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Differential distributions in semileptonic decays of heavy Havors in +CD
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A generalization of the operator product expansion is used to find the differential distributions in
the inclusive semileptonic weak decays of heavy flavors in /CD. In particular, the double distribution
in electron energy and invariant mass of the lepton pair is calculated. We are able to calculate the
distributions in an essentially model-independent way as a series in m& where mg is the heavy

quark mass. All efFects up to m are included.
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I. INTRODUCTION

DifFerential distributions in semileptonic decays of
heavy Bavors are used for measurements of the Cabbibo-
Kobayashi-Maskawa (CKM) matrix elements, key phe-
nomenological parameters of the standard model. To ex-
tract the CKM matrix elements &om data one needs to
disentangle the eH'ects of strong interactions at large dis-
tances from the quark-lepton Lagrangian known at short
distances.

Up to now essentially two approaches have been ap-
plied to describe nonperturbative strong interaction ef-
fects in the inclusive weak decays: the naive parton model
amended to include the motion of the heavy quark in-
side the decaying meson [1] and the "exclusive variant"
based on summation of difFerent channels, one by one
[2]. Both approaches are admittedly model dependent;
neither their accuracy nor the connection to the funda-
mental parameters of /CD are clear a priori. Each of
them needs an input &om a constituent quark model to
parametrize nonperturbative efFects. The latter play an
especially important role in the form of the spectra near
the end points.

The need for model-independent /CD-based predic-
tions is apparent. Considerable progress achieved re-
cently in the theory of preasymptotic efFects (propor-
tional to powers of I/mq where mq is the heavy quark
mass) allows one to make these predictions.

The theoretical construction presented in this paper
is, in a sense, a generalization and combination of the
formalisms which are used in deep inelastic scattering and
total cross section of e+e annihilation. The expansion
parameter in deep inelastic scattering is Q where Q
is the momentum transfer. In the problem at hand the
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expansion parameter is m or, more exactly, the inverse
energy released in the final hadronic state (in the rest
frame of the decaying quark).

In classical problems of this type, such as e+e annihi-
lation, there are two alternative ways to get predictions.
The 6rst approach having a solid theoretical justi6cation
in terms of the operator product expansion (OPE) [3] is
based on calculations in the Euclidean domain where one
can apply the OPE. Contact with the observable quanti-
ties is made through the dispersion relations and in this
way predictions for certain integrals are obtained. In the
second approach we perform the calculations directly in
the Minkowski domain. Although formally this calcu-
lation refers to large distances, &om the 6rst approach
we know that in speci6c integrals large distance con-
tributions drop out. Therefore results obtained in this
way, although not valid literally, should be understood
in the sense of duality: Being smeared over some duality
interval the theoretical prediction should coincide with
the smeared experimental curve. Inclusive weak decays
will be treated within the second approach. The averag-
ing mainly refers to the invariant mass of the inclusive
hadronic state produced in the decay considered.

If the invariant mass of the 6nal hadronic state is 1arge,
this is not a constraint at all since the theory "itself"
takes care of the averaging required by duality. In the op-
posite limit, near a spectral end point, the smearing is not
provided for &ee. The boundary of the distribution corre-
sponds to a low momentum of the quark produced (low
momentum of the hadronic final state). At this point
the OPE blows up; therefore we do not have any speci6c
prediction for the distributions near the boundary. Nev-
ertheless, the integrals taken over the domain &om the
kinematical boundary up to a new boundary, de6ned by
the requirement that the OPE be convergent, are pre-
dicted. In particular this integration domain should in-
clude the resonance range (when mg is large a paraxnet-
rically stronger limitation is imposed by the fact that the
heavy quark and meson masses are difFerent). An exam-
ple of the safe integration is the total decay width where
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the integration domain is maximal.
Although we explicitly work in Minkowski kinematics

we always keep in mind the relationship to the Euclidean
domain and the corresponding operator product expan-
sion. The first analysis of this type has been outlined in
[4] for inclusive heavy fiavor decay rates. A general anal-
ysis of the semileptonic inclusive spectra along this line
is presented in Ref. [5]. In that work it was observed, in
particular, that the leading operator and those appear-
ing at next-to-leading order have a gap in dimensions
of two units, and, consequently, the O(mq ) term should
be absent in certain quantities. The analysis presented in

[5] was not backed up, however, by concrete calculations
of the preasymptotic effects. Recently this formalism has
been systematically developed and applied to the nonlep-
tonic decays of heavy fiavors [6,7) and the charged-lepton
energy spectrum in the semileptonic decays [8] (see also
[9]). The present work is a natural continuation of Ref.
[8]

We generalize the results of Ref. [8] to find the complete
inclusive distributions in the semileptonic decays. The
leptonic variables E„ql,and qo, where E, is the charged
lepton energy and q is the momentum of the lepton
pair, are kept fixed which automatically fixes the in-
variant mass of the inclusive hadronic state. Integrating
over qo we obtain the double spectral distribution in E,
andq .

At the 6rst stage we construct the transition operator
T(Q ~ X + Q) describing the forward scattering ampli-
tude of the heavy quark Q on a weak current. Our focus
is the influence of the "soft" modes (background fields)
on the transition operator T„„whichis expressed as an
in6nite series in the local operators built from gluon and
quark fields and bilinear in Q, Q.

The local operators are ordered according to their
dixnensions; the coefficient functions contain the corre-
sponding powers of 1/mq (or 1/Eg, where Ep„is the en
ergy released into the hadronic system). At sufficiently
large mg or Eg the operators with the lowest dimen-
sions dominate, and the infinite series can be truncated.
Generically, we will refer to the power expansion as the
1/mq expansion, although strictly speaking it is an ex-
pansion in 1/Eh, At the next stage the matrix elements
of the relevant operators over the initial heavy hadron
Hq must be evaluated. Unfortunately, in present-day
/CD the matrix elements over the hadronic states are
not theoretically calculable. In some instances they can
be related, through heavy quark symmetries, to mea-
surable quantities [10,2]; in other cases they have to be
parametrized. These parameters play the role analogous
to the gluon condensate [11].As a matter of fact, at the
level of the leading preasymptotic corrections only two
operators are relevant. The matrix element of the first
one can be related to the xnass splittings of the vector
and pseudoscalar heavy mesons. The matrix element of

the second one has the meaning of the average square of
the spatial momentum of the heavy quark Q in Hq and
the state niust be treated as a parameter.

Finally, the observed decay rates and spectra are ob-
tained by taking the discontinuity of the hadronic tensor
(Hq~T„„~Hq)and convoluting the result with the lepton
currents and appropriate kinematic factors.

In this paper we consider the differential distributions
in the seinileptonic decays at the level of O(mq ). The
diBerential distributions are measured experimentally in
the B meson decays and will be used for more precise
determination of V„g,for example. This was a primary
motivation for our investigation. We would like to make
it as close to fundamental /CD as possible.

The organization of the paper is as follows. In Sec. II
we describe the kinematics and in Sec. III we present the
operator product expansion. In Sec. IV we derive the dif-
ferential distributions. Section V is devoted to the anal-
ysis of our distributions and limitations on the their use.
Our results are summarized in Sec. VI. The Appendix
contains expressions for hadronic invariant functions.

II. KINEMATICAL ANALYSIS

We will consider the inclusive weak decays of the
mesons (or baryons) with the open heavy fiavor into the
lepton pair plus (inclusive) hadronic state

Hq (p~) + l (pi) + v(p„)+ hadrons.

Our 6nal goal is to calculate the differential decay rate

d3I'

dE~dq dqo

M = Vqq eI'„v(X(g„~Hq).
Gy

2
(2)

Here Vqq is the corresponding Cabibbo-Kobayashi-
Maskawa matrix element, j~ = ql'„Q is the electroweak
currents, and I'„=p„(1+ps. ) (Although our theory is
general we will keep in mind the 6 —+ t" and 6 —+ u de-
cays, so that Q = b and q = c or u. ) The differential
distributions we are interested in are given by the mod-
ulus squared of the amplitude (2) summed over the final
hadronic states.

The modulus squared of the amplitude suxnmed over
the final hadronic states can be written as

where E, is the energy of the emitted electron and q" =
p&" +pI„'is the four-momentum of the lepton pair. In order
to 6nd the diff'erential distributions we need to know the
amplitude of the process, which is given by the expression

= /Vqqf G~M~~ I,""W„„,

The charged lepton produced will be generically called an
"electron" hereafter.

where MH~ is the mass of hadron Hg, R'» is the
hadronic tensor,
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and It" is the lepton tensor:

where e = 1. Let us introduce the hadronic structure functions m,. and parametrize the hadronic tensor in the
following way:

——tong& + tU2 v& v +1tos e& p'U q + BJ4q& q + tos (q„v&+ q„v„).cx P (6)

Here q„=(p, +p„)„is the four-momentum of the lepton pair, and v„=(pH )„/M~~ is the four-velocity of the
initial hadron (not that of the Q quark). Note that we have omitted the structure q„v„—q„e„whichcannot appear
because of the T invariance. The structure functions zu; depend on two invariant variables q . v and q . In the rest
frame of IIq which will be used throughout the paper q. v = qo, and so to; = tv;(qo, q2). The convolution of W„„with
the lepton tensor (5) is given by the expression

W„„l""= 4 (2 q top + [ 4 E, ( qo —E, )
—q ] to2 + 2 q ( 2 E, —qo) tos }.

We see that only three invariant functions are relevant for the processes we are considering in this paper. At this step
we encounter the third variable, the electron energy E, = p, p~ /M~, entering through the leptonic tensor.

Finally the formula for the diH'erential width takes the form

d3I' Q2
(2q'to~+ [4E.(qo —E.) —q'] to2+ 2q'(2E. —qo) tos }dE, dq2dqo 64 x4

This expression concludes the kinematical analysis. Our task is, of course, the calculation of the invariant functions
to, (qo, q ). We will proceed to this calculation in the next section.

III. OPERATOR PRODUCT EXPANSION

The absorptive part of this tensor reduces to W„„dis-
cussed above

W„„=(1/i) disc( It„). (1O)

In this section we will discuss the derivation of the ten-
sor W„„.The operator product expansion (OPE) is sim-
ilar to that in deep inelastic scattering. It is convenient
to introduce the hadronic tensor h„„(forwardscattering
amplitude) as

1
(~ql&~-IIIq)

2MH

T„=i dze '~T j+x j„0 (14)

and so below we will construct the OPE for the product
of currents in Eq. (14). Having in mind the relationship
to Euclidean analysis discussed above we will treat our
expansion in the same way as a normal Euclidean OPE.
In the asymptotic limit mg m oo the hadronic tensorh„„is given by the tree graph of Fig. 1. This graph
de6nes the matrix element of the transition operator T„„
over the heavy quark state:

Here disc(h„) is the discontinuity of the forward scat-
tering amplitude h„„onthe physical cut in the complex
plane of the variable qo. Of course, h„„canbe expanded
into the same set of structures as W„„[seeEq (6)]:.

h „=—hzg~„+h2v„v +i h3CI pv q
n P

+h4 q„q„+hs (q„v„+q„v„),
and relation (10) implies that

m; = 2Imh;. (12)

Let us remember that h„„is the matrix element of the
transition operator T„„;

FIG. 1. The tree diagram determining the transition op-
erator T„„in the leading approximation. The dashed lines
correspond to the weak currents, the solid internal line de-
scribes the propagation of the quark q, and the bold external
lines represent the heavy quark Q.
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P„=Pp„—= mg v„,

The latter expression represents nothing else but the fxee

quark decay. In the asymptotic regime mg -+ oo the
interaction of the heavy quark with the gluon and jor
light quark medi»m, as well as its intrinsic motion inside
the hadron can be neglected. Then

where v„is the four-velocity of hadron Hg .
Equation (15) allows one to immediately write down

the operator form in the approximation at hand (only op-
erators bilinear in Q, Q are considered; see the discussion
of other operators at the end of this section):

2I'„Q= — [g „k„+g „k„—g„„k—ie„„pk~]Qp(1+ps)Q,k2-m2 (17)

where k = Pp —q.
As we see, the two operators Q7 Q and Qp psQ

showed up in the operator expansion at the level con-
sidered. Note that the Qp psQ term vanishes after av-

eraging over the unpolarized hadronic states.
In this paper the perturbative corrections in o., are

not touched upon at all. As for nonperturbative correc-
tions they appear because of interactions with the soft
medium of the light cloud in Hg. By taking these in-
teractions into account we isolate two types of effects.
First, the fast quark q produced does not propagate as a
Bee one, but interacts with the background fields; these
corrections will be included explicitly into the OPE coef-
ficients. Second, the heavy quark Q also does not live in
the empty space; it is surrounded by the light cloud. In
particular, because of this fact the heavy quark momen-
tum does not coincide with mdiv„. This large distance
eKect will not be calculated explicitly, but implicitly it
will be refiected in the Hq matrix elements of the oper-
ators in T„„.This is in full analogy with what is usually
done in deep inelastic scattering. The in8uence of the
background Geld on the transition operator is summa-
rized by the expression

X„~z)= z„~z).
Combining Eqs. (18) and (19), we arrive at

As we have discussed above the operator P„contains a
large mechanical part (Po)„=mdiv„; the deviation from
Pp will be separated explicitly;

p„=(Po)

and we will expand in vr„.In this paper we will limit our-
selves to the terms up to O(zz) corresponding to 1/mqz

corrections. The master formula to perform the expan-
sion ls

T„„=— dz z Q(X)I'„ I'„Q(X)0—m~+

(23)

T„„=— dxe 'q x 1„Sqx, 0 I'„0,
where Ss(z, 0) is the propagator of the quark q in an
external gluon field A„. It is convenient to use the
Schwinger technique of treating the motion in an external
field (for a review of /CD adaptation see, e.g., Ref. [12]).
Within that formalism the propagator Sq is presented by
the expression

S,(z, O) = z —m
0, .

[p„,X„]=i g„„,[X„,X„]= 0, [p„,p„]= 0. (20)

The states ]z) are the eigenstates of the operator X„,

Here P = p" [p~ + A„(X)]and A& ——gA~ T~ is the
gluon Gejd in the matrix representation. Furthermore,
the operator of coordinate X„and molnentum p„are
introduced [thus the field A„(X')becomes an operator
function of X„]with the commutation relations

There is a subtle point in the description of the for-
malism given above. Technically in the computation the
A„(z) is assumed to be a c-number background field
while in the final expression for local operators it should
be understood as a second quantized operator. Since we
are not considering any loop corrections, this substitution
is justified.

Let us now discuss the set of the operators relevant
to the order O(m& ). Without loss of generality we

can work in the rest kame of the hadron Hg, i.e.,u„=(1,0, 0, 0). Only those operators will be retained
which produce nonvanishing results after being averaged
over Hq. The leading operator, as was discussed above,
1s

(24)

its matrix element is fixed by the vector current conser-
vation:

(25)
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Equation (25) is given in the relativistic normalization we
are using throughout this paper. In the nonrelativistic
normalization there is no need in the factor 1/2M~~ on
the left-hand side (LHS).

As has been noted in the Ref. [5] there are no operators
of dimension 4 in the problem at hand. The set includes
two operators of dimension 5:

A few comments are in order here concerning the ac-
tual technique of constructing the OPE. Since we work
in the Hg rest kame, it is convenient to compute dif-
ferent components of T~„separately, Too, To, , T,.o, and
T;~. The calculation itself is a straightforward although
rather tedious procedure of expanding the denominator
in Eq. (23) in P using the properties of the p matrices,
the commutation relation

0~ = -Qo. ~G pQ,2
(26)

[zr„,~„]= zG„„
0 = —QD Q=Qm Q, (27)

where o ~ = 2i (p p~ —pZ p ) and G p = gG &T is
the gluon field strength tensor. The classification above
takes into account the fact that the quark field Q satisfies
the equation of motion. In particular, this classification
implies that the operator QQ is not independent but is
reducible to three operators (24), (26), and (27):

and Eqs. (30)—(32).
Notice that we must keep the terms of the first order

in xo and of the second order in m, since

zrpQ = Q+0(mq ).(o . n)2 —2

2m@
(34)

Next, observe that the Green function in the background
field can be written as

QQ = QvpQ —,Q~'Q
2 mQ

, Qo. ~G &Q+0(mq').
4 mq2

(28)

—g —m q

(35)

1= ('P —g+ m~) (P —q) + (i/2)o G —m

1' rr'
= (P—g+m )—.

To get Eq. (28) we observe that the lower component of
Q is related to the upper one in the following way:

Q = m cr Q+0(mq ),
2 2m+ 2

and the difference between QQ and QppQ is due to the
product of the lower components. (Here and below we
will stick to the Hq rest frame. )

A few other useful relations which can be obtained in
the same manner and are valid at the level 0(mq ) are 1

m2 —m2 —27 q+ q~'
q

(37)

To transpose 1/II with I' it is convenient to use the
identity

1 1 1 1
„—r„=r„—+ „—[r., rr] —

„

1 1 i 1= r„—„+—„r„,-~G —„.II. "'2
Acting on Q and using the equations of motion we can
now substitute 1/II in both terins on the right-hand side
by

Qp mQ = Q m ——oG Q+0(mq ),
mq ( 2

Qp. mppQ = 0(mq ),

QzrpQ = Q n ——oG Q+0(mq ).
)

(30)

(31)

provided that we limit ourselves to terms up to 0(mq ).
The second term in (36) can be simplified even further
since here we can additionally neglect 7r in 'P = Pp + 7r

We split the calculation into three parts:
vectorxvector, axialxaxial, and vectorxaxial in corre-
spondence with the structure of I'„asa sum of vector
and axial vector, I"„=p„+p„p5. The full hadronic
tensor h„ is given then by the expression

Izvv + IzAA + gAv + gvA (Hq ~Tvv + TAA + TAv + TvA ~Hq)
1

Hg

1 'l 2

2MH
Hg p —a„G"p Hq) = pg,

2
(39)

The complete expressions for the hadronic invariant
functions are given in the Appendix. In the order
0(mq ) they are defined by the matrix elements of op-
erators 0~, 0 given by Eqs. (26), (27):

(Hq]Q m Q~Hq) = y, .
2 MH~

(40)

The parameter pG2, coincides with m ~ introduced in

[15]. For mesonic states it is expressible in terms of the
quantity measured experimentally, the hyperfine mass
splittings, and it has a zero value for baryonic states of
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(—1)" d"-'
(n —1)!dh"-' (42)

where z is given by

z = mg —2mgqo+q —m2 2 2 (43)

FIG. 2. The tree diagram determining the operator vrith-
out the heavy quark Q. Now the bold internal line describes
the propagation of the heavy quark Q and the solid external
lines represent the quark q.

1 I'„q
mQ

2
2 i [9apqv + gavq, —epvqa tepvapqp]—m~

Xq7 (1+'Y )q. (41)

The matrix element of the operator qp q over the Hq
state counts the number of quarks q and is not small in
general. The operator coefficient given by Eq. (41) is
particularly large when q2 -+ m.

In terms of the intermediate hadronic states in the for-
ward scattering off Hq this contribution is due to states
in the crossing channel containing two Q quarks —the
problem was pointed out in Ref. [5]. The cross channel
is not related to the weak inclusive decays under consid-
eration. It is reasonable to accept the duality between
the operators without heavy quark fields and the cross-
channel contributions having nothing to do with heavy
Bavor decays. We rely on the assumption that we can
consistently omit the crossing channel together with op-
erators in T„„relatedto this channel.

the type of Aq, the parameter p2 has the meaning of the
average square of spatial momentum of the heavy quark

Q in the hadronic state Hq. The two quantities @2& and
p2 often appear in the combination y2 —p,~&, cf. Eq.
(28).

The last comment of this section is about the opera-
tors which are not bilinear in Q, Q fields. The simplest
example of appearance of such operators is given by the
diagram of Fig. 2 where the heavy quark Q propagates
between the current vertices. This diagram is similar to
the one of Fig. 1, and the corresponding operator follows
from Eq. (17) by the substitution Q ~ q, ms ~ mq,k„~q„.The additional term in T„„hasthe form

m+ q —m
qo -+ qo

——
)

2m@
(44)

and taking the derivatives in the case of b' and b", one
would get the wrong answer. The point is that the inte-
gration domain in qo has a boundary f'rom below:

qo e+4E ~

q

e
(45)

We do not present here the expression for the triple diHer-

ential distribution which can be easily obtained by corn.-

bining Eqs. (8), (12), (42), and expressions for h; from
the Appendix.

Although the result is derived for the physical quan-
tity d I'/dE, dq2dqo, it cannot be directly compared with
the experimental data. An obvious signal for this is the
presence of the b function and its derivatives. It is not
surprising because we are sitting now right on the mass
shell of the q quark. As we discussed in the Introduction
our results should be understood in the sense of duality,
that is, that the predictions should be smeared over a cer-
tain duality interval; At the moment we have no purely
theoretical tools to fix the size of the duality interval;
therefore we are forced to rely on qualitative arguments
and experimental data. For example the duality interval
for qo can be inferred &om the distribution in the invari-
ant mass of the final hadronic states. Our h functions
refiect the resonance structure at low invariant masses.
The smearing interval should be chosen in such a way as
to cover the entire resonance domain up to the onset of
the smooth behavior. Instead of smearing of the distri-
bution one can calculate the average characteristics such
as the total width I' or (M&), where Mx is the invariant
mass of the final hadronic states. The power corrections
we have calculated will enter in a specific way in each
particular quantity.

Now let us proceed to the calculation of the double dif-
ferential distribution d2I'/dE, dq2. To this end we must
integrate over qo, a rather simple exercise with b func-
tions. However, if one would perform the integration by
merely substituting

IV. CALCULATION OF THE DIFFERENTIAL
DISTRIBUTIONS

The differential distributions we are interested in are
determined by Eq. (8) containing three invariant func-
tions mq, m2, and m3. They are obtained &om the results
for Ii; (see the Appendix) by taking the imaginary parts
of the corresponding functions [see Eq. (12)]. The imag-
inary parts are due to the poles of h, and are obtained
through the relations

which corresponds to 4 E,E„&q . Therefore one should
take into account the fact that qo cannot cross the bound-
ary (45). For that we introduce 8(qo —E, —q2/4E, ) into
the integrand. The occurrence of the 8 function is im-
portant for the integration of b'(qo —qo) and b"(qo —qo)
which leads to the aPPearance of h(qs —E, —qz/4E, )
and 8'(qo —E, —q2/4E, ) in the double distribution
d I'/dq dE, because of differentiation of the 8 function.
The final formula for the double differential distribution
in the lepton energy E, and. q takes the form
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g I G~m~ 2

dxdt 96 m3
z (6(1-t)(1-p- z+ zt) + Gq[1- 5p+ 2t+ 10pt+ 10xt —10xt

—(—1+6p —5p'+ *—5p*+ t —2pt + 5p't + zt + 15pxt

+5z t —2xt —10pxt —10x t + 5z ts)8((l —t)(1 —z) —p)]
+&q[—3+3p+4t —4pt —6zt+4*t' —(1 —2p+ p' —3z+3px —3t+2pt+ p t+ llzt —3pzt
—3x t —6xt —2pxt + 2x t + z t )b((1 —t)(1 —x) —p) + (1 —p —x+ zt)(1 —t)
x(1 —2p+ p —2zt —2pxt + z2t2)bf((]. —t)(1 —z) —p) ] ).

Here we have introduced the dimensionless variables

(46)

z = 2E, /mq, t = q /2mqE„ (47)

and the parameters

p=m /mq, Gq = p~/mq, Kq = p2/mq2 2 2 2 2 2 (48)

Let us emphasize that the scale mq used in Eq. (47) is the heavy quark mass and does not coincide with M~o which
is normally used in the experimental distributions.

The fact that the OPE generates corrections only of the order of O(mq ) (terms proportional to Kq and Gq) is
valid for the distributions only if we use mq as a scale, i.e., in the variables z, t Of co.urse one can easily rescale them
to M~o, then the corrections of the order of O(mq ) will show up for trivial kinematical reasons.

We can proceed further and obtain the energy spectrum by integrating over q2. The range of integration is given
by

0&t &1—
1 —x'

The result for the energy spectrum coincides with that obtained in [8]. For the sake of completeness we present it
here.

—=)V@0(z 0(1 —z —
p)2zzI(1

—f)z(1+ 2f)(2 —z) + (1 —f)z(1 —z)
dx ' 192m'

5 10 l f'
+(1 —f) (1 —f) 2+ —z —2f + fz ———[2x+ f(12 —12z+ 5z )] Gq

3 3 ) p

—(1 —f) (1+2f)z+ —(1 —f)(10z —8z )+ —(2 —4f)(2z —z ) IC0I
5 ff' 2 3

3 P P
(50)

where f = p/(1 —z). Finally, performing the last inte-
gration over z in the domain

0&x&1—p, (51)

we arrive to the total width coinciding with that in [9]:

, [ o(1+ -'(Gq —ltq)} —2

Let us dravr the reader's attention to the difference of no-

tation: y in [S] is equal to our z.

(52)

where zo ——1—8p+8p —p4 —12p ln p and zq ——(1—p) .
Now let us discuss the characteristic features of the

double distribution (46). The most striking one is the
presence of the singular terms. The technical reason

for occurrence of those terms was that we expanded the
denominator of the pole expression (23) in vr and o G.
Physically this expansion reaects the shifts of the masses
of particles due to the nonperturbative efFects. As was
mentioned above these singularities reQect the structure
of the resonance domain and the predictions suitable for
comparison with the experimental data require smearing
over the corresponding domain. To illustrate the most
salient features of our prediction let us concentrate on
the physically interesting case of the b m u transition.

For massless u quark the kinematical region of b quark
semileptonic decay is shown in Fig. 3. It has the
form of a square with the side equal to 1 in the plane
(x = 2E,/ms, t = q /2msE, ). The right-hand side
of the square corresponds to the maximal energy of an
electron E, = ms/2 while the upper side is a maxi-
mal energy of a neutrino. In the real B meson decay
the kinematical region is certainly wider; if one neglects
the pion mass, the region is the square with the side
x „=t „=M~/mq. The origin of this window is
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ment Vqg does not afFect the form of the cMerential dis-

tribution; the total semileptonic width is proportional to
]Vvq~ . The quark masses enter at the level of the lead-

ing approximation while Kg and Gq determine 1/m~&

corrections. It is important that our differential distribu-
tions by themselves could be used to fit these parameters.
In particular it is a good place to extract the heavy quark
mass.

Our purpose here is to give an idea of how important
the 1/m2& corrections are in the case of charmless B me-

son decays (b m u transition). To this end we will use
the approximate values for the parameters m~, Kg, and
G~ obtained &om other sources. First, we use mg 4.8
GeV as deduced from the /CD sum rule analysis of the
Ypsilon system [14], and m„=0. The parameter Ga can
be extracted from the B,B' mass splitting [15]:

FIG. 3. The kinematical region of the decay for 6 ~ u
decays in coordinates z = 2E, /mz and t = q /2m&E, . The
solid lines are the kinematical boundary for the 6 quark decay
(z „=t „=1) and the dashed lines are the boundary for
B meson decay (z ~„=t „=Mn/mt, ) The .area of inte-
gration for the distribution P(z, t) [see Eq. (55)] is shaded.
It includes integration over the resonance domain.

{1—t) {1—z) = ap/ma, (53)

and the resonance region should be included as a whole
into the process of integration; we can predict the integral
but not the structure.

V. APPLICATION TO THE ANALYSIS OF THE
EXPERIMENTAL DATA

Our theoretical prediction (46) depends on the follow-
ing parameters: Vqg, mg, mq, Kg, Gg. I.et us remem-
ber that in this paper we do not consider perturbative
in a, corrections (see Ref. [13]),which, of course, should
be added. The Cabibbo-Kobayashi-Maskawa matrix ele-

related to the motion of the heavy b quark inside the
8 meson. In our calculations we account for nonzero
momentum of the b quark in the form of an expansion
which produced singular h and b' terms on the boundary.
It is possible to show (see Refs. [8,16]) that the expan-
sion breaks down at distances (M~ —ms)/ma near
the boundary, and so we need to integrate our distribu-
tions over a range of the order of the window between
quark and hadron boundaries. It is interesting to note
that the distribution spreads oH' the distances of the or-
der (M~ —ms)/mg while the corrections to integrals are
only of second order in 1/ms.

Another eKect we need to account for is the structure
of the resonance region near the low end of the hadronic
invariant masses. To imitate the eKect let us imagine that
this region corresponds to the u quark fragmentation into
the hadronic states with a (the square of the invariant
mass) from a = 0 to a = ap ——2 GeV2. The curve
corresponding to s = 8o in Fig. 3 is given by the equation

Gb = 4[M (B ) —M (B)]/ms 0.017. (54)

1 d I'
P(z., t,) = — dzCt

I o ~( .,g. ~
ddt (55)

where z„t,is the point in the (z, t) plane sitting not
too close to the boundary (outside the resonance range),
I'p ——~V„a~ G2&m&/192zs, and the area of integration
A( zt) shown in Fig. 3 as shaded includes the reso-
nance domain plus the domain x & x„t& t . For the
experimental distribution the range of integration should
be extended to include the window between quark and
hadron kinematical boundaries. Notice that in the limit
of large mg the size of the window (M~o —mq)/mq is
parametrically larger then the resonance range ap/m&.
In the case of the 6 quark they are numerically close.

The function P(z, t) is plotted as a function of t in
Fig. 4 for three values of x equal to 0.3, 0.6, 0.8. The
last value of x is close to the border of the resonance re-
gion beyond which we cannot make reliable predictions
for the distributions considered. The dashed lines in Fig.
4 describe the leading order distributions in t while the
solid lines include the /CD corrections we have calcu-
lated. As we can see from the curves, the corrections are
negative and their relative magnitude is larger near the
end points of the spectra.

As a representative value we use for the parameter Kg
the value 0.02. A close value was obtained in Ref. [17]
from the /CD sum rules. An earlier /CD sum rule result

[18]was a factor of 2 higher. Notice that the sensitivity of
our results to the value of Kg is essentially less than that
to G&. For example, Eq. (52) for the b -+ u transition
contains G~+ 3K'.

In accordance with the discussion at the end of the
previous section the comparison with experiment should
include the integration of our distribution (46) over the
domain which includes the area adjacent to the kinemat-
ical boundary. We will choose this area to be given by
the resonance domain [see Eq. (53)] with ap ——2 GeV2.

Let us introduce the quantity
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VI. CONCLUSION

Let us now summarize our results. A model, inde-
pendent approach to nonperturbative eKects (1/mq)" is
used for calculations of differential distributions. The
effects are most pronounced near the end points of the
spectra. We discussed how the comparison with experi-
ment should be formulated accounting for the boundary
effects. Somewhat disappointing is that we cannot use
our results to improve an extraction of V„sby the con-
sideration of q dependence. Indeed, experimentally the
signal of b -+ u is due to the range of electron energy
E, near the upper end where 6 —+ c is absent. However,
as follows from Fig. 3 the distribution in q2 at such en-

ergies is concentrated in the resonance domain, and no
model-independent prediction emerges.
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APPENDIX: HADRONIC INVARIANT FUNCTIONS

Here we present the results of calculations of difFerent hadronic invariant functions h;, introduced by Eqs. (11),
(38). The structure functions to, are simply related to h; by Eqs. (12) and (42). We use the following notation:

=q ~ ~ =~0 —~ and~=m —2m~0+q2 — 2 2 2

For the vector xvector functions we have

1 f1 m, 'i 1
h~ = — (mg —m~ —qo ) —(p~ —p2 ) 2m' (3 mg ) z

1 1 2 2 2 2 1

fAQ 3
—p~ [(4mq —3qo)(mg —mq —qo) + 2q ]+p [qo (mq —mq —qo) ——q ]

4——p q (mq —mq —qo) —, (A1)
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h2 ——— 2mq — (pa —p~) ———[2@a (mq —ms) —5@a gp + 7p |Ipj —2
——mq p qVV 1 8 2 2 1

3m@
(A2)

hVV p (A3)

3m@
(A4)

vv 1 1 qo 2 2 1 4 2 1
hs = ——— 5 (pa —p ) —4y, —+ —y, q

z 3 mg Z2 3 Z3
' (A5)

To get the functions A.
++ for axialxaxial tensor from h++ one should substitute ms by (—ms) in Eqs. (Al) —(A5).

For the axialxvector tensor only one invariant structure survives:

= —+ 2ya+ —(p —pa) —,+
3 V

qo

Z mq z
(A6)

Summing up we get the result for the full hadronic tensor h„„:
hg ——— 2 (mq —qp) — (pa —p„)1 2 2 1

3m@ z

(
pa (4 mq + 2 q —7 mq qp + 3 gp) + 4 gp (mq —qp) ——q

3m+ 2mq
&

3
1 8 2 2 1———p' q (mq —qp) —,

(A7)

10 ~ 2 1 28 2 2 (8 20 ) 1 16 2 z 1
hs ——— 4mq+ (p —ppa) —— —p gp+ pa —mq —

3 qp —
2

—T lj mq q
3m@

4@a+
&

(IJ &a)
1 2 10 2 2 qo 1 8 2 2 1

(Ae)

4 = — (~. —~a) —,
8 2 2 1

3m@ z
(A10)

1 2 2 2 qo
hs ——2 ——— 5(pa —p )z 3 mQ

1 8 2 2 1—4V —+-V. q. —.
Z2 3 Z3

' (All)
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