E3 am-
plitude is real and negative. They are both quite small in
magnitude compared to the E1 amplitude.

The decay rate of the transition 1'D2~1'P&+y can
be calculated using Eq. (74} of Ref. [15]. If we calculate
the reduced matrix elements using the GRR model [4],
we get a transition rate of about 650 keV. So this is prob-
ably the most dominant transition of the 'D2 state.

We should also mention that the numerical values [10]
of the radial integrals I2 and I4 are practically the same
in the Buchmuller-Tye potential model [11].

B. 1'D, ~1'S,+y

In the GRR model [4] described above, the radial in-

tegrals J&, J2, J&, and J4 take the numerical values

J]=0.3872 J2 = 0.4056

Jp = —0.4266, J4 =0.1646 .
(70)

It should be noted that the radial integral J& we defined
in Eqs. (54) is ~2 times the radial integral J, of Ref. [1].
Using Eqs. (59}—(62), the numerical values of the Ml,
E2, and M3 rnultipole amplitudes are

If we take the mass of the 1 'D2 state to be 3822 MeV

[1], the energy of the emitted photon in the 1 'Dz~1 ~S,
transition will be 643 MeV and the predicted rate for the
transition 1 'Dz ~1 S, +y, using Eq. (64), will come out
ta be

I'(1'D2~1 S, +y)=62. 6 keV . (74)

This is an order of magnitude larger than the value pre-
dicted in Ref. [1] where the E2 and M3 contributions to
the transition rate were completely neglected, which was
a serious error. Since this rate is so large, is should have
a significant branching ratio.

VI. CONCLUDING REMARKS

We have calculated the multipole amplitudes in the
ane-photon radiative transitions of the 1'Dz state of
charmonium, namely, 1 'D, ~1 'P, +y and
1'D2~1 S&+y, in an arbitrary potential madel. The
relative strength of the M2 multipole amplitude com-
pared to E1 in the 1 'D2 ~1 'P

&
transition is independent

of the specific potential and depends only an the ratio of
the photon energy to the quark mass. Although the rela-
tive E3 amplitude [Eq. (45)] depends on the ratio of two
radial integrals I„and I2, it is probably very insensitive
to the specific potential used. In the 1 'Dz ~1 'P, transi-
tion, the E2 and M3 amplitudes are of relative order
v Ic compared to the El amplitude.

In the 1 D2~1 S& transition, the amplitude is parity
even. Since this transition is forbidden in the nonrela-
tivistic limit, all the multipole amplitudes Ml, E2, and
M3 are of relative order v /c . All the three amplitudes
can be expressed in terms of four radial integrals which
could depend on the specific potential used. Numerical
calculations in the GRR potential model [4] show that
the E2 amplitude is the most dominant one, about 12
times as large as the M1 amplitude and about 4 times the
size of the M3 amplitude. Most of the contribution to
the 1 'D2~1 S& one-photon transition rate comes from
the E2 and M3 amplitudes.

Another interesting thing to point out about our re-
sults is that in general the multipole amplitudes are com-
plex. In fact, the M2, Ml, E2, and M3 amplitudes we
calculated are purely imaginary, while the E3 amplitude
is real. In Ref. [3] we have shown that by studying the
angular distribution of the decay products of the 1 'D2
state formed in the unpolarized pp collisions we can only
obtain the magnitudes of all the helicity amplitudes Ap,
A„and A2 and the cosine of their relative phases or
Re(A;Ai }. In order to obtain the real and imaginary
parts of the helicity amplitudes A, (i =0, 1,2) or,
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equivalently, the multipole amplitudes ttk (k = 1,2, 3), we
should also determine Im(A, A*). For this we should
measure the angular distributions of the decay products
of the 1 'Dz state formed in polarized pp collisions [16].
Our results show the importance of doing experiments
with polarized proton and antiprotons beams.
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