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Gluon distribution functions for very large nuclei at small transverse momentum
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We show that the gluon distribution function for very large nuclei may be computed for small
transverse momentum as correlation functions of an ultraviolet finite two-dimensional Euclidean
field theory. This computation is valid to all orders in the density of partons per unit area, but to
lowest order in a, . The gluon distribution function is proportional to 1/z, and the efFect of the finite
density of partons is to modify the dependence on the transverse momentum for small transverse
momenta.

PACS number(s): 12.38.Mh, 12.38.Bx, 25.75.+r

I. INTRODUCTION
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The gluon distribution function per unit area was pre-
cisely the Weizsacker-Williams distribution function for
gluons scaled by the density of charge squared Huctu-
ations per unit area. The physical picture correspond-
ing to the above formula is that the Weizsacker-Williams
distribution is generated by random Quctuations in the
charge per unit area, and is similar in spirit, although
diH'erent in origin, than pictures used to describe nucleus-
nucleus scattering [6—8].

The approximation of small x guarantees that the cen-
tral region gluons see a source of valence quarks which are
of a much smaller size than a typical gluon wavelength
as measured in a frame corn. oving with the gluon distri-
bution at that value of the Bjorken x. We are therefore
in the deeply screened region. In this kinematic region,
Lipatov enhancements of the gluon distribution function
are expected to modify the Bjorken z dependence of the
distribution function and take 1/x i 1/z + where
C is some constant [9]. If such a small x enhancement
actually occurs, then the weak coupling expansion which
is allowed will only be formal since o., (p2) ln(1/x) will

In a previous paper, we argued that in a limited range
of transverse momentum, for small values of the Bjorken
x, quark and gluon distribution functions for very large
nuclei might be evaluated as the solution of a weakly cou-
pled many body theory [1]. This result relied heavily on
the technology of light cone quantization [2—5]. Specifi-
cally, when a parameter

p2 g gal/3 fm 2

corresponding to the density of charge squared Huctua-
tions per unit area, is p &) A&» then the strong cou-

pling is cr, (p, ) (( 1. When the Bjorken z is z (( A
it is then valid to replace the valence quarks by b func-
tions of charge along the light cone. For a,p « q~ && p,
and in this range of x, we computed the gluon distribu-
tion function to lowest order in weak coupling to be

J"= b+"Q (z+, zt)b(z ) . (3)

It was shown in our first paper that the nucleus can be
broken up into regions of transverse spatial extent such

not be small. It is not yet clear whether this enhance-
ment actually takes place in the deeply screened small
x region we are interested in. If it does, although the
coupling constant is weak, one will have to find a way of
systematically including the eÃects of this enhancement.

We will not address the small x enhancement in this
paper. We shall instead turn to another aspect of the
problem, which is computing the distribution functions
in the small qt region. We will here work to lowest (for-
mal?) order in cr, but to all orders in n, p . We will show
that the correlation function which gives the gluon dis-
tribution function can be expressed as a two-dimensional
Euclidean correlation function of an ultraviolet finite field
theory. We will Gnd that summing to all orders in o.,p,

modifies the qq distribution function. However, to all or-
ders in this expansion, the gluon distribution function is
proportional to 1/z.

Before deriving these results, we shall first brieBy re-
view the results of our earlier paper. We recall that in the
small x region, the valence quarks are Lorentz contracted
to a smaller distance scale than that of the wavelength of
the comoving gluon. Therefore the valence quarks may
be treated as being approximately b functions along the
light cone. We can ignore valence quark recoil, as long
as the gluons being emitted are soft and as long as the
coupling is weak. In this limit, the valence quarks may
be treated as sources of charge.

The valence quarks may also be taken to be uniformly
distributed in transverse space for sufBciently large nu-
clei. In this case, the scale of variation of the nuclear
valence quark distribution along the transverse direction
can be made large compared to the typical hadronic dis-
tance scales.

The problem therefore is to compute the distribution
function of gluons in the presence of static sources of
color charge localized along the light cone and uniform in
transverse space. The external current due to the source
may be represented as
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that the number of valence quarks in each region is large.
This allows us to treat the sources of charge as classical.
We also showed that the dominant contribution to the
ground state wave function came &om states which had
large Huctuations around zero color charge, but where the
Huctuations were small compared to the total amount of
charge in each transverse spatial region. In this limit, the
Quctuations are Gaussian.

The A ~ dependence of the gluon distribution function
in this screened region follows from the above arguments.
While the color charge is screened so that the average
color charge is of order ~N, where N is the total color
charge in each spatial region, the coherence of the color
field makes the gluon density of order N. The number of
valence quarks per unit transverse area goes as A /' . The
gluon density therefore goes as A /, up to corrections
due to the logarithmic dependence on A of the coupling
constant.

The problem is therefore a simple one: If we want to
compute a ground state correlation function, we can do
it by the path integral

A+ ———A = 0. (7)

where8(z ) =+1 forz ) Oandg(z ) =Oforz (0.
This function is nonvanishing only when z & 0, which
since z = (t —z)/i/2 is equivalent to z ( t Th. is is
what we expect for a classical 6eld generated by a source
traveling close to the speed of light with z = t. For x & t,
the source has not yet arrived, and for x & t the source
should produce a 6eld.

Using the de6nition of F'+ in terms of A',

Il'+ = b(z )n;.

If we further require that

F'~ =0 (10)

The only nonzero components of the field strength there-
fore are the transverse components which we require to
be of the form

[de [dg]
—~„P (is[A]+iA+P}.~ ~

(4) (where i and j are transverse components), we see that
we have a solution of the equations of motion as long as

that is, we just integrate the path integral for fixed charge
around a Gaussian Quctuating charge at each point in
space. We must therefore compute correlation functions
in a stochastic background field.

The approximation that we may treat the source as
classical is only true in the limit where the spatial regions
we are looking at have a large number of quarks in them.
In our 6rst paper, we argued that this requires that

V' n = gp(z, ) .

qa +,fascgs qc 0 (12)

Here p is the surface charge density associated with the
current J. There is no dependence on x because we

have factored out the h function. The dependence on z+
goes away because the extended current conservation law

We will assume that this is also the case in this paper.
In the previous paper, we evaluated the ground state

gluon distribution function in the perturbative region
where both o., and a,p were treated as small param-
eters. This latter condition forced a, p, &( q, . In this
paper, we will relax this condition and set up the com-
putation of the gluon distribution function in the soft
region.

II. CLASSICAL PROBLEM

We 6rst turn to the problem of computing the solution
of the classical problem for the gluon field in the presence
of a source which is a b function along the light cone. The
equation of motion is

D„F""= gJ",

where J is the classical light cone source. We will work
in the light cone gauge where A = —A+ = 0.

The current J" only has components along the + di-
rection and is proportional to a b function of x . There
exists a solution of the equations of motion for this prob-
lem, where the longitudinal component A+, which is not
zero by a gauge, vanishes by the equations of motion

is simplified by the solution of the 6eld equations in Eq.
(7) to read

Hence,

The condition that F'~ = 0 is precisely the condition
that the field a is a gauge transform of the vacuum field
con6guration for a two-dimensional gauge theory. The
requirement that V o, = gp is a condition that fixes
the gauge. For such a field configuration, the light cone
Hamiltonian

P =0.
This is the precise analogue of what we found in our
previous paper for the Weizsacker-Williams distribution
around an electron.

The field configuration which is a gauge transform of
the vacuum 6eld con6guration for a two-dimensional 6eld
theory may be written as

1 1 . t7. .e; = ——U —.V,U .
g Z

We have not been able to construct explicit solutions
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H(y) = 1/y

1 (( y (( 1/o,

We see here that this result is true only in the weak
coupling limit where o.,p, && k, . The range is larger
than that used in our previous work. Note also that
this result is parallel to that of finite temperature Geld
theory where there is a nonperturbative length scale, the
magnetic screening length, which is A 1/o. ,T where T
is the temperature.

III. COMPUTING CORRELATION FUNCTIONS

To compute correlation functions associated with our
classical solutions, we must integrate over all p. This is
equivalent to integrating over the transverse field with
the constraint that the field must be a pure gauge, that
ls~

1
[dnj exp — d2x~(Q, o, )2 $(F~2) . (20)

for the above equation for arbitrary dependence of the
surface charge density on x&.

Note that the field con6guration which solves this
problem only has a nontrivial dependence on x&. The
dependence on x, as shown in Eq. (8), is only through
a step function, and upon Fourier transforming gives only
a factor of 1/k+. As we will see in the next section, the
distribution functions associated with this field therefore,
to all orders in n, p, have the general form

1 dN (N2 —1) 1 1

xB2 dxd2kt or~ z a,
In our previous paper, we showed explicitly that in the
weak coupling limit we obtained the simple result

1
D(k, ) = —H(k, ),as

(22)

where D is the propagator for the two-dimensional the-
ory,

(2n. )'b'(kg —qg)b;, D(kp) = (cx;o,,). (23)

is to study the scaling behavior of expectation values, we
will not take into account these determinants. The de-
terminant for both integral representations in terms of
n or in terms of U is easy to compute, and is the same
for both representations. It is the determinant of V . 0
where 0 is the covariant derivative associated with the
field o.. This leads in two dimensions to an ultraviolet
finite modification of the above measure.

As discussed in the previous section and more explic-
itly in our earlier paper, when the relevant momentum
scale is k, )) o,2p2, the theory is in the weak coupling
region and may be evaluated perturbatively ~ For smaller
values of k2, we are in the strong coupling phase of the
theory. In this phase of the theory, we expect that there
should be no long range order. Correlation functions of
xq should die exponentially at large distances, or alter-
natively the Fourier transform of correlation functions
should go like a constant for small momentum. We will

see that this guarantees the finiteness of the gluon distri-
bution functions for small momentume

It should be easy to compute correlation functions for
the above action using lattice Monte Carlo methods. The
theory. is two dimensional which should make possible
the use of large grids. The theory is Euclidean so that
all quantities of physical interest are computable as Eu-
clidean correlation functions. The theory is ultraviolet
finite, so that there should be no problems extrapolating
to the continuum limit.

Finally, the correlation function for the computation
of the transverse momentum dependence of the struc-
ture function must be determined. This may be simply
evaluated to be

We can perform the integration over the transverse field
o. as integrations over unitary matrices in the standard
way in which one goes to a latticization of a gauge theory.
The integration measure becomes

jdU] exp
I

— dtertr V
~

U —VUt
~

. (21)f ,i' t

)
We see that the measure for this theory is that for a

two-dimensional Euclidean field theory. The spatial vari-
ables are those of the two-dimensional transverse space
of the original theory. This theory is ultraviolet finite
because of the fact the Lagrangian is fourth order in
derivatives. The expansion parameter for the theory is
~2p2/k2

The above analysis ignores Faddeev-Popov determi-
nants which are generated in transforming &om the inte-
gration over p to the integration over o. and 6nally to that
over U. To properly de6ne the two-dimensional theory
for purposes of Monte Carlo simulation, one may have to
investigate these determinants. For our purpose, which

The expression for the propagator can be easily rex-
pressed in terms of the link variables U. As claimed, the
small kq behavior of the gluon distribution function is re-
lated to the asymptotics in coordinate space for the prop-
agator of the two-dimensional theory. Large distances
correspond to strong coupling, which in turn corresponds
to a lack of correlations signaled by an exponential falloff.
We therefore expect that at small kq, the function H(kd)
will be Gnite; the gluon distribution function will be non-
singular.

IV. SUMMARY AND CONCLUSIONS

We have seen that the in&ared behavior of the gluon
distribution function for small kq is determined by solv-
ing a two-dimensional Geld theory. The relevant fields are
gauge transforms of two-dimensional vacuum con6gura-
tions. The light cone Hamiltonian vanishes for such con-
figurations. The field theory for the correlation functions
of interest is 6nite and involves integrating over gauge
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transforms of the field with a specified weight function.
It is clear that the gluon propagator and light quark

propagator in the presence of such a background field
configuration should be quite simple. The solutions of the
small Huctuation equations are just gauge transforms of
&ee field solutions. To construct the propagator one must
join solutions across the discontinuity in x generated by
the source of charge. The study of these propagators will
be the subject of later analyses.

It is also clear that the in&ared behavior of these cor-
relation functions is computable as a lattice Monte Carlo

simulation. Realistically, it appears that the desired ac-
curacy might be obtained.
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