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We discuss nonperturbative contributions to the inclusive rare B decays B~X,y and B~X,l l
We employ an operator product expansion and the heavy quark effective theory to compute the leading
corrections to the decay rate found in the free quark decay model, which is exact in the limit mb ~ 00.
These corrections are of relative order 1/mq, and may be parametrized in terms of two low-energy pa-
rameters. We also discuss the corrections to other observables, such as the average photon energy in
B~X,y and the lepton invariant mass spectrum in B~X,l+I
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I. INIRODUCTION

The rare decays of B mesons have never been of greater
interest, both experimentally and theoretically. The first
observation of a decay mediated by the quark transition
b ~s recently has been reported by the CLEO Collabora-
tion [1],who found a branching fraction for the process
B~K'y of (4.5+1.9+0.9)X10 . Such transitions are
typically induced by the exchange of virtual heavy quan-
ta, the effects of which appear at low energies as local
operators multiplied by small coefficients. It is hoped
that the detection of these suppressed interactions in the
guise of rare B decays may provide a direct window to
physics at much higher scales.

In order for such a hope to be realized, however, it is
necessary to connect the quark-level operators which are
generated perturbatively to the hadronic transitions
which are actually observed. This involves the considera-
tion of nonperturbative hadronic matrix elements, which
typically are incalculable. One common approach to this
problem is to consider inclusive rates such as B~X,
rather than individual exclusive channels and to model
the inclusive transition by the decay of a free bottom
quark to a free strange quark. It is hoped that for the b
quark mass mb sufBciently large, the operator mediating
b ~s acts over distances short compared to the scales of
confinement and strong QCD interactions, and the ap-
proximation is a good one.

The issue of how good this approximation really is
originally was addressed by Chay, Georgi, and Grinstein
[2]. Using the tools of the heavy quark effective theory
(HQET), they showed that the free quark model is in fact
the first term in a controlled expansion in 1/mt„and

hence is arbitrarily accurate as mb~av. In addition,
they demonstrated that there are no contributions to the
rate at subleading 1/mb order and that any corrections
could only come in at order 1/mt, or higher.

In this paper we extend the work of Chay et al. to
compute the leading corrections to free quark decay from
the inclusive processes B~X,y and B-+X,l+I . While
the 1/mb corrections here are not particularly'large, it is
important to know their size if the free quark decay mod-
el is to be trusted. We also believe that our computation
is a very nontrivial application of HQET in a somewhat
unfamiliar regime and is hence quite interesting in its
own right.

Finally, we note that work which overlaps with ours
has been performed recently, in a somewhat different for-
malism, by Bigi et al. [3].

8P($)=sI'bP(P) . (2.1)

Here P(P) is meant to stand for some function of pertur-
batively interacting fields such as leptons or a photon,
and I is a general Dirac structure. Interactions such as
(2.1) are typically induced at high energies by the ex-
change of virtual 8' bosons, top quarks, or new exotic

II. OPERATOR PRODUCT EXPANSION
AND MATRIX ELEMENTS IN HQET

In this section we will discuss our procedure in general
terms, to elucidate the structure of the expansion before
barraging the reader with particular details. We are in-
terested in the rare decays of b quarks, such as b ~sy or
b ~se+e, which are mediated at low energies by local
operators of the form
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quanta. At low energies they appear in the effective
Hamiltonian as local operators, with coefficients which
may be computed using renormalization group tech-
niques. We will take the presence of such operators sim-

ply as given; our interest will be in the evaluation of their
hadronic matrix elements. We note that operators of the
form (2.1) are not the only relevant ones which will ap-
pear at low energies; for example, we will typically find
four-quark operators as well. For these, the techniques
which we will present below will only be appropriate
when the invariant mass of the intermediate qq pairs is
far from any quarkonium resonances. We will return to
this issue in our discussion of the decay b ~se e

For now, however, we restrict ourselves to operators
with the structure (2.1). They induce quark-level transi-
tions of the form b~s. However, since the quarks are
confined, what is observed is the decay B~X„in which
a B meson decays to an arbitrary hadronic state X, with
strangeness S = —1. (Decays from the lowest-lying bot-
tom baryon Ab are also possible. ) Hence we need to com-
pute matrix elements of the form

&X, ~OP(y) ~a ), (2.2)

where the ellipsis denotes the additional perturbatively
interacting fields which couple to P(P). Unfortunately,
exclusive hadronic matrix elements such as (2.2) are
governed by nonperturbative strong interactions and are
typically incalculable. At best, SU(3) and heavy quark
symmetries may be used to relate the form factors which
appear in one such matrix element to those which appear
in another [4]. But computation from first principles are
not at this point possible.

Instead of considering the exclusive modes individual-
ly, then, we will sum over all possible strange final states
X, . As has been shown by Chay, Georgi, and Grinstein
[2], the inclusive decay rate may in fact be calculated reli-
ably. Previous computations of the inclusive rate have
relied on the free quark decay model, in which the sum
over exclusive decays is modeled by the decay of an on-
shell bottom quark to an on-shell strange quark. For
mb 00 this is justified by arguing that the decay is
essentially a short distance process, which occurs on time
scales much shorter than those which govern the eventu-
al hadronization of the final state. This argument can be
made precise within a controlled expansion in inverse
powers of the bottom quark mass mb [2], and we will be
able to compute the leading corrections to this limit.

Squaring the matrix element (2.2} and summing over
X„we find a differential decay rate of the form

dl = g dXps(2m) 5' '(Ps Pr —q)—1

& x,

x &a~is"p(y}t~X, - )

x &X, ~ieP(y)la & . (2.3)

Here P~ and P& are the momenta of the initial B and
final X, systems, and q =P~ —Pz is the momentum
transferred to the other decay products. The symbol

dXps denotes an appropriate phase space differentia.

The part of d I which involves the fields P(P) may be cal-
culated perturbatively. We then find that dI is equal to
the product of known factors times an expression 8'(q)
which involves only the quark and gluon fields:

W(q)= y(2~)'n"'(P, P—, q—)&a~a'~X, &&X, ~a~a& .

W(q) =2 Im T (q),
where an example of the time-order product

T(q)= &&IT[, ] I& &

(2.5)

(2.6}

is shown in Fig. 1.
Now we come to a crucial observation [2]. The sum

over X, in Eq. (2.4) includes hadronic states with a large
range of invariant masses, Mz ~Pz Mz. The energy
which Bows into the hadronic system X, scales with mb
as the bottom mass increases and in the limit mb ~ 00 is

typically much larger than the energy scale A~D which
characterizes the strong interactions. Hence, in all but a
corner of the Dalitz plot, in which P& =m, , the strange
quark in Fig. 1 is far from its mass shell. In position
space, this means that the points at which 8 and gt act
must be very near each other on the scale of nonperturba-
tive QCD, and it is appropriate to perform an operator
product expansion of the time-ordered product in Eq.
(2.6}. This operator product expansion may be computed
perturbatively in a, (mb }. It will be valid over almost all
of the Dalitz plot, failing only in the region where Pz is
small. In the large-mb limit, the fractional contribution
of this bad region to the total phase space integral is
negligible, and our calculation of the inclusive decay rate
based on this expansion will be reliable. Our approach,
then, will be to perform a systematic expansion in inverse
powers of mb, of which the leading term will be the result
in the mb ~ co limit of the theory [2]. However, we will

also be able to compute the leading corrections to this
limit, using the tools of the heavy quark effective theory.

In this section we will discuss the form of the operator
product expansion and how to take the hadronic matrix
e1ements of the operators which come out of it. When we

apply this formalism in the following sections, the expres-
sion which we derive sometimes wi11 be quite lengthy.
Here we will concentrate only on the structure of the pro-

0

FIG. 1. Feynman diagrams contributing to the time-ordered
product T[bl, s,sI 2b I.

(2.4)

Here the sum over X, includes the hadronic phase space
integral. The treatment of this nonperturbative expres-
sion is the subject of the rest of this section.

We begin by noting that W(q), being essentially a total
decay rate, is related by the optical theorem to the
discontinuity in a forward scattering amplitude. That is,
we may write
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cedure. In general, then, the time-ordered product (2.6)
may be expanded in a series of local operators suppressed
by powers of the mass of the bottom quark:

1 1 1T[St 8!= So+ Si+ 82+
mb 2mb 4mb

(2.7}

The operator 8„ is an operator of dimension 3+n, with n

derivatives.
At this point, it is useful to introduce the heavy quark

effective theory (HQET) [5], an effective theory of QCD
in which the mass of b quark is taken to infinity. This
effective theory implements on the Lagrangian level the
new "spin-fiavor" symmetry of QCD which arises in this
limit [6]. Both the mass and the spin of the b quark
decouple from the soft bound state dynamics of the had-
ron of which it is a part; as far as the light degrees of free-
dom are concerned, the heavy quark is nothing but a stat-
ic, pointlike source of color. The exchange of soft gluons
with the light degrees of freedom leave the b quark al-
ways almost on shell. Thus we can write its four-
momentum pf as the sum of its "on-shell" momentum
mbv" and a "residual momentum" k", such that the com-
ponents of k" are always small compared to mb. It is
then convenient to replace the usual quark field b (x) by a
new two-component field h (x) with fixed four-velocity
vP.

h(x)=e ' P+b(x), (2.8)

X=hv. iDh +5K,
where the correction terms [7]

(2.10)

LC= h(iD) h — Z, (p)h(v iD) h
2mb 2mb

+ Z(p2)hs"" „G,h +0 (1/4mb )
2mb

(2.11)

are treated as perturbations to the mb~00 limit. Here
the gluon field strength is defined by Gz = [iD„,iD„]and
s" = ( i /2}cr"" T—he renor. malization constants are
given by

' 8/25a, (mb}
Zi(p)=3 —2

a, (p, )

Z2(p) =
' 9/25a, (mb)

a, (p)

(2.12)

where P+ =
2
(1+ii) projects onto the quark, rather than

antiquark, degrees of freedom. This effective field has the
property that a derivative acting on h (x) yields the resid-
ual momentum k~ rather than the full momentum p{I'.
An expansion in terms of D„/mb then becomes sensible.
Expanding in powers of 1 lmb, we may invert (2.8) to find

b(x)=e ' [1+i@/2mb+ ]h (x) . (2 9}

Inserting this into the usual QCD Lagrangian bibb, we
find the effective Lagrangian for HQET [5],

above the charm threshold.
Because the operator product expansion (2.7) is an ex-

pansion in D„/mb, we must express the operators 8„ in
terms of the HQET field h (x) rather than the full fields
b(x). However, as we shall see, it turns out to be con-
venient to leave the leading operator in terms of b (x) and
to expand the rest in h (x). The operators S„which ap-
pear in the expansion (2.7) then take the form

8 =bI'b, S,=hI'iD„h, 8 =hl iD„iD,h, (2.13)

and so forth. In each case, I denotes an arbitrary Dirac
structure, in which we also absorb all dependence on the
external momentum q, as well as on any other variables.
We will keep operators in the expansion with up to two
derivatives.

We now turn to the evaluation of the forward matrix
elements of the operators S„between B meson states. At
leading order, we need matrix elements of the form

&albrbla &, (2.14)

which is nonzero only for I =1 or I =y". In the second
case, the conservation of the b-number current in QCD
yields the matrix element normalized absolutely:

&&lby"bl» =2Pg . (2.15)

This, of course, is why we left 80 in terms of the field
b(x) in Eq. (2.13). As for the scalar current, it may be
rewritten in terms of the vector current plus higher-
dimensional operators of the form of 82 [3]:

bb =v„by"b+ h [(iD) —(v iD)2+s""G„„]h
2mb

+ e ~ ~ (2.16)

This identity may easily be proven by using Eq. (2.9} to
expand both sides in terms of the effective field h. It is
only meaningful when the four-velocity v" of the b field is
fixed. The correction term in Eq. (2.16) may be absorbed
into 82. Hence the leading term in the expansion of T(q)
may be evaluated unambiguously, using Eq. (2.15). In
fact, the leading term is precisely the free quark decay
model result, which becomes exact in the limit mb~ 00

[2]. The subleading operators 8„ in the operator product
expansion (2.7) will provide systematically the corrections
for the finite b-quark mass.

The evaluation of the matrix elements of the higher-
dimensional operators 8, and Sz involves the equation of
motion of the effective theory [8]. This is given by the
lowest-order Lagrangian

v. iDh =0 . (2.17)

=&Mlhrv„v iDh lM& . (2.18)

However, this is now the matrix element of an operator

Since the external states are characterized only by their
four-velocity v&, Lorentz invariance severely restricts the
forward matrix elements of operators of the form (2.13).
For the operator 8, of dimension 4, we find

&MIS IM&=&Mlh«D„hlM&
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which vanishes by the equation of motion (2.17). Politzer
[9] has shown that all such matrix elements vanish identi-
cally; his proof is outlined in the Appendix. Since 8& is
the only possible source of corrections of order 1/mb to
the lowest-order result, we see that the leading correc-
tions to the free quark decay model are actually of second
order in the heavy quark expansion. As first pointed out
by Chay, Georgi, and Grinstein [2], this is a most surpris-
ing result, since exclusive decay modes all presumably re-
ceive corrections already at order 1/mb. Somehow these
individual contributions must cancel in the inclusive rate.

The dimension-5 operators do give nonvanishing con-
tributions, of order 1/mb Ho. wever, their forward ma-
trix elements have a very simple parameterization [10].
The symmetries of the effective theory may be used to
write the matrix element as an ordinary Dirac trace:

(MI8, I» = &Mlh «D„iD.hlM &

=Ms Tr[ I P

where

g„„=—,'A, ,(g„„—u„u„)+—,'A2io „„.

(2.19)

(2.20)

The mass parameters k& and A,2 are defined in terms of
certain expectation values in the effective theory:

&M"'lh(iD)'hlM"') =2MsA. , ,

(M"'lhs""G„hlM"') =2Msd~(g)A2(p),
(2.21)

where d~ =3 and d~+ = —1. The p dependence of k,
cancels that of the renormalization constant Z2(p) (2.12).
We note that Z2(mb)=1; hence, from this point on we

will drop it and by A, 2 mean k, (mb ).
The role which these parameters play in the effective

theory is revealed when one expands the masses of the
heavy pseudoscalar and vector mesons in powers of
1/mb:

0&A, &+1 GeV

A,z(1 GeV) =0.12+0.02 GeV
(2.24)

The parameter A,2 is much better determined in this ap-
proach and agrees nicely with the experimental 8-8'
mass splitting (2.23).

Finally, there is one other source of corrections of or-
der 1/mb, namely, time-ordered products of 8, with the
correction 5X to the effective Lagrangian (2.10). As dis-
cussed in the Appendix, these arise because the states
lM) in the effective theory differ at order 1/mb from
those l8 ) of QCD. The difference is compensated for at
each order by computing matrix elements of the form
[8,10]

i f dx (Ml T [hi h, 5X(x)] lM ),
i f dx(Ml T [h I iD„h, 5L(x) j lM &,

(2.25)

=~ fdx&MIT[hI v„u iDh, KE(x)]lM) . (2.26)

We may now apply the identity derived in the Appendix,
which exploits the fact that the operator which appears
on the right-hand side of Eq. (2.26) vanishes by the equa-
tion of motion of the effective theory. We then obtain the
matrix element of a local current:

and so on. Although we do not indicate this explicitly,
the time components of the derivatives encountered in
these expressions act, as usual, on the outside of the
time-ordered products. (We did not encounter the time-
ordered product of KC with the dimension-3 operator 8u,
because 8u is written in terms of the original QCD field
b )For th. e operators of dimension 4, since we are work-
ing in the effective theory, we must evaluate Eq. (2.25).
First, we use the fact that the external states depend only
on the four-velocity v" to write the analogue of Eq. (2.18}:

i fdx(MlT[hl'iD„h, RC(x)] lM)

M, =m, +X— (A, , +3k,,)+1

2mb

1M, =m, +A — (k, —
A,,)+B 2mb

(2.22)

i fdx(Ml Tthl iD„h, 5X(x)] lM)

1= —v„(Mlh 1 P F(D)hlM), (2.27)
2mb

In this expansion, the term A represents the energy of the
light degrees of freedom in the meson. We see that A,

&

and kz are higher-order effects of the finite b-quark mass;
A, , is essentially a "Fermi motion" effect, while A,2, the
leading spin symmetry-violating correction, arises from
the hyperfine chromomagnetic interactions. From (2.22)
we have the well-known relation

(Ms+ —Ms)= ,'(Ms, —Ms)=0. 12—GeV

(2.23)

where we are neglecting higher-order corrections in
1/mb. There have been attempts to extract both A, , and
A,2 from QCD sum rules by computing the matrix ele-

ments (2.21},with the results [11]

1T(q)=TO(q, v.q)+ 2 T2(q, u q)+
4mb

(2.28)

The expansion is a series in 1/mb and a, (mb ), and the el-
hpsis in (2.28} denotes higher-order terms in both smail
parameters. (The radiative corrections to To have been
computed previously [12]; we will not include those to
T2. ) We now take the imaginary part of T(q) to recover
8'(q), multiply by the perturbative part of the matrix. ele-
ment which couples to P(P), and compute the inclusive
difFerential width dI. This may then be integrated to

where F(D}=(iD) +s""G&„. This matrix element may
then be evaluated in terms of A,

&
and A,2, using Eq. (2.19).

The result of this long and involved procedure is an ex-
pression for the nonperturbative hadronic quantity T(q),
of the form
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III. APPLICATION TO RARE BDECAYS

We will consider inclusive decays of the form 8~X,y
and B~X,I+I, where 1 =e or p is a light lepton. They
are governed by the effective Hamiltonian density

4GF
Vtb V&& g cj(Is)O&(P), (3.1)

give the total width I or other smoothly weighted distri-
butions. As we have mentioned, the contribution of To
will be precisely that of the free quark decay model [2].
The leading corrections to the mb ~~ limit are of rela-
tive order 1/m& and encoded in Tz', they are expressible
entirely in terms of the mass parameters A,

&
and A,2. We

will now apply this procedure and compute these correc-
tions for two interesting examples.

Here PL =
—,'(1—ys) and Pz =

—,'(1+ys) are helicity pro-
jection operators, F„ is the photon field strength,
and a,P are color indices. We have included in Os and

09 only the coupling to the electron current; the coupling
to the muon is analogous. There are also ad-
ditional operators, such as s y"P~b [u&y„P~u&+. . .
+b&y„PI btt], which contribute to these decays, but their
coefBcients are small and we shall neglect them. The
coefficients c (rnb) have been calculated in leading loga-
rithmic approximation, both in the standard model and
in certain minimal extensions, and are presented in Refs.
[13-19].

We now apply the procedure of the previous section to
compute the rates for inclusive decays mediated by the
operators (3.2). The first step is to construct the operator
product expansion (2.7), which takes the form

where the sum is over the truncated set of local operators

0) —s y PL b~cI3y Pl cp,

02 —s~y"PI. b&c&y„PL c

OPE
T[bI,s,sI 2b] = 80+ 8i+ 82+

mb 2mb 4mb

(3.3)

07=
2 mbs~cr" PRb~F»

16~
2

08= s y"Plb ey„e,
16m

2

09 2
s y"PL b ey„y5e ~

16~

(3.2)
For now, we will allow I, and I 2 to be arbitrary Dirac
matrices. To compute the terms in this series, we must
expand the diagrains in Fig. 1 in powers of 1/mb. Fixing
the four-velocity of the external b quark to be v", we may
expand its momentum as pf =mbv" +k" Then .the first
graph in Fig. 1 gives

r, (m tt —y+k+m, )r
tJK= tug i 2 us

(rnbv —q+k) m, +ie—

i i 1 2
ubl, (d g+m,—)l zub

—
u&

—r,krz — r, (pf g+m—, )r (v2—q) k, ub+O(1/mb),3

mbx mb X
(3.4)

where Q=q/mb, rn, =m, /mb, and

x =1—2v q+q rn, +ie— (3.5)

8 =—br, (g —y+m, )r b,1—

contains the pole corresponding to an on-shell strange
quark, near the end of the physical cut. The spinor u&

which appears is the ordinary one-shell b-quark spinor of
QCD. From the matrix element {3.4), we may deduce the
first two terms in the operator product expansion (3.3):

The reason for this choice was discussed in the previous
section.

To obtain 8z we must also expand the one-gluon graph
in Fig. 1, in order to identify the contribution from the
gluon field strength G„,= [iD„,iD„]. Additional contri-
butions to 82 arise when the full QCD fields b (x) in 8,
are replaced by the efFective theory fields h (x) via the re-
lation (2.9). Equivalently, one may expand the spinors ub
in the matrix element (3.4) in terms of the two-
component spinors ur, of HQET

8,= hr, y I' tD h—
2—

(3.6) ub= 1+
2mb

+0
2

mb
ug (3.7)

(v —g) hr, (t( —g+m, )r iD h .

Note that while we have left the leading operator in
terms of the four-component fields b {x),we have expand-
ed 8i in terms of the two-component effective fields h (x).

and check that the result may be made covariant. Final-
ly, there will be corrections at order 1/mb if the leading
operator 80 contains a scalar current bb, because of the
expansion (2.16). These are still contained in 80 and are
not included in 82. A straightforward calculation then
yields
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gz=, (v —q) (u —q)%I', (8 —y+m, )I,iD iDiih —,hI, (8 —g+m, )l,(iD) h
X X

(u —q)ihI iy I (iD iD&+iDiiiD )h+ m, hI, io iiI' G h

E (v —g ) h I,y„y5I iG (ah + h(—y I,y I &+I,y I iy )iD&iD h
X X

4 4
z

(u —-g) hy~l, (8 —g+m, )I ziDiiiD~h —
z

(u —g) hI i(i( —g+m, )I'iy~iD~iDiih . (3.8)

To continue any further, we must specify the Dirac structures I, and I'z.

A. B—+X,y

For the transition B~X,y, only the operator 07 from (3.2) contributes and the operator product expansion

simplifies considerably. We now contract the terms in the time ordered product (3.3) with the external photon fields

and take the matrix element between B mesons to construct the hadronic object T(q) defined in Eq. (2.6). Because the

decay is to an on-shell photon, q =0 is fixed, and T(q) becomes a function only of the scaled photon energy

u g =Er /mb. Including the matrix element of the photon field, we find

T(u Q) =—i (BIT[bPL o""s,so~'Pub] IB & g (y(g, e)IF„„I0&(OIFp.ly(q, ~) &

a=1,2

= —16M m (u g)B b x 2 2
mb

5 —6ug z 3+
3x 2m x

(3.9)

The sum is over the transverse polarizations of the pho-
ton, and there is a factor of i from each insertion of the
efiective Hamiltonian (3.1). We neglect contributions of
order m, . Note that we distinguish between mb, the bot-
tom quark mass which arises in the operator product ex-
pansion, and MB, the 8 meson mass which arises from
the relativistic normalization of the states (and therefore
drops out of the final expression). The inclusive rate for
8~X,y is then given by

2 2aG+ mb
~B X y 3 IVtbVt I Ic7™b}l

Sm' ~B

XIm T v
d k

(2n. ) 2Er
2 4aGF mb

I v+ v,', I lc7(mb)l ImfzT(z)dz,7

(3.10)

I

to us, in particular its behavior near the end point of
maximum E This is. true at any order in the I/mb ex-

pansion, because in this region the strange quark ap-
proaches its mass shell and the operator product expan-
sion breaks down. For example, the fact that the true
end point of the photon energy spectrum is found not at
E =mb/2 but rather at (Mii —M + )/2Ms is entirely

unavailable to us in this formalism.
It is instructive, however, to generalize Eq. (3.10) to

calculate the nonperturbative contributions to the mo-

ments of the energy spectrum. For example, the devia-
tion of the average photon energy from that of the free
quark decay model is

r, ~, 64~ ~B

X Im tt) (mbz)zT(z)dz

where z =u.g, and the contour integral is taken around
the pole at x =0. It is straightforward to evaluate this in-
tegral, and we find

mb 1—
2

A, , +3k,z

2mb
(3.12)

a6~
x mb I v, v„*l'lc (m )I'

327r

X 1+
~ (gi —9g~)

1

2mb
(3.11)

This expression for the total rate agrees with the result of
Ref. [3]. The first term is just what one would obtain in
the free quark decay model.

We may consider using the same method to compute
certain features of the photon energy spectrum. Of
course, the precise shape of the spectrum is not available

This result has an interesting structure, if we compare it
to the 1/mb expansion of the B meson mass (2.22).
Naively, we might have expected (E & to be shifted

from the free quark value mb/2 to half the physical
meson mass MB/2. However, that is not what we find;

only the order 1/mb terms contribute. The reason is that
the correction A to Mz in Eq. (2.22} is the contribution to
the meson mass of the light antiquark and the other light

degrees of freedom, which in this formalism are mere

spectators to the decay. Since they are present in the
final state X, as well as in the initial state, they do not

represent additional energy available to the photon. By
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contrast, the higher-order mass corrections proportional
to A. ) and A,z arise from terms in the effective Hamiltonian
of the b quark, representing its "Fermi motion" and its
chromomagnetic interaction with the soft hadronic sur-
roundings. These bound state shifts in the b-quark ener-

gy are then reflected in the average photon energy (,E~ ).
We could also generalize Eq. (3.12) to higher moments

of the photon spectrum. However, there arises an addi-
tional complication if we insist that the moments we

compute be experimentally meaningful quantities. This is
because they are constructed by convolving a power of
the photon energy with the measured energy spectrum,
but this spectrum is only related to our computation once
our result (3.9) has been smeared over typical hadronic
scales. That is, T(z) should be replaced by the smoothed
quantity

B. B—+X,l+l

The transition B~X,I / receives contributions from
the complete set of operators in (3.2). In particular, un-
like the decay B~X,y, the four-quark operators 0, and
02 have nonvanishing matrix elements. In order for our
treatment of the four-quark operators to be valid, it is
crucia1 that the invariant mass of the lepton pair not be
near any resonances in the charm system such as the f,
so that strong final state interaction corrections mill be
small. In this case we can treat the contributions from
0& and 02 as effectively local on the scale of hadronic in-
teractions.

It is convenient to separate the total rate for
B~X,/+i into two terms, corresponding to the decay
of left- and right-handed leptons,

Tf(z)= J dz'f (z z')T(z—'), (3.13} dI', , IV('(g, v g)L„„+8'g"(g, v q)L„"„,

where f (x) is some smearing function of width
5=6E/mb. If we take f(x) to be a Gaussian distribu-

tion, f (x)=exp( x /5 )I+—n5, we can calculate the
moments analytically. Keeping terms of order 5, for the
nth moment we find

where the lepton tensors are given by

(3.15)

" =p+p —+p+p"— g" p+ 'p —+i& p+op—

(3.16)

lBb

2
EE1+2n (n —1)
2mb

n(n+2}
2mb

I '"'= ', '
I v,b vt', I'Ic, (m&) I' Im f(mbz}"zTf( }

64~' M&

Here p+ and p are, respectively, the four-momenta of
the 1+ and I . Since we are restricting ourselves to l =e
or p, we neglect the masses of the leptons.

The two Lorentz structures which arise from the
effective Hamiltonian (3.2} are y&(1 —

y&) and
(T„,(1+y5}g„.Hence it is convenient to write

~2
Ia xy

2mb
(3.14) I L(R) ) (1 y )y [ A L(R) BL(R)y/s ]

pL(R) pL(R)f
1

(3.17)

The total rate (n =0) and average energy (n =1), which
we have already presented, are unafFected by this pro-
cedure, but the same is not true for the moments with
n ~ 2. Note that the effect of the smearing is proportion-
al to 5 rather than 5 and so is formally of the same order
as the nonperturbative corrections we have been consid-
ering. However, in order for our inclusive predictions to
be meaningful, the resolution hE with which the photon
energy spectrum is measured actually must be much
greater than A&CD, so that many exclusive states are al-
ways summed over. Hence it is in fact this resolution,
rather than the nonperturbative effects, which will dom-
inate the corrections to the moments I'"'. In addition,
real gluon emission will broaden the energy spectrum
over the entire allowed phase space 0 &E & mb /2, which
will affect substantially the shape of the experimentally
measured spectrum [12].

A =cs(mb ) c9(m(, )

+ [3c,(mb )+cz(m& ) ]g (m, /mb, s ),

A"=c()(m& )+c9(mb)
(3.18)

+ [3c,(mb)+cz(mb )]g(m, /mb, s),

B =B = —2c7(mb ),
where the function g(m, /mb, s) multiplying c, and cz
arises from taking the one-loop matrix elements of 0&
and 02 and has the form

where s =q . The A's and B's are then combinations of
the coefficients c &, . . . , c9..

2 2
1/2

4 2 8 16 z 2 4z
g (z, s )= ——lnz + + ——1—

9 27 9 g 9 s

4z

s

')/1 —4z /s +1+i'
ln

V 1 —4z~/s —1+i@
(3.19)

Integrating over the lepton phase space, the total decay rate is given by
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cf p+ cfp

(2n) 2E+ (2m) 2E
4

f ds df &Imfdv g(Tg"L„+Tg"L„" ) .
128m M~

(3.20)

~e mus«ext perform the contour integration in the v Q plane and then the E& integral to obtain the dilferential decay
width. Since the calculation is quite tedious and the intermediate expressions extremely lengthy we present only the
final result:

d~a-x i+i
S 62~2

s mb i V,b V,*,
i ( 1 —s )

X g —,'(1 —s )(1+2s)i 3'i + —,'(1 —s )(1+2/s )iB'i —(1—s )Re(B"2')
i =L., R

+ [( ——'2 +—'s+ 6)i 2'i ——'(1+s)iB'i +(s —
—', )Re(B"2')]

mb

A2+ [(—5s + —"2+—,
'

)i A 'i ——,'(1+s )iB'i +(7s —5)Re(B"2')]
2m b

(3.21)

The summation is over the two chirality states of the lep-
tons.

The leading term in Eq. (3.21) reproduces the free
quark decay model result obtained in Refs. [14,18], while
the subsequent terms are the leading nonperturbative
contributions to the decay rate. It is interesting to note
that unlike the parton level result, which has a charac-
teristic 1/s behavior at small 2 from the one-photon inter-
mediate state, the nonperturbative corrections approach
a finite constant value as 9'~0. The differential spectrum
for the invariant mass of the lepton pair is plotted in Fig.
2. We have chosen a top quark mass of m, =150 GeV,
along with mb=4. 5 GeV, a, (ms )=0.12, and a, (mb)
=0.21, to generate the spectrum. The free quark decay
model result ( A, , =Az = 0) is presented along with the
spectrum for A, , =0.5 GeV and A,&=0.12 GeV . We
have normalized the width for this decay to that for semi-
leptonic B decay (which includes the nonperturbative
corrections given in Ref. [20]). The modification to the
B~X,I + I rate is reasonably large and tends to

I

enhance the overall rate for high-mass lepton pairs by or-
der 10%.

IV. SUMMARY AND CONCLUSIONS

Because of the necessary cuts to remove backgrounds,
the full spectrum from a decay such as B~X,y and
B~X,l I is not available in an accelerator experi-
ment. It is therefore important to understand well the
shapes of these spectra if one is to relate the observed
branching fractions to fundamental parameters of the
electroweak theory. This is particularly true for the
high-photon-energy and high-invariant-lepton-mass re-
gions of the Dalitz plot. Modifications to the simplest
model, that of free quark decay, arise from strong in-
teractions that can be classified heuristically as perturba-
tive and nonperturbative corrections.

The perturbative corrections arising from gluon brems-

strahlung and one-loop effects for 8~X,y have been

computed previously [12]. It is to nonperturbative

8x10

6x10
1 dI'

I', t ds
4x10

2x10

FIG. 2. Invariant mass spectrum for
8~X,I+I . The solid line corresponds to the

parton model, while the dashed line corre-

sponds to A, &=0.5 GeV and A.&=0.12 GeV .
The cusp at 9={2m,/m&) corresponds to the

charm threshold. Near this point our estimate

of the nonperturbative corrections is not valid

due to resonance effects.

0.2 0.4 0.6 0.8
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corrections that we have addressed ourselves in this pa-
per. We have detailed the formalism for treating the
semileptonic and radiative inclusive decays of mesons
containing a single heavy quark. Upon summing over all
hadronic final states, one may express the rate for a given
process in terms of a time-ordered product of quark bilin-
ears. This time-ordered product is then expanded in a
series of local operators, the matrix elements of which ei-
ther are known or may be parameterized simply. Heavy
quark symmetries and the heavy quark effective theory
play a key role in the analysis.

We have applied these tools to the rare decays B~X,y
and B~X,1+1 . The leading nonperturbative correc-
tions to the free quark decay model, of relative order
1/m&, may be expressed entirely in terms of two low-

energy parameters. One of these'is determined from the
splitting between the heavy pseudoscalar and vector
mesons; a model-dependent estimate of the other comes
from QCD sum rules. In addition to the total rates, we
have computed the correction to the average photon en-

ergy in B~X,y and found the shift to be small. The
correction to the spectrum for B~X,l+1 is larger and
for high-invariant-mass lepton pairs is at about the 10%
level.

Finally, we note that there has been considerable re-
cent work in which a similar formalism has been applied
to semileptonic b decays [20].
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APPENDIX: MATRIX ELEMENTS
AND THE EQUATION OF MOTION

In this appendix we derive an identity for the matrix
element of a time-ordered product of two operators,
where one of the operators vanishes by the equation of
motion of the theory. This will be a generalization of a
proof by Politzer [9] that matrix elements of single opera-
tors which vanish by the equation of motion themselves
vanish. We will derive our result within the context of
the heavy quark effective theory (HQET), because this is
the application which we have in mind, but with obvious
modifications our result is completely general.

We begin by recalling how such time-ordered products
arise within HQET. In this effective theory, the heavy
quark part of the Lagrangian takes the form [5,7]

X=hv iDh+ hF(D)h+ ~ (A 1)
2mb

where

F(D)=(iD) —Zi(p}(v iD) +Zg(p, )s""G„„, (A2)

and the ellipsis denotes terms of higher order in the 1/mb
expansion. Here the gluon field strength is defined by
G„,= [iD„,iD„],and s""=( i /2—)cr"" The. renormaliza-
tion constants Z, (p, ) and Z2(p) are given in Sec. II. The
equation of motion in HQET is derived from the leading
term in the Lagrangian (Al) and is simply

v iDh=0. (A3)

Instead of being included in the equation of motion, the
corrections to X in Eq. (Al) are treated as perturbations.
They reappear in the following way: Because the states
~M ) of HQET are defined by the truncated equation of
motion (A3), they differ from those ~B } of full QCD.
The states ~M ) have the significant advantage that, un-
like ~B ), they are independent of the heavy quark mass
mb and so have simple transformations under the spin-
fiavor symmetries of the effective theory. The difFerence
between ~M }and the physical states ~B ) is then compen-
sated by including in the matrix elements of efFective
operators additional time-ordered products with the sub-
leading terms in X [8,10].That is, if we have an effective
operator h'C(D)h whose matrix element we require be-
tween eigenstates ~B ) of full QCD, then we must write

(B(p')lh'C(D)h~B(p) }= (M(v')(h'C(D)h~M(v) ) + i f dx (M(v')
~
T[h'C(D)h, hF(D)h (x}J~M(v) ) +

2NEb

(A4}

The time derivatives which appear here act, as usual, out-
side the time-ordered product, although we do not indi-
cate this explicitly. We have shown the expansion up to
order 1/mb explicity; the ellipsis denotes terms of higher
order which may be included if more accuracy is needed.
We consider here the general case in which the initial and
final heavy quarks have different four-velocities. The
field h creates a heavy quark with velocity v" while h'
creates one with velocity v'". There is a separate effective
Lagrangian (Al) for each of these fields, but for simplici-
ty we will include the 1/mb corrections only for the field

C(D) = A (D)v iD, . (A5}

where A (D) may include an arbitrary Dirac structure.

h. The time-ordered products in (A4) are new nonpertur-
bative matrix elements which must be evaluated if one
wishes to use the effective theory beyond leading order.

We will be concerned with a special case of Eq. (A4), in
which the operator h'C(D)h vanishes by the equation of
motion (A3} of the effective theory. ' That is, C(D} takes
the particular form
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Politzer has shown that matrix elements of such opera-
tors, such as would appear in the first term in Eq. (A4),
vanish [9]:

(M(u')Ih'A (D)v.iDhlM(u) ) =0 . (A6)

Note that it is the efFective theory states IM ) which ap-

pear here. The purpose of this appendix is to generalize
this argument to prove a similar identity for the time-

ordered product appearing in the second term of (A4),
namely, that

i f dx (M(u')I T[h'A (D)u iDh, hF(D)h (x)] IM(v) &

1
v iDh = — P+ F(D)h + .

2mb
(A9)

This equation of motion may be applied directly to ma-
trix elements between the states IB). We then find for
the matrix element (A4) the relation

the full states I& ) of QCD. This would be undesirable, in
that it would reintroduce the mass dependence which it is
the goal of HQET to remove, thereby obscuring the
spin-Qavor symmetries of the heavy quark limit. Howev-
er, if we do so, the equation of motion is given by the ful1
Lagrangian (Al), taking the form

= —(M(v')Ih'A (D)P+F(D)hlM(v)), (A7) (g(p')Ih'C(D)hip(p))

where P+ =
—,'(1+if}. For the computation of this paper,

we will apply this identity in the case that A (D) actually
contains no derivatives and at zero recoil; then, the ma-

trix element on the right-hand side of (A7) is of the sim-

ple form

(MIhriD„iD„hIM & (A8)

and can be evaluated in terms of the constants A,
&

and A,2

as in Sec. II.
Before proving the identity (A7}, however, we note its

relation to the result we would obtain by taking a
different approach. Instead of introducing the states
IM ), which are eigenstates of the lowest-order efFective

Lagrangian, we could choose to work always in terms of

~&(p')Ih'A (D)P+F(D)hl&(p) &

2mb
(A 10)

Inserting Eqs. (A6) and (A7) into Eq. (A4) and noting
that the states IM ) and I& & diffe only at order 1/ms,
we see that this is the same result that we find working
entirely within the effective theory. The proof which we
now present may be seen as verifying the consistency of
the eFective theory approach. It is both an application
and a generalization of the proof of Poligzer.

We begin by using the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula to write the
desired matrix element in terms of a vacuum expectation
value:

i fdx(M(v')I T[h'A (D)v iDh (0),hF(D)h ( )x] IM(u))

lim i fdx fdzdz'e'"'e ' "'(u it), —A)( u' it)—, A)—
v k, v' k'~A

X (Ol T [ql 'h'(z'), h'A (D)v iDh (0),hF (D)h (x),h I q (z) j IO) . (Al 1)

Here the operators h I q and qI h interpolate the initial and final meson states, respectively. (Of course, the proof is
valid for any external heavy hadrons, not just mesons. ) Note that in HQET, the one-particle poles are projected out by
the differential operator (v it) A) r. ath—er than by [(i8) —M~] as in full QCD.

We now write the generating functional for Green's functions of this theory:

exp(iW)= f [dh][dh][dh'][dh'][dA„]exp i f dy[Xo+Sz+Sz+SM+ ] (A12)

Here

Xo=hv. iDh +h'u' iDh'

is the Lagrangian of the effective theory, and we have included explicitly a variety of relevant source terms:

SJ=Jh'A (D)u iDh, SL =LhF(D)h, S~=Kh I q+K'qI"h' .

(A13}

(A14)

The ellipse denote sources for the fermions and gauge fields, and gauge-fixing terms which will play no role in the
analysis. With these definitions, then, we have

exp(iW) =(Ol T[qI"h'(z'), h'A (D)v iDh(0), hF(D}h (x),hrq(z)] IO) .
sources =0

(A15)

'We are grateful to A. Manohar for discussions of this point. See also Ref. [20].
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We remind the reader that functional differentiation with respect to J and L generates time derivatives which act out-
side the time-ordered product, as desired. We now perform a shift of the integration variable h,

h =h' —Jh'A (D)P+, (A16)

insert it into the generating function (A12), and drop terms of order J . We then obtain shifts in some of the expres-
sions (A13) and (A14):

Xo=h'u. iDh Jh—'A (D)u iDh +h'u' iDh', Sq=Jh'A (D)v iDh. ,

SL =Lh*F(D)h LJh—'A (D)P+F(D)h, Ssr =Kh'I q KJh—'A (D)P+I'q+K'qI"h' .
(A17)

Note that the original source term Sz cancels against the shift in Xo in (A17), but new terms appear in SL and S~. Re-
placing the dummy variable h by h, we recover the generating functional (A12},but with the source Sz changed:

S LJh'A —(D)P F(D)h KJh—'A (D)P I q . (A18)

We now repeat the derivative in Eq. (A15). When we set the sources to zero, we see that a derivative with respect to L
or E must come with a derivative with respect to J to give a nonzero contribution. We then find

(0IT tel"h'(z'), h'A (D)u iDh (0),hF(D)h (x),hI'q(z) j ~0&

=i5(z)(0IT I ql"h'(z'}, hF(D)h (x),h'A (D)P+ I q(0) j ~0&

+i5(x)(0~ TIqI"h'(z'), h'A (D)P F(D)h (0),hI'q(z) j I0& . (A19}

Finally, we must perform the integration

i fdx fdzdz'e'"'e '"'(v id, —A)( u' ir—),, A)—

and take the limit v k, v' k'~A to recover the matrix element (Al 1}. In this integral, the first term on the right-hand
side of Eq. (A19) vanishes, because the integral over z is trivial and there is no one-particle pole to pick out. The second
term, however, yields an S-matrix element in the usual way:

lim i xi x z z'e' 'e ' '
v i,—A —v'i, —A

IJ.k, V' k'~A

X (0~ TIqI"h'(z'), h'A (D)P+F(D)h (0),hl q(z) j ~0) = —(M(v')~h'A (D)P+F(D)h (0)~M(v) & . (A20)

Thus we obtain the desired identity

i fdx(M(v')~TIh'A (D)v iDh, hF(D)h (x) j ~M(v) &
= —(M(u') ~h'A (D)P+F(D)h~M(v) & . (A21)

Note that the term in F(D) proportional to (u iD) will not contribute here, since this matrix element is of the form
(A6) and hence vanishes by the equation of motion.

A few additional comments are in order. First, Politzer s result (A6) for the matrix elements of an operator which
vanishes by the equation of motion follows from an identical derivation, but with the derivative 5/5iL omitted. In this
case the second term of Eq. (A19) does not appear, and we obtain zero instead of the right-hand side of Eq. (A20). [We
stress that the intermediate result (A19}, which is the key to both proofs, is derived by Politzer in full generality. ]
Second, it is clear how this result is to be generalized to the time-ordered product of an arbitrary number of operators.
Essentially, we obtain a term on the right-hand side for each contraction of h A (D}v iDh with an operator insertion
hG(D)h, where G(D) is any function of covariant derivatives. More than one contraction may be required to give a
nonzero result; for example, an operator of the form h'A (D)(u iD)"h will have a nonvanishing matrix element only
when included in a time-ordered product with n other operators such as hF(D)h. Finally, we reiterate that while for
concreteness we have framed our derivation within the heavy quark effective theory, it is in fact completely general.
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