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I. INTRODUCTION

According to the rule of naming a hadron, the meson
B, denotes the ground state of the bound system of heavy
quarks, a heavy quark c and an antiquark 5. In addition
to the well-studied bound systems of (bb) and (cZ), the
system and its antiparticles probably are the only ones of
the double heavy quark systems which can form bound
states, i.e., mesons, before one of its constituents has de-
cayed, because the other possible double heavy quark sys-
tems must contain one top quark at least, and the top will
decay with so great a possibility that it has no time to
form a bound state with another heavy antiquark, if the
top mass m, is larger than 120-140 GeV, as indicated by
indirect analyses. The reason is that the top quark’s life-
time decreases rapidly as its mass is increasing, especially
when greater than my +m,. Thus the meson B, is the
only potentially possible double heavy one carrying
known flavors and should be discovered in the near fu-
ture [1-3]. Because of the fact that the B, meson carries
flavor explicitly, not like the mesons of ¢ and bb, there is
no gluon or photon annihilation via strong interaction or
electromagnetic interaction. It can decay only via weak
interaction, so it has a very long lifetime. Thus it will
offer ideal new samples to study the weak decay mecha-
nism of heavy flavors. They are even better than what we
have had for certain purposes of the study. In fact, the
study of the B, meson is becoming one of the currently
more interesting topics, especially since the experimental
studies of the B, meson will be accessible soon, as pointed
out in Refs. [1-3].

As for the weak decays of hadrons, the short-distance
effects responsible for the decays, i.e., the quark weak de-
cay interaction and its QCD corrections, are relatively
well known owing to the achievement of the standard
model of electroweak interactions and perturbative QCD;
however, the long-distance effects responsible for the had-
ronization from quarks to experimentally measurable
hadrons are of a nonperturbative nature, and still remain
obscure in several aspects. The situation in general may
be summarized as follows: Many uncertainties have not
been clarified in calculating the decays of light hadrons,
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due to the entanglement of the long-distance effects and
the short-distance effects. The long-distance effects in the
decays are hard to manage satisfactorily, especially for
the energetic nonleptonic decays. Recently, the heavy
quark effective theory (HQET) has achieved great success
in describing the heavy meson (Qg) or baryon (Qggq) de-
cays due to the fact that an SU(2)XSU(2) spin-flavor
symmetry in the limit when the heavy quark mass is ap-
proaching infinity is newly recognized. Up to now the
next-order QCD, 1/mg, and even higher-order correc-
tions have been performed already in the HQET [4-9].
Being different from those of the mesons (Q7), the meson
B, consists of two heavy quarks; hence whether or not
the HQET is suitable at least needs to be examined.
However, in this paper we will adopt a different approach
from that of the HQET to the problem.

On the other hand, it is known that the QCD-
motivated nonrelativistic heavy quark potential model
has achieved great success in describing the ¢z and bb sys-
tems [10-15]. According to the QCD-inspired potential
model, for the present system ¢b, the difference from the
above two is about the reduced mass only; i.e., its re-
duced mass is just between theirs and will have the same
potential as them. Therefore to describe the relative
motion of the two constituents of the B, meson, the non-
relativistic approximation should be expected to work
well and the potential framework should be suitable, pro-
vided we take the difference of the reduced masses men-
tioned above into account. The binding energy and the
wave function of the B, meson can be predicted well in
this framework by the flavor-independent potential in
which the parameters have been fixed totally by ¢ and bb
spectra and decays. Therefore when calculating the de-
cays of the B, meson, we may use the obtained wave
function reliably at the concerned accuracy level; hence,
with its help the hadronization related to the B, meson in
the decays is relatively easy to deal with. One will see
that our approach is to calculate the decays with the help
of the well-established potential model as much as possi-
ble.

In the potential model we describe the relative motion
of the two heavy components in the meson’s center mass
system (c.m.s.), so the wave functions are of this system
too. However, for the decays, especially those with a
large recoil in momentum, one cannot find a system in
which the initial meson and the concerned produced
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meson in the decay are both at rest in the meantime; i.e.,
there is no common c.m.s. for them; hence to apply the
wave function obtained by the potential model to the
present problem is not straightforward. To overcome
this difficulty and as the first step, we start with the
Bethe-Salpeter (BS) equation to depict the meson as a
bound state, and then take the so-called instantaneous
nonrelativistic approximation but in a “covariant” form.
Under the approximation, the relation between the BS
wave function and the Schrodinger one of the potential
model can be established in a covariant form. The
second step of our approach is with the help of the Man-
delstam formalism [24], to write down the decay matrix
(the weak current matrix in fact) properly and then to
make an instantaneous nonrelativistic approximation
similarly for the whole matrix element, that the BS wave
function(s) appearing in the formula turns out to be relat-
ed to the Schrodinger one(s) in a similar manner as that
established by the first step automatically. Therefore we
have a proper calculation of the matrix elements. We
should note here that our approach is to make the instan-
taneous nonrelativistic approximation in a general frame
not only for the wave functions but also for the matrix
element as whole; that is different from those approaches
that attribute the problem to having only one meson
wave function in the related moving frame while the
wave function is obtained by a simple Lorentz boost of
the Schrodinger one at rest. We will present our ap-
proach in detail and illustrate its reliability in Sec. III and
the Appendix.

In respect to the short-distance effects, the effective
Hamiltonian including the QCD corrections [16—18] for
the weak decays is adopted and we will focus our atten-
tion on the main decay channels in the paper. Moreover
as most references are based on the 1/N expansion con-
sideration, the spectator mechanism dominance as well as
the others to single out the long-distance effects from the
short-distance ones are assumed for the nonleptonic de-
cays also.

The authors of Ref. [19] have calculated the B, decays
by using the BSW (Bauer, Stech, and Wirbel) model [20]
and the IGSW [21] (Isgur, Grinstein, Scora, Wise) model,
respectively. The authors of Ref. [22] formulated the B,
decays under the HQET framework. However, we apply

(a) (b)

b c(u) c s(d)

b () c(7)

c s(v)

FIG. 1. Feynman diagrams for inclusive B decays. (a) b de-
cays with ¢ spectator; (b) ¢ decays with b spectator; (c) b and ¢
annihilate.

the approach as outlined above to calculate the decays of
the B, meson systematically, and, to understand our ap-
proach, we make comparisons of the obtained results
with the IGSW’s precisely and at the end we will point
out the differences among them. We hope the experi-
ments will test the different approaches soon.

This paper is organized as follows. In addition to the
Introduction, in Sec. II, the inclusive decays and the life-
time for the meson are estimated. In Sec. III, the formal-
ism of the form factors for the decays is presented in gen-
eral. In Sec. IV, the exclusive semileptonic decays of the
meson are evaluated, and the numerical results are
presented in tables. Section V is parallel to the previous
section, but is devoted to the nonleptonic decays. Section
VI is devoted to discussions. Finally, the formalism for
calculating the weak current matrix elements under the
so-called covariant instantaneous approximation is col-
lected in detail in the Appendix.

I1. INCLUSIVE DECAYS AND THE LIFETIME

According to the known mechanisms for the weak de-
cays of heavy mesons, the B, meson may decay mainly
via three categories of subprocesses: i.e., (1) the b com-
ponent decays with ¢ being a spectator; (2) the ¢ decays
but with b being a spectator, (3) the two components an-
nihilate weakly (see Fig. 1).

The first one is similar to that in the case of B™ (or B
meson decays; the b quark decays into either the semilep-
tonic modes b —¢(@ )+1v,(I=e,u,7) or the nonleptonic
modes b—¢()+ud’'(c5') (d' and s’ denote the eigen-
states of the down and strange quarks of the weak in-
teraction). Generally speaking, as for the B, meson, be-
ing different from the B® meson decays, there is a des-
tructive interference in the mode of b —¢ +(c3’) because
of the identity quarks of ¢ appearing in the final state (one
is from the decay, the other just is the spectator), the
same as in the case of D™, and it will lead to a partial
width that is slightly smaller than that of the B® meson.
Nevertheless, one may approximately ignore this effect
for the moment.!

The second one is similar to those in the cases of D°
(D,) decays: either the semileptonic decays ¢—73’
+Iv(I=et,u™) or the nonleptonic  decays
c¢—s'+u +d’'. The partial width due to the decay of the
component ¢, should be close to that of the D (or D) be-
cause there is no destructive interference here at all.
However, since the mass of the spectator m, is larger
than the mass of the decay quark m,, the phase space of
the hadronic final state is comparatively tightly con-
strained so that the partial width due to the decays of the
component ¢ quark should be smaller than that of a ¢
quark inside a D meson. Lusignoli and Masetti [19] took

%)

IIn fact, as for the B decays there is a similar factor in the
decay mode b—¢+(ud’). However, the experiments indicate
T+~ Tp0 i.e., the effect is not significant. It is not surprising,
because here there are two Cabibbo favorable decay channels
b—c+(ud') and b—¢+(c5’) instead of one as in the case of
the D meson, so the effect is quite diluted. Thus we would not
expect the effect being great in the B, meson case either.
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a factor 0.6 to depict it by some arguments. Another ap-
proach to take the effect into account is to sum up all of
the widths of the exclusive main processes and a different
factor from one is acquired too. Here for the same
reason as in Ref. [19], in our estimation the factor 0.6 of
the partial width to that of the D° (D, ) meson is adopted
also. One will see that this value is consistent with a
summation of the main exclusive modes calculated in the
following sections of this paper. It should be emphasized
here that this is still an open problem to investigate fur-
ther.

The third one, weak annihilation, has a not tiny contri-
bution to the total width. It is because in the present case
the annihilation via a virtual W boson may create such a
final state which contains a heavy lepton 7 or quark c,
that the helicity suppression is not very effective. The in-
clusive partial width for the annihilation can be easily
calculated by

_ G}
(B, —f1f2)=Cg Vi 'f} My mi(1—m}/M} 1,

(1

where the constant C=3 (1) for creating a quark pair (a
lepton pair), m is the mass of the comparatively massive
fermion created in the final state, while the other one is
ignorable in the present case. In fact, there are two an-
nihilation channels which are Cabibbo favorable and heli-
city suppression does not affect very much: B,—c +5'
(whose contribution is about 5% in total width) and
B,—7"+v, (less than 2%), while the other channels
such as B.—u +d’, u*v,, and e * +v, may be ignorable,
due to a very strong helicity suppression from a very
small m %, though Cabibbo favorable. The decay constant
f B, is defined by

(O|5'yuy5c|Bc+(p))=ichp# . )

From numerical calculations by a typical potential with
A35=200 MeV, where MS denotes the modified minimal
subtraction scheme, and in the convention f, =135 MeV,
it reads

f3, =480 MeV . 3)

This value is expected to have an accuracy within 20%
from the fact that the potential [15] gives a very success-
ful prediction to the leptonic width of the ¢z and bb sys-
tems within the accuracy.

In summary, the total width of the B, meson may be
estimated approximately by the equation

1 1 0.6
—T_=_+ +Fanni . (4)
B, TB TDU
It follows that
75, =4.0X107" sec , (5)

where the values of the measurements on T go (TBj:) and
7,0 have been put into Eq. (4).
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III. FORM-FACTOR FORMALISM

To calculate the exclusive weak decays of the B,
meson, one needs to evaluate the hadronic matrix ele-
ments, i.e., the weak current operator sandwiched be-
tween the initial state of the B, meson and the concerned
hadronic final state. In this section, we restrict ourselves
to evaluating them in the simplest cases, i.e., only those
decays in their final state having one hadron for semilep-
tonic ones, but two hadrons for nonleptonic ones. In
these cases, one may attribute the problem to evaluating
a matrix element of the weak current operator
sandwiched by two single-hadron states (for nonleptonic
decays it is due to the factorization assumption of calcu-
lating the decay amplitude).

With the notation of a weak charged current
JM=V“—-A o where V#, A u are the vector and the
axial-vector currents, respectively, the matrix elements
are related to the form factors [21,23] as

(PPIIV,IB.(p)=f (p+p"),+f_(p—p"),,

(V(p',e*)|V,|B.(p)) =ige,,,.€*(p+p')
X(p—p')?, (6)

(V(p',e*)|4,|B.(p))=fes+a,(e*p)p+p’),
+a_(e*-p)p—p),,

where p,p’ are the momenta of the B, and the outgoing
hadron, respectively, P and ¥V denote the pseudoscalar
and the vector mesons, respectively, and € is the polariza-
tion vector of the vector meson. The form factors are
functions of the Lorentz invariant variable r2=(p —p')%

So far there are two kinds of approaches to calculate
these form factors. One of them is the BSW model [20],
in which the authors calculated the form factors at the
maximum recoil 72=0 by means of the wave functions
defined at the light cone system under the quark model
framework, and then extrapolated the result to all values
of r? by assuming the form factors dominated by a proper
pole of the nearest ones. The other is the IGSW model
[21]. The authors of Ref. [21] calculated the form factors
by using the wave functions of the quark model (“mock
meson”’), which treats the hadrons as a nonrelativistic ob-
ject. As argued by the authors, the approach is exactly
valid in the limit of weak binding and at the point of zero
recoil. However, in the cases with a large recoil, there is
a question whether the formulation is valid. For in-
stance, for the decay B, —J /¢ +p, which we are consid-
ering, although the initial state B, and the final state J /9
both are of weak binding, the recoil of the decay is not
small.

To calculate the weak current matrix element with a
comparatively large recoil, one not only needs to know
the appropriate forms of the meson’s wave function in its
rest frame and in a moving one but also the relations of
the matrix element to the wave functions.

Recently, great progress has been achieved in under-
standing weak decays of the mesons containing one light
and one heavy quark due to the work of Isgur and co-
workers [4—-6]. One of the applicable conditions of their
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formalism is that the mass of the light quark should be
smaller than Agcp and much smaller than that of the
heavy one. However, for the B, meson, both the band ¢
are heavy quarks so both may be considered nonrelativis-
tic, and their masses are compatible; thus, the formalism
[4-6] may not be very appropriate; at least a careful ex-
amination and considerable modification can be expected.
Furthermore, even though their approach is valid for the
B, meson, to establish a link between the universal Igur-
Wise function £(v-v’) and the nonrelativistic wave func-
tion of the heavy meson obtained by the potential model
would be also very interesting.

To overcome the difficulty due to the two constituents
being very heavy, we introduce a “new” approach. We
start with the Mandelstam formalism [24] and then apply
a generalized instantaneous nonrelativistic approximation
as a whole to it and the BS wave functions(s) appearing in
it, i.e., to make the approximation in a ‘“‘covariant” form
by introducing some Lorentz invariant variables so as to
establish not only the connection between the Lorentz co-
variant BS wave function and the one obtained by the po-
tential model for the heavy quark system properly, but
also the dependence of the matrix element on the wave
functions as well. The approach is very complicated, be-

|

d4Z d4il
Qm)* 2m)?t

According to the mechanism shown in Fig. 2 and the
Mandelstam formalism [24], the weak current matrix ele-
ment involving only one hadron in the initial and the final
states, respectively, may be expressed in terms of the BS
wave functions:

4
=i [ L tr[y,(¢"'\Thx, () +my)], (10
(217,)4 14 P

where x,(¢),X,(q’) are the BS wave functions of the ini-
tial state and the final state with the total momenta p,p’
and the relative momenta g,q’, respectively; p,,m,
pim}, and p,,m, are the momenta and the masses of the
decay quark, the final one, and the spectator, respective-
ly; T'{ is the weak interaction vertex and to the lowest or-
der, I'{ has the form of y,(1—vs) for the charged
current.

w
Py P’y
P m, m'y P’
B, Pz
my

FIG. 2. Feynman diagram corresponding to the weak current
matrix element sandwiched by the B, meson state as the initial
state and a single-particle state of the concerned final state.
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cause in the case with a large recoil, to calculate the weak
current matrix elements we cannot put the initial and the
final mesons into one frame in which both are at rest.

Now let us proceed to write down the matrix element
to describe the approach explicitly. It is known that the
BS equation of a fermion-antifermion bound state takes
the form

¢ d%
(B1—m )X, @y +my)=i [ Oy VP kax k)

@)

where p; and p, are the momenta of the constituent par-
ticles 1 and 2, respectively. They can be expressed in
terms of the total and the relative momenta p and g as

pr=aypTqg, my+m,
(8)
pPry=ap—q, Qp mytm,

V(p,k,q) is the interaction kernel. It is well known that
the BS wave function x,(g) satisfies the normalization
condition

tr ;7,,<q>32~[s;’(p1)s;‘(p2)84(q—q'>+V(p,q,q')]xp(q') —2ip, . ©)
0

—

As pointed out above, the BS wave function x,(q) of
the heavy quark pair system can be evaluated by solving
the corresponding Schrodinger equation with the help of
the nonrelativistic instantaneous approximation and the
potential model. Usually, it is convenient to make the
nonrelativistic instantaneous approximation for the BS
equation in the rest frame of the concerned bound state.
Namely when the kernel at the rest frame has a simple
form

Vip,k,q)~V(lk—ql), (11)

the integration over the g, component for the BS equa-
tion Eq. (7) can be easily carried through. As a result, the
BS equation Eq. (7) is deduced into a three-dimensional
equation, i.e., the Schrédinger equation in the momentum
space for the system. However, as pointed out above, be-
cause of the nonzero recoil effects in the decays, the de-
caying meson in the initial state and the concerned meson
in the final state cannot be put into a frame in which both
of them are at rest. Therefore, it is necessary now to con-
struct the matrix element in the Mandelstam formalism
Eq. (10) and the BS wave function under a generalized in-
stantaneous approximation in a Lorentz covariant form.
To pursue this purpose, we need to divide the relative
momentum g into two parts, g,, and g,,, a parallel part
and an orthogonal one to p, respectively, i.e.,

q9"=q} a5 , (12)

where g}, =(p-q /Mpz)p”; 9y, =q"—gq};. Corresponding-
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ly, we have two Lorentz invariant variables:

qﬁﬁl, a,r=V'a?—a*=V —gq} . (13)

In the rest frame of the meson, i.e., p=0, they turn back
to the usual component g, and |q|, respectively. In terms
of these variables, the covariant form of the wave func-
tion can be obtained.

Now the volume element of the relative momentum k
can be written in an invariant form:

d*k=dk,k2ydk,rds d¢ , (14)

where ¢ is the azimuthal angle, s =(k,q, —k-q)/k,1q,7.
The interaction kernel can be denoted as

V(lk—q|)=V(k,;,s,q,) (15)
which is independent of ¢, k,, and g,,.
Defining

. 99
ep(ap)=i [ S Exp(afaf)

(16)
kdk,rds
gt = [ L2 Vi, ,5,q,09,(kE)
(2m)
the BS equation can be rewritten as
Xp 4y 9, )=S1(P1 (g, )S5(p,) (17)

where S,(p,) and S,(p,) are the propagators of the free
particles and they can be decomposed as
A;; ( qpl )

SilP)= G, ¥ aM —ay, Tie

+ A,;(qpl)
J(i)g, +a;M + o, —ie’

(18)

with

wip=1/mi2+‘1pzr ’ (19)

1 ,
Aplap) =7, 2 oI i)m 4, |

i=1,2and J()=(—1)'"",
Here A,-j,f(qp 1) satisfies the relations

A,-J;(qpl)+A,-;(qpl)={Z ,
Afi(qpl)f;/\iwplFAi(qpl) ; (20)

A?;(qpl)ﬁ/\,-j(qplbo .

Thus, A?’f(qp ) may be referred to as p-projection
operators (p is the momentum of the bound state) while
in the rest frame they correspond to the energy projection
operators.

If defining (ppii(qp 1) as

(qpl)_%A;ic(qpl) ’ (21)

P tap)= A g, Lo,
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where the upper index C denotes the charge conjugation.
In our notation,

A5g, )= A5 (g,,) -
Integrating over g, on both sides of Eq. (17), we obtain
(M =0y, —ay,)0, T (g,))=Al,(g,)1,(g,,)
XA(gp,) ,
(Mo, +0,,)p, (g, )=A1,(q,)1,(q,,) 22)
X A5E(qp)) 5
¢p+_(qpl)=¢p_+(qpl)=0 .

The normalization condition reads, in covariant form,

L ++(qpl)_%

f ququpT ®
o M™TP

tr ¢;— +(qpl)

—¢¢;“(qpl)1§¢;‘(qpl){; =M. (23)

Now let us introduce two auxiliary three-momenta P,
and P, for the following usage:

=_(01p + = Cl)zp
P= M P9 52—7!’_%1- (24)

In the case of weak binding, the wave function can be
constructed approximately as

1
¢;++(qpl)=2

u (P)TAP2)b (g, X
< \/4&)1pw2p ﬁl ﬁZ p \4pT

(25)
__ 1 — -
‘Pz (qpl)=2 \/4(0—(0 vs(ﬁl)us'(§2)¢p (qu)X.?s’ ’
1p%2p

ss’

where u (P;), v, (P;) (i=1,2) are the Dirac spinors of
free particles with masses m;; x*. is the Clebsch-Gordan
coefficients that make s’ and s couple to A; and ¢i(qp7-) is
the scalar part of the wave function.

In the case of weak binding, the rpt_—(qp 1) is a small
component and can be ignored. In fact, if the kernel is of
scalar and/or vector, the :p;,‘_'(qp 1) is of the order of
(v/c)* to ¢;++(qp 1) [25]. Furthermore, if we ignore the
components proportional to the g, in the spinor struc-
ture due to the nonrelativistic nature, (p;++(qp 1) can be
simplified:

&5 *g0=27 2 ay +Be g, (26)

where a=1, =0 for an ISO state and a=0, =1 for a
3S, state, while the “radius” wave function #(q,r)
satisfies the Schrodinger equation

szdk Tds

W Vs, kpl,qpl)¢( ka)

=E¢(qu) ’ (27)

with the reduced mass u=mm,/(m;+m,) of the sys-
tem.
Thus, we have established the relation between the co-

4or
P
]
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variant form of the BS wave function and the solution of
the Schrodinger equation with the nonrelativistic instan-
taneous approximation.

Now we proceed to establish the relation between the
matrix elements and the obtained wave functions. In-
tegrating over the g, component of Eq. (10) with Egs. (17)
and (18) and certain reasonable approximations, we will
have (the detail is presented in the Appendix)

2
9r99prds | _, . ++ ya
l#('):f Ty T |P (gL, (qpl)M
@Yy
X2 (28)
wzp
where
C"Zp:\/q2+m% ’
E'w, +1q
W=, (29)

‘I;:'Tz‘/wzzp —m% .

We should note here that based on the adopted extra
approximations (see the Appendix), Eq. (28) is valid only
with not too large recoils, i.e., ¥y =|r|/M’'=<1; however,
most of the B, decays, e.g., our concerning processes
B, —J/Y+X, B.—B;+X, satisfy the condition. Using
the wave functions in the form of Eq. (25) for both of the
initial state and the final state, it follows that

f ququpTds

I (r)= (7, (BT (1) 1By (g,7)

# (27)?
! 12
' 2p’
X @5 (@pr WiXem |, P : (30)
0)2p(0p(l)1p'

where

a"lp':\/‘I,;'ZT’*'miz )

p1=(0,,q), (31)

, 0 oy 0, T,

Pi= g P T PP

and as for the spectator (the antifermion with momentum
p, in Fig. 2), the normalization condition

5p) Lo vpy) =20,8, (32)

e
has been used.

There is some arbitrariness for the choice of the direc-
tions of the spins of the quarks. However, it is con-
venient to take them orthogonal to the p and p’ because
the spin in this direction remains unchanged throughout
the Lorentz boost along p’ directions.

In the Appendix of Ref. [1], a covariant formalism to
calculate the creation of a pair of fermion-antifermion
has been derived in the spirit of the helicity amplitude
[26]. A similar formalism can be obtained for a fermion
scattered by a virtual W boson; i.e., the amplitudes with
possible spin directions read as
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My, =L, jtr

’

' . 1Evsk,
(ﬂ1+m1)——2_“‘(11+m1)1"“

(33)
' ’ li‘;/Skl
M5, =L_jtr (1’1‘+‘m1)7/5—2_(151+m1)f‘“ R
where
Lo=[Xp,-pytmm]™?, (34)

and k, is the spacelike vector which is orthogonal to the
initial momentum p, and the final one p}. It is easy to
see that the first equation of Eq. (33) describes the spin-
nonflip amplitude while the second one describes a spin-
flip one. Both fermions are fully polarized along the +k,
directions. It should be noted here that in these formulas
the relative phases of the spinors among those states with
different polarizations have been fixed.

Let us construct the spinor wave functions into a
definite spin. For an 'S, state

=L 4=
X =75 (1L L) (35)

For an S, state, the spin structures corresponding to
three possible independent polarizations are

T
XSS' \/—Z(Tl+lT)’

T S
X:s' \/E(TT ll),

where k,, k,, and k; denote three polarization directions
which are orthogonal to each other.
Thus, for a transition P— P’ + X, the amplitude reads

ME=L , str[ (B +m3)ysys(By+m)TH], 37

and, for a transition P— V' + X, the corresponding ampli-
tudes read

M’{=L+%tr[(p'1 +m'1 )'}’5k1(p1+m1)r‘u] s
MYE=L_Ltr[(f} +m K, (fy+m)TH] (38)
M‘3‘=L_%tr[(p', +m'1 )7/5(]51+m1)r”] ’

where M|, M,, and M; correspond to those with various
polarizations of the final vector meson. In fact, if we
choose

kI’ZL = %L+L —euvpapllvklppla ’
(39
L.L_
2M'
as the polarizations of M, and M, the amplitudes of the

PV +X transition can be written down in a compact
form:

ME=L , ltr[(f+m )y € (B, +m)T*], (40)

[p'-p Pt — (" PPt

k=

where
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) C(ep)
eh=e'— B,
pz_(p,p.)z/Mlzppl
1
C= ’ ] ’ _1 ’ (41)
L [@eoee) 1 17
* M L
_ _(p),
pp'l D M,2 D .

After a straightforward calculation, the form factor for-
malism is deduced:

1 m; oyt o)
= —_ 1— + ,
f+=5 M m} M'm)
o)t o)
8= >
MM'm
(p-p") (42)
PP
= +11,
F=¢ Mm
2m o)+ ) .p’
ay=§ | +8F | — 2,+(1’1’2)5 ,
M*’m; MM'm) M’
where
Cl1+(p-p1)/Mm;
- [2 PPl2 21] 43)
p-—(p-p' )V /M’
In the case of the zero recoil vicinity (r—0),
m,
8> ———, (44)
M m;

while the “common” factor is written in the frame of the
initial meson at rest (p=0):

1/2
20ymim 2

[(pyp1)+mim] o0,

i I
(—Zﬁ;gb;(qﬂ)-%(lq!) , (45)
where ¢,%(q,r) and ¢,(|q|) correspond to the radius
parts of the wave functions of the meson in the initial
state and the one in the final state, respectively. Being in
a covariant form one and a rest one in the c.m.s. of the
initial meson, they may be obtained by solving the
Schrédinger equation Eq. (27) and its specific one (that in
its center mass system), respectively, as long as the
QCD-inspired potential is rewritten in the corresponding
form in the equation. We should note the following. (i)
Of the approximations, the “covariant” instantaneous
one for the matrix element is essential, and we think it is
reliable for the purposes throughout this paper due to the
fact that, as for the BS equation, the approximation is
proven in many cases for weak binding systems. (ii) The
wave functions obtained in the present way are more reli-
able than those in other ways because the adopted poten-
tial is proven to work well for heavy quark systems in the
potential model, although the “common” function £ at-
tributed to the overlap integration is not very sensitive to
the specific radius wave functions, as there is a normali-
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zation condition controlling it; i.e., the overlap integra-
tion of the wave functions is approaching the normaliza-
tion when the recoil is approaching zero and the reduced
mass of the final state is approaching that of the initial
one in the meantime. (iii) When carrying through the
trace for ¥ matrices in Egs. (37) and (40) so as to reach to
the form factors, the contributions from (¥-q) in terms
P and ¥, have been ignored safely in the considered ac-
curacy, because they are small in the case of weak bind-
ing, and when carrying through the integration Eq. (45)
of the integrand, being of ground states, all terms propor-
tional to q in odd power will vanish (only even power
terms contribute).

IV. EXCLUSIVE SEMILEPTONIC DECAYS

For the B, meson, there exist two types of semileptonic
decays: i.e., b decays (the ¢ quark inside the meson as a
spectator) and ¢ decays (b quark as a spectator). _

Obviously, only the decay modes b—clv,
(T=e*,u*",7") and c—slv, (I=e*,u™) are Cabibbo
favored comparatively.

Here we will adopt the formalism presented in the pre-
vious section to calculate the exclusive semileptonic de-
cays.

Following Refs. [21,23], the decay matrix element for
B_—Xlv,(Iv) can be written as

Gr _ _ -
T=T/_5Viju,y#(l—y5)vv(X(p ,€*)JEB.(p)) , (46)

where V; is the Cabibbo-Kobayaski-Maskawa (CKM)

matrix element and J§; is the charged hadronic current.

The hadronic tensor which is defined by
hWEE(BC(p)fJ“X(p',S W{X(p’,s )lJ”ch(p) ), 47)
based (;n Lorentz covariance analysis, can be written as

hpv = _agy,v +B++(p +p,)p(p +p,)v
+B+-(p+p')(r),+B_,(r),(ptp"),
+B__(r),(r), Fiv€,,,o(p+p ()7 . (48)

By a straightforward calculation, the differential decay
rate is obtained:

dr _ GiM® | M”?
drdy Vil T (P P 21T
—4x%—y

2
—yy(1— Yo —4x+y |, 49

where x =E;/Mp andy =t/Mp =(p —p')z/Méc.

The coefficient functions a,B, ,7’s, ... can be ex-
pressed in terms of the form factors. For instance, for
the decay B. — Pev, (P denotes a pseudoscalar meson) we
have

a=y=0, B,.=f%, (50)
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TABLE 1. Exclusive semileptonic decay width (in 107% eV)
for various modes calculated by our model.

B. 7. +e'V, 14.2
B.—»J/Y+e*¥, 34.4
B, —»D%tetw, 0.094
B, D% +e"w, 0.269
B, —1n.+eV, 0.727
B, —>(25)+e ™%, 1.45
B.—>B,+e*, 26.6
B.—»Bf+e'w, 44.0
B, —>B%+etw, 2.30
B, B +e*y, 3.32

but for the decay B, — Vev, (V denotes a vector meson),
the situation is complicated a little because of the polar-
ization of the vector meson. Corresponding to the polar-
ization of the vector meson, the hadronic tensor is better
to be decomposed into a longitudinal part (L) and a
transverse part (T), i.e., h,,=h ) +h.D. After doing so
we have

a(L)=,y(L)=O ,
a(T)=f2+4M2g2p:2 ,
y'D=2¢f, 51
2
+L>+=__Mi_ _, M2 £?
16p12Mi2 M2
M2 ”2 2 ,
o VT e fa++M,2P202+ ,
2
B(T) — 1 — Mz _M_’Z f2
++ 4M/2 16p/2M:2 M2
_M2g2y .

By calculating out all values of the form factors first,
putting them into the formula Eq. (49) for the differential
decay rates, and then integrating out the differential ones,
the concerned semileptonic decay rates are calculated out
finally. We list the results in Table I. For the
B.—J /Y+1+v process the estimate happens to close to
that of the IGSW model [19] due to the fact that the au-
thors of Ref. [19] adopt a factor k=0.7 to take the recoil
effects into account in their approach when calculating
the form factors. However, some deviation from theirs
for the B, — B, +1 +v decays is remarkable; i.e., ours are
larger than theirs [19]. We should note here that we can-
not expect that the prediction on B, — B+ +v decay by
our approach is as reliable as that on B,—J/¢y+1+v,
since the s quark inside the B; meson is not so heavy that
one cannot expect the nonrelativistic approximation is
very appropriate.

V. EXCLUSIVE NONLEPTONIC DECAYS

There are three types of the nonleptonic decays for the
B_ mesons: i.e., b decays with the c inside the meson be-
ing as a spectator, or alternatively, ¢ decays with the b
quark as a spectator, and the constituents ¢ and b annihi-
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late. Those exclusive nonleptonic decays, involving only
two hadrons in the final states and dominated by the
spectator mechanism, may be estimated comparatively
well based on the factorization assumption and the ap-
proach on the weak current matrix elements described in
Sec. III. The short-distance corrections of the strong in-
teraction for the weak nonleptonic decays can be taken
into account by perturbative QCD and the
renormalization-group equation (RGE) techniques
[16,17]. As a result, the effective and Cabibbo favored
Hamiltonian for the b quark decay and the ¢ quark decay
can be written, respectively, as
b — Gr b chy b cb
Hetr“"*—z' w[c1(1p)QT +e3(pp)Q3 1+ Hece.
(52)
C — GF [ cs c cs
eﬁ'_\/—i cs[cl(/'l’c)Ql +c2(l‘l’c)Q2 ]+HC ’
where c;(u) are the Wilson coefficients, Q¥ and Q¥ are
the local four-quark operators,

Qr=[du)y_4+Ec)y_,1@b)y_,,
be=(Te)y_ b)y_ g+ @u)y_ d'b)y_ 4,

Q5 =(Es)y_d'u)y_,,

Q5 =d's)y_4(Cu)y_, ,

where d’ and s’ denote weak eigenstates of the down and
strange quarks, respectively; (7'q)y_ 4 =7y, (1—75)g,
etc. Note that those terms from operator mixing due to
penguin diagrams are ignored in Eq. (52) for the follow-
ing reasons: (i) in our concerning processes their contri-
butions are comparatively small; (ii) in order to compare
our approach with others easily we had better ignore
them as done by the others [19-20]. In addition, we
should also note that we will ignore the annihilation for
the concerning decays in the following estimates due to
similar reasons as the penguin’s above, i.e., smallness and
as done in Refs. [19-20]. The smallness of the annihila-
tion may be understood: first its contribution is about
less than 5% in whole by estimating the inclusive pro-
cesses with the help of Egs. (1)-(5); second the decay
product of the annihilation is two energetic jets; however,
according to the theories of fragmentation and the ex-
periences of the experiments about jets and nonleptonic
decays of T lepton, the two jets are more likely to make
fragments into multiparticle modes rather than those of
two-particle final states as concerned here.

The Wilson coefficients may be calculated by means of
RGEs and the matching conditions of renormalization
[17]. The operators Q. =Q;*Q,, being linear combina-
tions of the operators Q; and Q,, have diagonal anoma-
lous dimensions [16,17]. In the ¢ decay case having the
renormalization parameter u > m_, the anomalous dimen-
sions read as [16]

(53)

2a,
(54)

Y- =—2y,=—

To solve the RGE, the coefficients ¢ (u) and at
my>pu>m,, are
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6/23 6/25

as(MW)
as(mb)

as(mb)
a(p)

4

C+(IJ»)=

(55)
e (w)=[cS (W]72.

In the b decay case, the evaluation of the Wilson
coefficient ¢ (u) is different from that in the ¢ decay case
[18]. For the region u=>m,, the anomalous dimensions
are just the same as that in the ¢ decay case, while for the
region m, <p <m,, due to the fact that the b quark
behaves as a static color source, the anomalous dimen-
sions should be

2a,

m

It leads to the evaluation of the Wilson coefficients as fol-
lows:

6/23 —3/25
c’_"_('u)—': as(MW) a,(mb) ’
a,(my) a(n)
_ _ (57)
b( )— as(Mw) 12/23 as(mb) 12725
=T e (my) a, ()

There exist some ambiguities for the choice of the pa-
rameter u. We would take u=m_ for the ¢ decays and
p=my, for the b decays. Setting Aqcp=250 MeV, one ob-
tains the numerical results of the Wilson coefficients:

¢,(m,)=1.26 , cy(m,)=—0.51,
(58)
C](mb)=l.12 , Cz(mb)=_0.26 .

The next step is to calculate the hadronic matrix ele-
ments, i.e., the effective Hamiltonian so that the four-
fermion operators Q,,Q, appearing in the effective Ham-
iltonian are sandwiched by the considered initial and final
states. To calculate them, the so-called factorization an-
satz cannot be avoided [29]. For instance, for the decay
B_.—J /¢, the amplitude can be expressed as

G —
A =7i2-Vc,, sa (mt|(ad) 410)¢J /¢l(bc)y|B.) , (59)

where
a1=01(ﬂ)+§C2([l«) . (60)

The second term {c,(p) comes from the factorizable
color singlet of the Fierz-reordered operator Q,, and the
equation

=1
&= N,

is obtained, based on simply counting for the color index.
However, the experimental data of D meson decays indi-
cate that {=0 [30]; thus, as done in Refs. [18—-20], we
also take £=0.

According to the factorization properties and the prop-
erty of the operators Q;, the nonleptonic two-body decays
of the B, meson by the “spectator” mechanism can be di-
vided into three classes. The first, the produced mesons,
can be generated directly by the operator Q,, such as

B,—J/¢ynt, as discussed above. The second, the
mesons, can be generated directly by the operator Q,,
such as the decay B.—D *D? In this case, the corre-
sponding factor a,, a similar factor to the a, [as in Eq.
(60)] for the first class, can be written as

a,=c,(p)+&ey(p) . (61)

The third, the mesons, can be generated directly by both
operators Q; and Q,, for instance, the decay mode
B, —J /¢+ Dy is one of this class. Of the last class there
is an interference of the two operators; thus the corre-
sponding factor a; reads as

a;=a,;tka, . (62)

where k is a constant depending on the modes concerned.
To calculate the decays, the decay constants of the
mesons are taken as follows:

TABLE II. Exclusive two-body nonleptonic decay rates (in
107¢ eV) with ¢ spectator. For the modes including ¢t state,
only 7. and J /4 are contained.

a;=1.26
a= —0.51
B, —>n +nt a?2.07 3.29
B.—n.+p al5.48 8.70
B.—»J/Yp+w" a}1.97 3.14
B.—J/¢Y+p a25.95 9.45
B,y +K* a}0.161 0.256
B, -7 +K+* a30.286 0.453
B, —»J/Y+K* a%0.152 0.242
B, —»>J/Y+K** a30.324 0.514
B,—»D*+D° a30.664 0.173
B,—»D*+D% a30.695 0.181
B.—»D**+D° a30.653 0.170
B.—»D**+D% a31.08 0.281
B.—D,+D° a30.340X 107! 8.85Xx1073
B.—D,+D%* a30.354x 10! 9.20%x1073
B.—»D}+D° a20.334%x 107! 8.68Xx1073
B.—»D}+D°* a30.564X 107! 0.015
B,—»n.+D* (@,0.193+4a,0.440)* 3.40X107*
B,—>n.+D** (a,0.181+a,0.430)* 7.40X1073
B.—»J/y+D* (a,0.177+a,0.442)* 0.382X107¢
B.—>7.+D, (a;1.13+a,1.98)% 0.173
B.—»n.+D} (a;1.04+a,1.90)? 0.118
B, —J/Y+D, (a,1.02+a,1.95) 0.085
B, —>q.+wt a30.268 0.426
B.—n.+p a30.622 0.987
B, —»>(28)+ 7 a30.251 0.398
B, —y(28)+p a30.710 1.13
B.on.+K* a30.020 0.032
B.>n.+K** a30.031 0.049
B, —>y(2S)+K* a30.018 0.029
B, —»>¥(2S)+K** a}0.038 0.060
B.—>n.+D% (@,0.220+a,0.403)? 5.06x107?
B.—»n.+D** (a;0.174+a,0.366)* 1.10x 1073
B.—»(2S)+D* (a,0.174+a,0.373) 8.56X107*
B, —7.+D, (a,1.31+a,1.84)% 0.502
B.—n.+D} (2,0.981+4a,1.58)? 0.185
B, —4(25)+ D, (a,0.988+4a,1.62) 0.173
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TABLE III. Exclusive two-body nonleptonic decay rates (in
10% eV) with b spectator.

a;=1.12

a,= —0.26
B.—>B,+7* a?s58.4 73.3
B.—B,+p al44.8 56.1
B,—BX*+7+ a?51.6 64.7
B, —BX+p a}150. 188.
B.—>B.,+K" a34.20 527
B, —»B*+K* a?2.96 3.72
B, —»B*t+K° a296.5 4.25
B, BT +K% a%68.2 3.01
B, Bt *+K° al73.3 3.23
B, Bt *+K°* a3141 6.23
B, BT +¢ a314.7 0.650
B.—>B**+¢ a%10.7 0.471
B, —>B%+7* a?3.30 4.14
B.—~B%+p a?5.97 7.48
B, —»>B%*+7* a?2.90 3.64
B.—»B%*+p at11.9 15.0
B,—~B°+K* a%0.255 0.320
B.—»B°+K** a30.180 0.226
B, —»B™*+K* a?0.195 0.244
B, —>B™*+K™** a30.374 0.469
B, —»BT+7° a31.65 0.0738
B.—B*+p a32.98 0.132
B, Bt *+7° a%l1.45 0.064
B.—»B**+p a}5.96 0.263

f+=132MeV, fx=161 MeV , f,+=218 MeV,
f,=216 MeV , f,,,=380 MeV , f, =280 MeV 6
fp=220 MeV , f,.=220 MeV , f, =280 MeV .

Thus now, based on the approach described in Sec. II
and the spectator mechanism, the exclusive two-body
nonleptonic decays of the B, meson are calculated con-
veniently. The numerical results are listed in Tables II
and III.

VI. DISCUSSIONS

We have proposed an approach to calculate the weak
decay matrix elements, as well as the form factors. It is
expected that the approach is available as long as the
mesons in initial and final states are of weak binding. It
is interesting to compare ours with that of the IGSW
model [21]. In the IGSW model, the authors calculated
the form factors by using the Gaussian-type wave func-
tions, of which the parameters are determined by the
variational method. It is easy to see that in the case of
weak binding and at zero recoil vicinity, the formalism of
our approach is consistent with theirs except for a tiny
difference in the formulation for the overlap integration
of the wave functions [21,23]. However in the case still of
weak binding but with a large recoil, there are two re-
markable deviations between these two approaches. One
deviation comes from the difference in the spin structure
of the wave functions, the other from the arguments in

the wave-function integrand. For instance, the function

corresponding to the £ in the IGSW model is
F3\/Mp /M’ and reads [21]
IGSW B2 +B12 ZMM/ KZ(BZ +B12) 4

(64)

where ,,=(M —M’')*; M and M’ are the masses of the
“mock meson” [21]; B and B’ are the variational parame-
ters for the initial state and the final state, respectively;
m, is the mass of the “spectator” and « is a parameter in-
troduced by hand. In the IGSW model, « is adjusted to
be 0.7 by fitting the 7 electromagnetism form factor and
the authors of Ref. [21] regarded it as relativistic correc-
tions due to a large recoil. However, our approach is
different from theirs; i.e., all factors come into the formu-
la automatically. The interesting thing is that occasional-
ly the numerical calculation shows that the function of £
obtained in our approach is very close to that of the
IGSW model with k=0.7. To show this fact, we present
the corresponding £ functions of B,—J/¢¥+X and
B,—B,+X in Fig. 3 and Fig. 4, respectively. The
dashed line represents the £ function obtained by the
Gaussian wave functions and with the original formalism
of Ref. [21] and k=1 as well. The dot-dashed line
represents that obtained by the wave functions from solv-
ing the Schrodinger equation of the potential model with
the same formalism. The dotted line represents that of
the IGSW model but with k=0.7. Note that the parame-
ters BBC=0.88 and B,,,=0.65 which were obtained by

£(t)

0.2t 1

0 1 1 1
0 2 4 6

t,~t (GeV)

A
-
o

FIG. 3. The £ function for B.—J /¢+X. The dashed line:
the £ function of the IGSW model with k=1; the dotted-dashed
line: the £ function obtained by the formalism of Ref. [18] with
the wave function solved by potential I [12]; the dotted line:
IGSW model with k=0.7; the solid line: the £ function ob-
tained by our approach.
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FIG. 4. The £ function for B,— B, +X. The meaning of each
type line is the same as that in Fig. 3.

the authors of Ref. [19] are used here for the dotted,
dashed, and dot-dashed curves, respectively. The solid
line represents the & functions achieved by our approach.
It is easy to see from Fig. 3 that the result of Eq. (45) is
very close to that of the IGSW model with k=0.7. This
means that our results involve reasonable effects automat-
ically. In order to have a further comparison we also
show the & function for B,—B;+X in Fig. 4 and the
meaning of each line is the same as in Fig. 3, although it
is not expected that our approach is as suitable as that for
the formal decays B, —J /¢ + X, because the quark is not
so heavy.

It is also very interesting to see the behavior in the lim-
it when the quark mass is approaching infinity because it
will let us see the relation between the form factors ob-
tained here and the universal Isgur-Wise function. At the
limit of

m,<<m;,mj; and m;,mi— , (65)

the formulas of Eqs. (42)-(45) reproduce those of the
Isgur-Wise formalism [4-6] for the form factors. In fact,
in the limitation of Eq. (65) and from Eq. (31) and Eq.
(41), we have

py—myv, pi—>miv, €—€. (66)
Hence the Eq. (40) can be rewritten as
L(r=g&w-v'tr[(1+£ Na+By £)1+¥)], (67)

where £(v-v’) is the universal Isgur-Wise function and is
expressed now as

Vv’ f d’q

Y S Tl Rpys

¢'*(gprIdtlg . (68)
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Thus the Eqgs. (67) and (68) reproduce those of the Isgur-
Wise formalism in the infinite heavy limit [4,5], so a link
between the Isugr-Wise function and the nonrelativistic
wave-function overlap integration has been established.
The factor of [0.5(1+v-v')]"!/? has been derived by
Bjorken [27] by using the Cabibbo-Radicati sum rule
[28]. Here in our formalism it automatically appears in
Eq. (68).

Here we have applied the approach and obtained for-
mulas to calculate the weak decays of the B, systemati-
cally, thus it is no doubt that when the experimental
study of B, meson has fruitful results our approach will
receive serious tests. We would emphasize here that the
results for the decay modes B, —J /¢(7,.)+X, which are
the most important channels to reconstructing the B,
meson events in experiments, are more reliable for our
approach than others, as in the calculation of the form
factors the use of the nonrelativistic wave function is very
suitable for the heavy quark bound states appearing in
the initial state and in the final state both. Although for
the B, —J /¥(7.)+X processes our predictions are very
close to those of the IGSW model with k=0.7 [19], there
exist some deviations in numerical results for
B,— B, t+X; i.e., our predictions are larger than those of
Ref. [19] both for semileptonic decays and nonleptonic
decays. The deviations can be understood as follows: al-
though the £ function for the modes is smaller than those
of the IGSW model [19] as shown in Fig. 4, the form fac-
tors gain an enhancement from the spinor factor as
shown in Egs. (37) and (40).

Finally we would conclude that we are all at the posi-
tion that all approaches to the B, decays remain to be
tested in future experiments, and one will learn much
about the decay mechanism when they have had
thorough experimental tests of the B, decays; i.e., the ex-
perimental study of the B, meson decays is desired be-
cause of the special roles of the meson.
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APPENDIX

In this appendix we derive Eq. (28), the weak current
matrix element, by integrating over the q, (here
P=0, g,=q,) component of Eq. (10) with the method of
contour integration.

As discussed in Sec. II, the negative energy parts of the
wave functions are very small in the weak binding case so
that we can ignore their contributions for the lowest-
order approximation. At present this is the case; thus we
do so. Putting Egs. (17) and (18) into Eq. (10), we have

4 Afxql)) Al (g,,) At (—q,)
l“(r)‘—‘-f _:_1_qT ‘T’;’(Qp:'l) : ’lp : 91 1, 1p\9pL 1 (q,0) 2p pL : (A1)
(2m) gy ta\M'—o,, +ie g taM+o,,+ie gy — M+ w,,—i€
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In the brackets of the integrand, there are three poles
in the complex-q, plane at points a;,

a, = —a1M+a)1—i€ N
azzazM—"(Uz"'ie N (A2)

ai=a,M—E'V (r+q+m? —ie,
and two branch cuts starting at the branch points (ignor-
ing the q term):
m
qozmziIT N (A3)

with ¥ =|r|/M’, due to the term m’lpl=\/qu.2l +m?.

We perform the integration over the g, component on
the right-hand side of Eq. (A1) with contour integration,
owing to the fact that the branch cuts may be treated ap-
proximately, by expanding wj, as follows:

qpl

+ e, (A4)
2m|

a)lp _qul+ml —ml +——

in the weak binding limit. According to Cauchy’s
theorem, the integration of a closing contour on the
upper half plane of the complex g, for the current matrix
element [, (r) is just summing up all the pole’s residues.
However, as the pole a, on the upper half plane is very
close to the pole a; on the lower half plane in the weak
binding limit, in fact, the distance

+537 (A5)
1

is small; the value of the integration is dominated by the

A=a,—a,=M—m,—

residue of the pole a, only (a’ is not important).> There-
fore, approximately, we obtain that

(94 . .,
l#(r)_f(_zfﬂi"’p’(qp'l)

A Agy T, A (—g,)
(g +aiM'— 0\, (M —0,,—w,,)

X1,(gp1)A (g, (A6)

where g, ©,, 3, ®1,, ©,, are as expressed in Egs. (13),

(19), (29), and (31) in the text.
Finally, the relations

:M' —wllp'—

’ ’ ’ ’ ’
qp' +a1M _wlp' w2p' 5

—gp)= —AE
P

=g, 705, (—qp1)

are easily proved, and with Egs. (A6) and (22) the re-
quired equation Eq. (28) in the text is obtained.

Based on Eq. (10) and with careful estimates on factors
of the matrix element, the weak current sandwiched by
two weak bound states at each step, it is safe to say in a
not too accurate sense, the approximation taken here is
quite valid for a not extremely large recoil, i.e., for y <1,
that is satisfied in our concerned cases such as
B.—J /¢¥(n,)+X and B,— B, +X, etc., the approxima-
tion is valid.

2[n fact, in principle, some poles (even cuts) may be induced
into the matrix element through 'T];,l(q,;r 1), however, for a similar
reason as here, they would not contribute substantially to the
final results in all the cases of weak binding.
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