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+CD-based interpretation of the lepton spectrum in inclusive H; X„Eu decays
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We present a +CD-based approach to the end-point region of the lepton spectrum in B —+ X„f v

decays. A genuinely nonperturbative form factor, the shape function, describes the faBoff of the
spectrum close to the end point. The moments of this function are related to forward scattering
matrix elements of local, higher-dimension operators. We find that nonperturbative e6ects are
dominant over a finite region in the lepton energy spectrum, the width of which is related to the
kinetic energy of the b quark inside the 8 meson. In this region, a resummation of the most singular
terms in the operator product expansion is performed. Applications of our method to the extraction
of fundamental standard model parameters, among them V„q, are discussed.

PACS number(s): 13.20.He, 12.38.Lg, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

Recently, much progress has been achieved in the un-
derstanding of inclusive weak decays of hadrons contain-
ing a heavy quark Q. Using the theoretical tools of the
operator product expansion and the heavy quark efFec-
tive theory (HQET) [1—5], one can construct a systematic
expansion of the (differential) decay distributions in pow-
ers of A/mg, where A is a characteristic low-energy scale
of the strong interactions [6—10]. Quite remarkably, the
parton model emerges as the leading term in this QCD-
based expansion, and the nonperturbative corrections to
it are suppressed by a factor A~/m~&. The fact that there
are no first-order power corrections relies on a particu-
lar definition of mq, which is provided in a natural way
by requiring that there be no residual mass term for the
heavy quark in HQET [ll, 12]. This definition is unique
and can be regarded as a nonperturbative generalization
of the concept of a pole mass.

The availability of a systematic, QCD-based expansion
of inclusive decay rates raises the hope for a better under-
standing of these processes in general, and in particular
for a more reliable extraction of the standard model pa-
rameters mb, m„V,b, and V„b, which was so far hindered
by strong model dependence. For a determination of V„b,
however, it is essential to understand the end-point region
of the lepton spectrum, which is of genuinely nonpertur-
bative nature. Although the new methods developed in
Refs. [7—10] provide an important step towards this goal,
they are not directly applicable to the end-point region.
The difhculties arise from the fact that close to the end
point the expansion parameter is no longer A/m~, but
A/(mg —2'), and thus the theoretical prediction be-
comes singular when the lepton energy approaches the
parton model end point Er = mg/2. It is then not
obvious how to interpret the theoretical results.

To see what the problem is, consider the theoretical
prediction for the lepton spectrum in B —+ X X v decays.
Including the leading nonperturbative corrections, one
obtains [7—9]

1 dF Ag + 33Ag—= +(y) o- (1 —y) —
&
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The singular structure of the operator product expan-
sion close to the end point at y = 1 manifests itself in
the appearance of b-function (and higher) distributions.
Certainly, one cannot trust the shape of the theoretical
spectrum close to the end point. Nevertheless, integrat-
ing (1) with a smooth weight function, one obtains well-
behaved results for quantities such as the total decay rate
and the average lepton energy:

7m' 7Ag + 57As
Eg = 1—

20 14m~~

(5)

The coefBcients of the singular terms give nonvanish-
ing contributions to these integrated quantities. There

Il (y) = (3 —2y) y' + ~ + (6+ 5y) y'
3 mb mb

For simplicity, we do not include perturbative QCD cor-
rections, which have been calculated in Refs. [13,14]. The
hadronic parameters Aq and A~ are related to the kinetic
energy Kb of the heavy quark inside the B meson, and
to the mass splitting between B and B' rnesons [15]:
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is thus some relevant physical information contained in
these terms.

Bigi et at. [7] have advocated to integrate over the sin-
gularities before con&onting the theoretical prediction for
the lepton spectrum with data. They argued that one has
to integrate over a 6nite energy interval of at least several
hundred MeV, corresponding to a region of order I/ms
in the variable y. This proposal is based on the idea of
quark-hadron duality, which implies that when one sums
over a sufBcient number of exclusive hadronic modes, the
decay probability into hadrons equals the decay proba-
bility into free quarks. i Note that the h-function term in

(1) contributes to the integrated spectrum, but the term
proportional to 8'(I —y) does not. Similarly, more sin-
gular terms, which appear at higher orders in the I/ms
expansion, do not contribute.

A slightly modi6ed procedure was proposed by
Manohar and Wise [9]. They chose to smear the spec-
trum with a Gaussian distribution of width Ay. Empir-
ically, they found that Ay 0.2 —0.5 is necessary to
obtain from the theoretical prediction a smooth lepton
spectrum, which can be compared to data. This proce-
dure has the disadvantage that the results depend on the
smearing function, and that the choice of Ay is ad hoc.
When the smearing function is chosen to be symmetric,
it again follows that the term proportional to b'(I —y)
does not contribute to the smeared spectrum.

The &ustrating conclusion of these analyses is that the
new theoretical methods are only of very limited use for a
more reliable determination of V„g, since the region of the
lepton spectrum which is accessible to a measurement is
smaller than the region over which the theoretical spec-
trum has to be integrated in order to obtain a reasonable
result.

As proposed in Refs. [7—9], the theoretical description
is to a large extent ignorant of the rich physical informa-
tion contained in the lepton spectrum close to the end
point. In this paper, we shall suggest a difFerent ap-
proach. It is motivated by a very simple observation:
In the parton model, the end-point region of the lepton
spectrum is described by a step function, the location of
which is determined by the kinematics of a free quark
decay. The true physical end point, however, is deter-
mined by the decay kinematics of hadrons. Hence, when
QCD is trying to tell us something about the redistri-
bution of the end-point region due to nonperturbative
efFects, it can only do this by the occurrence of singu-
lar functions. Our approach will allow us to extract the
physical information contained in the singular terms in
the QCD-predicted lepton spectrum in a systematic way,
and to all orders in the I/ms expansion. To this end, we
shall introduce the concept of a shape function, which is
a genuinely nonperturbative form factor that describes

One expects that duality holds for the lepton spectrum even
in the end-point region, which extends over an interval of
order 1/mq in y. Only in a tiny region of order 1/m~s below
the physical end point, the spectrum is dominated by a few
exclusive modes.

the fallofF of the spectrum in the end-point region. We
6nd that the characteristic width of this region is given
by 0„= (—Ai/Bms) /, corresponding to a finite region
in the lepton energy. Although there do not appear first-
order power corrections in (1), it is important to realize
that there exists a small region where the true spectrum
is very difFerent f'rom the theoretical prediction. This dif-
ference is described by the shape function. We will show
that the moment8 of this function can be addressed in
QCD, and can be related to hadronic parameters (such
as Ai and A2) that are defined in terms of forward scat-
tering matrix elements of local, higher-dimension opera-
tors. To all orders in 1/ms, the leading contributions to
the moments can be given in closed form.

We believe that our approach will eventually lead to
a better understanding of the nonperturbative aspects of
the lepton spectrum close to the end point. It establishes
the connection between the experimentally observed lep-
ton spectrum and the underlying theory of QCD. This
connection works in both directions: Theoretical ideas
about the shape function can help to analyze the lep-
ton spectrum and to determine the values of the quark
masses and mixing angles. On the other hand, from a
precise measurement of the spectrum in the end-point
region, one can extract the shape function and with it
some fundamental matrix elements of higher-dimension
operators in QCD.

Starting &om a resummation of the theoretical lepton
spectrum, we present in Sec. II a heuristic argument that
leads to the notion of a function S(y), which describes the
fallofF of the spectrum in the end-point region. In Sec. III,
we introduce this shape function, discuss its properties,
and derive relations for the first two moments of S(y).
Section IV is devoted to a formal de6nition of the shape
function to all orders in I/ms. The leading contribu-
tions to the moments are related to forward scattering
matrix elements of local, higher-dimension operators in
HQET. For the purpose of illustration, a simple model
calculation of the shape function is presented in Sec. V.
In Sec. VI, we summarize our results, indicate possible
further applications and improvements of the method,
and give some conclusions.

II. RESUMMATION GF THE SINCULAR TERMS

To motivate the concept of a shape function, let us
try to resum the singular contributions in (1) into a cor-
rected parton model decay distribution. Obviously, the
term proportional to b(1 —y) can be absorbed by a shift
of the argument of the step function in the leading-order
term. More interesting is the contribution proportional
to h'(1 —y). It arises at second order in the expansion of
the step function. However, since there is no 8-function
contribution of first order in 1/ms, it follows that one
needs more than one step function, resulting in a disper-
sion of the spectrum In fact, .to order I/ms, we can
rewrite the theoretical spectrum in the following way:

where
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From the second relation it follows that the displacements
e; are of order 1/ms. Thus, the first relation corresponds
to a nontrivial cancellation. Note that a„can be identi-
fied with the characteristic width of the end-point region,
i.e., the region over which the spectrum is dominated
by nonperturbative effects. This is already a remarkable
conclusion: The coefficient of the most singular term in

(1), which had no efFect in the approaches of Refs. [7, 9],
determines the size of the end-point region.

At this point, it is worthwhile to obtain some estimates
of the nonperturbative corrections. From the observed
value of the mass splitting between B and B' mesons
one obtains A~ 0.12 GeV . The parameter Aq, on
the other hand, is not directly related to an observable.
Recently, we have shown that the field-theory analog of
the virial theorem relates the kinetic energy of a heavy
quark inside a hadron (and thus Ai) to a matrix ele-
ment of the gluon field strength tensor [16]. This theorem
makes explicit an intrinsic "smallness" of Aq, which was
not taken into account in existing QCD sum rule cal-
culations of this parameter [17—19]. As a consequence,
we expect that (—Ai) is considerably smaller than pre-
dicted in these analyses. Here we shall use the range
—Ai ——0.05 —0.30 GeV . According to its definition,
Ai is negative, so that the width 0„ in (7) is well de-
fined. Using these numbers, as well as ms ——4.8 GeV, we

estimate 6y —0.03 and cr 0.03—0.07. We can multi-

ply these quantities by ms/2 to obtain the corresponding
shift and spread in the lepton energy spectrum. They
are bE —65 MeV and 0'@ = (—Ai/12) ~ 65 —160
MeV. The value of cr@ can be compared to the width of
the gap between the parton model end point of the spec-
trum and the physical end point, which, if we neglect the
pion mass, is located at E&~

"' ——mg/2. This width is

b,E (m~ —ma)/2 240 MeV. These numbers seem
quite reasonable. In fact, assuming that the distribution
of the displacements ei around y = 1 is approximately
symmetric, we have to require that o@ & AE, which is
equivalent to —Ai ( 3(m~ —ms) . For reasonable values
of Aq, this bound is always satis6ed.

In Fig. 1, we show the resummed lepton energy spec-
trum (6) for Ai ———0.2 GeV, A2 ——0.12 GeV, N = 10,
and a particular set of e; satisfying the constraints in (7).
For this choice of parameters, the dispersion in the spec-
trum is such that the end point falls close to the physical
end point at y 1.1. Our reinterpretation of the QCD-
predicted lepton spectrum has led to a reasonable shape
which, however, is quite arbitrary. In fact, increasing N,
we can generate any decreasing function that satis6es the
constraints in (7). In the following section, we will intro-
duce a shape function S(y) instead of the sum over step
functions. The constraints will then turn into predictions
for the 6rst two moments of this function.

0
0.2 0.4 0.6 0.8

FIG. 1. An example of a resummed lepton energy spec-
trum according to (6). On the vertical axis, we show dI'/dy
in units of 2Fg.

III. THE SHAPE FUNCTION

We proceed by replacing the sum over step functions in

(6) by a continuous function 8(y), which we furthermore
decompose as 8(y) = O(1 —y) + S(y) F(l)/F(y). The
form of the second term is chosen for later convenience.
We shall refer to S(y) as the shape function. The support
of this function is restricted to a small interval 2 of width
2b, around y = 1, with b, of order 1/ms. Some properties
of S(y) can be derived from the physical requirements
that the differential decay rate be positive, and that 8(y)
be a continuous function. We note that

S(y) =0 if ly

S(y) & 0 if y ) 1,
lim S(1+&) —S(1 —e) = 1.
e-+0

(8)

Moreover, we expect that S'(y) ( 0 if y g 1, but we shall
not impose this as a condition on S(y).

As emphasized in Refs. [7, 9], because of the singular
form of the operator product expansion, one has to in-

tegrate the theoretical lepton spectrum with a smooth
function before it can be compared to data. On the set
of smooth functions (i.e., functions of y which are slowly

varying over scales of order 1/ms), a rapidly varying func-
tion such as S(y), which vanishes outside a small interval
around y = 1, obeys a singular expansion of the form

More precisely, we should require that S(y) be exponen-
tially sxnall outside an interval of width 2A.

This procedure is familiar from the multipole expansion of
a localized distribution of charges in electrodynamics.

S(y) = ) ", bl")(1 —y),
n=o

where the moments M are de6ned as

OO 1+A
dy (y —1)"S(y) = dy (y —1)"S(y)-

0 1—D

(10)
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To see that (9) is correct, assume that any reasonable
test function f (y) can be Taylor expanded around y = 1,
with the result that

From a comparison with (1), we find that the first two
moments of S(y) must satisfy

Ax + 33Ag

6m~2

2

Ml ——— ———" (0.4 —2.2) x 10
6m~ 2

(13)

Notice that M = O(1/m&+ ) by dimensional analysis.
Hence, the /CD prediction that Mo ——O(1/ms2) cor-
responds to a nontrivial cancellation: The area under
the shape function (almost) vanishes. The first moment,
which is related to the characteristic width of the end-
point region, is of the expected order of magnitude.

The concept of a shape function exploits to full ex-
tent the physical information contained in the coefficients
of the singular terms in the /CD-predicted lepton spec-
trum. We find that over a region of width 2b, oc I/ms,
the spectrum is of genuinely nonperturbative nature and
described by a function S(y), the moments of which can
be addressed in /CD. When one goes to higher orders
in the I/mb expansion, one can address higher moments.
In fact, the moments obey an expansion of the form

In terms of the shape function, the theoretical lepton
spectrum takes the form

1 dI'

2I'g dy
—= F(y) O(1 —y) + F(1) S(y) .

which remain nonzero in the limit mg ~ oo. As an illus-

tration of the importance of higher moments, we show in
Fig. 2 two shape functions which have the same erst two
moments Mo and Mx, but different third (and higher)
moments. The total decay rate and the average lepton
energy are the same in both cases (up to terxns of order

I/m&), but obviously the behavior close to the end point
is quite different.

IV. FORMAL DEFINITION OF THE SHAPE
FUNCTION

The above discussion shows that for an understanding
of the lepton spectrum in the end-point region, it is in-
sufficient to truncate the theoretical calculation at order
I/m~&. Instead, what one needs to investigate to all or-
ders are the coefficients a„ in (14) and (15). They arise
&om the most singular terms in the shape function. In
this section, we give a formal definition of these terms to
all orders in I/ms. This will provide us with a relation
between the coefficients a„and forward scattering matrix
elements of local, higher-dimension operators in HABET.

As mentioned in the Introduction, the derivation of
the lepton spectrum is based on the operator product
expansion in connection with an expansion of hadronic
matrix elexnent in powers of I/ms, as provided by HABET.
This is explained in detail in Refs. [7—10]. Using the
same technology, we can derive a closed expression for the
most singular terms of the shape function, where S(y) is

0.6

a„ b„M„= ~+ 2+
mb mb

(14)
0.4

0.2

where so far we know the coefficients ap = 0, bp
—Ax/6 —11%2/2, and ax ———Ax/6. With the excep-
tion of the moment Mp, where the leading term ap van-
ishes, we may argue that it would be a good approxima-
tion to know the leading coefficient a„ for each moment.
The corrections involving b„only change the moments
by small amounts. On the other hand, knowledge of a
new moment teaches us a new piece of essential informa-
tion about the shape of the spectrum in the end-point
region. The higher moments give a small contribution to
integrated quantities such as the total decay rate, simply
because in (10) one integrates over a small region. Never-
theless, they can affect the shape of the end-point region
in a substantial way. What is relevant to the shape are
the rescaled moments
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JH„= 2 dEx (2Ex —ms)" S(Ex)
0

0.7 0.8 0.9 1.2

FIG. 2. Two shape functions with identical moments Mo
and Mx (a), and the corresponding lepton spectra (b).
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defined as in (12) as the sum of all terms in the theoretical
spectrum that become singular in the limit y —+ 1. We
obtain the formal result

2
y(y) =(e ' —y+ (U y)—~& —e(~ —y))mb

+ less singular terms,

which is valid to all orders in the 1/m~ expansion. Here

p = pr/ms denotes he rescaled lepton momentum, and
we define the expectation value of an operator 0 as

(B(v) I
h„o h„ IB(e))

(B(v) I h„h„ IB(v))

Here, h„ is the velocity-dependent heavy quark Beld in

HABET [2], and the states are the eigenstates of the corre-
sponding effective Lagrangian. Details of the derivation
of (16), as well as the extension to the case of B ~ X, I.v
decays, will be given elsewhere [20].

Expanding our result in powers of 1/ms, we obtain

S(y) = Q —S~" ~(1 —y) I I
(v —p)„, . (v —p)„„(iD"' iD"")+ less singular terms.

n! (mg)

The forward scattering matrix elements between B
mesons, or between any other hadronic states that are
unpolarized, can be parametrized in the form

(iD"' iD"") = A~ v"' . . v""+ terms with g"'».

(19)

Since (v —p)
2 = (1 —y) vanishes at the end point, only

the coefBcients A„contribute to the most singular terms
in S(y). For the same reason, we can replace factors
2v (v —p) = (2 —y), which arise upon contraction of
the indices in (18), by 1. This leads to the following
expression for the shape function:

1 A„
S(y) = ) — b~" l(l —y) + less singular terms.

nt mn
n=X

(20)

From a comparison with (9) and (14), we obtain for the
moments of S(y):

1 A„+g A„+g
(n+1) m", +'' " n+1'

The Brst three coeKcients A„are given by Ap = 1, Ay ——

0, and A2 ———Ai/3.

V. A MODEL CALCULATION

2 pe ps y I»l
Iv —p) . zD —+ cos 'l9

)
mb mb mb

(22)

where 8 is the angle between the lepton and the heavy
quark momentum. Since we are interested in the behav-
ior in the end-point region, we can set y = 1. The matrix
element in (16) is now replaced by an integral over the
momentum distribution of the heavy quark:

It is instructive to consider a simple model for the
shape function S(y). For this purpose, we evaluate the
expectation value in (16) adopting a simplified version of
the phenomenological approach of Altarelli et aL (ACM)
[14]. We emphasize, however, that this is mainly meant
as an illustrative example rather than a prediction of the
physical shape function. In fact, we will see very clearly
the limitations and shortcomings of this model.

In the ACM model, one assumes the validity of the
parton model and incorporates bound state effects by as-
signing a momentum distribution P(l»l) to the heavy
quark inside the B meson at rest. 4 It is then appropriate
to replace the covariant derivative in (16) by the spa-
tial components of the heavy quark momentum pb. The
gluon Beld in the covariant derivative is neglected. Ac-
cordingly, in the rest fxame of the B meson, one makes
the replacement

S(y) = dlpsl Ix»l'4(lx»l)
' dcos8 Ipg, le 1 —y+ easy —8(1 —y)].

0 —1 mb
(23)

It is straightforward to calculate the moments of this
model shape function, and from (21) the corresponding
predictions for the hadronic matrix elements A . We Bnd
that A2n+1 —0, and

(2n+1)~2- = (Ip~l'") = dl»l Ip~l""+"4(lx»l)
0 (24)

In the ACM model, one assumes a Gaussian distribution,

&(Ip~l) = 4 & Ipc I'l
(25)

+pF E pF )
where p~ is the Fermi momentum. This leads to the
shape function

=1 &ms
s(y) = ——0(i —y) cl ly —il I.

2 E&~ )
(26)

In addition, the heavy quark mass is treated as a momen-

tum dependent parameter. For simplicity, we shall not con-
sider this aspect of the model.

Cy(z) = ~ j dte denotes the error function. For

the coeKcients A2n, one obtains

(2n —1).!,„
2n

2 pQ



49 QCD-BASED INTERPRETATION OF THE LEPTON SPECTRUM. . . 3397

Comparing this to the general relation Az ———Aq/3, we
derive

—Aq
———p& 0.08 GeV,=32 2

2
(2S)

where we have used py 230 MeV as obtained &om the
most recent fit of the ACM model to experimental data
[21]. Our model thus predicts a rather small value of
—Ag.

In Fig. 3, we show the shape function (26) for three dif-
ferent values of the Fermi momentum. We stress again
that this simple model calculation is presented for peda-
gogical purposes only. In particular, note that the even
moments of the shape function (corresponding to odd co-
eKcients A2„+q) vanish by rotational invariance. This is
a consequence of the fact that one replaces the opera-
tor of the covariant derivative by a c-number momentum
vector. Whereas in /CD the commutator of two covari-
ant derivatives gives the gluon field strength tensor, in
the model this commutator vanishes. However, exactly
those terms involving the gluon field are responsible for
an asymmetry in the shape function around y = 1. To
see this, consider the matrix element of three covariant
derivatives. Using the equations of motion of HABET, it
is easy to show that

(iD"iD" iD ) = As (v"v —g" ) v", (29)

0.4

0.2

0

-0.2.

-0.4

0.85 0.9 0.95 1 1.05 1.1 1.15

0.8
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~ 0.4
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'0 0.2 0.4 0.6 0.8

FIG. 3. The shape function of the toy model (a) and
the corresponding lepton spectrum (b) for —Aq

——0.05 GeV
(dashed), 0.1 GeV (solid), and 0.2 GeV (dotted). The corre-
sponding values of the Fermi momentum are p~ 180 MeV,
260 MeV, and 365 MeV, respectively. In (b), the parton model
spectrum is shown as a grey line.

and taking the antisyrnmetric combination in p, and v,
we find that A3 is related to a matrix element involving
the gluon field strength tensor:

(ig, 0""iD ) = As (v"g" —v"g" ) .

In /CD, there is no reason why such a matrix element
should vanish. Hence, we expect an asymmetry of the
physical shape function. The above example is instruc-
tive since it shows that a measurement of the moments
of the shape function can provide quite fundamental in-
formation about the dynamical properties of the theory
of strong interactions.

VI. SUMMARY AND CONCLUSIONS

We have presented a /CD-based approach to the inclu-
sive lepton energy spectrum in B —+ X„lv decays. We
have introduced the concept of a shape function, which
is a genuinely nonperturbative object that describes the
rapid falloff of the spectrum in the end-point region. The
moments of this function obey a very simple relation
to forward scattering matrix elements of local, higher-
dimension operators. /CD predicts that the leading con-
tribution to the first moment vanishes. The second mo-

ment, which is a measure of the size of the end-point
region, is proportional to the expectation value of the
kinetic energy of the heavy quark inside the hadron.

Our approach goes beyond previous work on the lep-
ton spectrum [7—9], which was applicable only for lep-
ton energies not too close to the end point. It aims at
a systematic use of the rich source of information con-
tained in the end-point region. Whereas the main part
of the spectrum is determined by kinematics and only
receives small nonperturbative corrections, the behavior
close to the end point is characterized by an infinite set
of hadronic matrix elements. It is worth noting that, al-
though there are no first-order power corrections to the
spectrum and decay rate at small lepton energies, there
exists a small region where the true spectrum is very dif-
ferent from the theoretical prediction of Refs. [7—9].

There are obvious improvements of the analysis pre-
sented here. Before confronting our results with data,
it is necessary to include radiative corrections. For the
case of B -+ X„Sv decays, they are known to affect
the parton model spectrum in a significant way [13, 14].
Such corrections will affect the form of the shape func-
tion, too. We expect perturbative corrections of order
a, (Amp) to the (appropriately defined) moments of the
shape function. Moreover, radiative corrections will wash
out the step in the shape function at y = 1, resulting in
a rapidly varying, but not discontinuous, behavior. An-
other important generalization of our approach is that
to the case of B -+ X Ev decays. The nonvanishing
mass of the charm quark will lead to technical complica-
tions, but conceptually there is no problem in defining a
shape function S(y, p) for a nonzero value of p = m2/m&2.

The (appropriately defined) moments of this generalized
shape function are related to the same hadronic matrix
elements as in the case of a xnassless final state quark.
Work on these issues is in progress and will be reported
elsewhere [20].

We believe that our approach will eventually lead to
a better understanding of the nonperturbative aspects of
inclusive decay spectra, with implications for the xnea-
surernent of some of the fundamental paraxneters of the
standard model, such as the heavy quark masses and the
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elements Vb and V„b of the Kobayashi-Maskawa matrix.
Currently, the most promising applications of the method
seem to be the following.

In B decays into charmless final states, an understand-
ing of the end-point region is crucial for a reliable deter-
mination of V„s. The approach of Refs. [7—9] cannot be
used for this purpose, since current measurements are
limited to a small energy range 2.3 ( Ei & 2.6 GeV (cor-
responding to 0.96 ( y ( 1.08 for ms = 4.8 GeV), which
is too close to the end point. What is needed is some
insight into the nonperturbative eKects relevant to the
shape of the spectrum in the end-point region. An ex-
pansion in powers of I/ms is not suitable for such a situ-
ation. The relevant physics is encoded in the moments of
the shape function, which are related to forward scatter-
ing matrix elements of local, higher-dimension. operators.
Such matrix elements can be addressed using nonpertur-
bative techniques such as lattice gauge theory or QCD
sum rules. It may even be possible in these approaches
to attempt a direct calculation of the shape function &om
its definition in (16).

For B ~ X, lv transitions, the situation is very dif-
ferent. Already, there exist very accurate measurements
of the lepton spectrum in this case. For a determination
of V,b and of the quark masses mb and m, an under-

standing of the end-point region is thus not a necessary
requirement. However, these decays oKer the exciting
possibility to extract the shape function &om the data,
by subtracting the (corrected) parton model spectrum
&om the measured distribution. One could then compute
the first few moments of the shape function and extract
some of the coefBcients A.„, which encode fundamental
dynamical properties of QCD. The fact that QCD pre-
dicts the size of the first moment Ma in (13) provides an
important constraint, which can help to obtain a precise
determination of the 6-quark mass.

We conclude with a speculation about yet another pos-
sibility, namely to combine the analyses of B -+ X,Ev
and B -+ X„EP decays. One can imagine measuring the
shape function in B decays into charmed particles, and
then predict the shape function for charmless transitions.
This avenue may be a promising one with respect to a
precise extraction of V„b.

ACKNOWLEDGMENT

It is a pleasure to thank Thomas Mannel for useful
discussions and for collaboration on subjects related to
this work.

[1] E. Eichten and B. Hill, Phys. Lett. B 2$4, 511 (1990);
24$, 427 (1990).

[2] H. Georgi, Phys. Lett. B 240, 44? (1990).
[3] T. Mannel, W. Roberts, and Z. Ryzak, Nucl. Phys.

B$68, 204 (1992).
[4] A.F. Falk, H. Georgi, B. Grinstein, and M.B.Wise, Nucl.

Phys. B$4$, 1 (1990).
[5] For a comprehensive review, see M. Neubert, Phys. Rep.

(to be published).
[6] J. Chay, H. Georgi, and B. Grinstein, Phys. Lett. B 247,

399 (1990).
[7] I.I. Bigi, M. Shifman, N.G. Uraltsev, and A. Vainshtein,

Phys. Rev. Lett. 71, 496 (1993); I.I. Bigi et aL, in The
Eermilcb Meeting, Proceedings of the Annual Meeting of
the Division of Particles and Fields of the APS, Batavia,
Illinois, 1992, edited by C. Albright et al (World Scien.-
ti6c, Singapore, 1993), p. 610.

[8] B. Blok, L. Koyrakh, M. Shifman, and A.I. Vainshtein,
this issue, Phys. Rev. D 49, 3356 (1994).

[9] A.V. Manohar and M.B. Wise, Phys. Rev. D 49, 1310

(1994).
[10] T. Mannel, Darmstadt Report No. IKDA 93/26, 1993

(unpublished).
[11] A.F. Falk, M. Neubert, and M. Luke, Nucl. Phys. B$88,

363 (1992).
[12] M. Neubert, Phys. Rev. D 46, 3914 (1992).
[13] M. Cabibbo, G. Corbo, and L. Maiani, Nucl. Phys. B155,

93 (1979); G. Corbo, ibid. B212, 99 (1983).
[14] G. Altarelli et al. , Nucl. Phys. B208, 365 (1982).
[15] A.F. Falk and M. Neubert, Phys. Rev. D 47, 2965 (1993);

47, 2982 (1993).
[16] M. Neubert, Phys. Lett. B (to be published).
[17] M. Neubert, Phys. Rev. D 46, 1076 (1992).
[18] V. Eletsky and E. Shuryak, Phys. Lett. B 276, 191

(1992).
[19] P. Ball and V.M. Braun, Phys. Rev. D 49, 2472 (1994).
[20] M. Neubert, Phys. Rev. D (to be published); T. Mannel

and M. Neubert (unpublished).
[21] CLEO Collaboration, J. Bartelt et aL, Phys. Rev. Lett.

71, 4111 (1993).


