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Transverse momentum distributions for heavy quark pairs
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We study the transverse momentum distribution for a pair of heavy quarks produced in hadron-
hadron interactions. Predictions for the large transverse momentum region are based on exact order
o., /CD perturbation theory. For the small transverse momentum region, we use techniques for
all orders resummation of leading logarithmic contributions associated with initial state soft gluon
radiation. The combination provides the transverse momentum distribution of heavy quark pairs
for all transverse momenta. Explicit results are presented for bb pair production at the Fermilab
Tevatron collider and for cc pair production at 6xed target energies.

PACS number(s): 13.85.Ni, 12.38.Bx

I. INTRODUCTION

The distribution in the transverse momentum qi of
a heavy quark pair QQ produced in hadron-hadron in-
teractions is of interest for elucidating the underlying
quantum chromodynamics (QCD), and its understand-
ing is important in studies of B-B mixing and CP vio-
lation at hadronic facilities. Unlike the case of pairs of
heavy quarks produced in e+e annihilation, QQ pairs
created in hadron-hadron collisions are often not in a
back-to-back configuration (even in a plane transverse to
the beam direction). The net transverse momentum of
the pair measures the imbalance between the transverse
momenta of the Q and the Q. In this paper, we examine
the quantitative description in QCD perturbation theory
of the expected imbalance. Predictions for the region
of large q~ are based on exact order as QCD perturba-
tion theory. For the regions of small and modest qi, we

employ an all orders resummation of leading logarithmic
contributions associated with the emission of soft gluons
&om the intial-state partons that participate in the hard
scattering process. This calculation addresses a practical
question for heavy quark tagging at hadron facilities: If
a Q is tagged with a given transverse momentum, what
distribution in transverse momentum should one expect
to observe for the associated Q'?

We consider the process hadron+hadron m Q+Q+X.
In the simplest parton model description, the underlying
hard scattering process is parton+ parton ~ Q + Q. At
this level of approximation, no bremsstrahlung gluons are
radiated from initial-state or Gnal-state partons. If one
neglects intrinsic transverse momentum of initial-state
partons, q~ is zero. Therefore, in the simplest parton
model description, Q and Q pairs would be produced
back to back in the transverse plane. However, gluon
bremsstrahlung is important in QCD and in general gen-
erates nonzero q~ .
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The single particle inclusive difFerential cross section
for heavy quark production has been studied in detail
at next-to-leading order in QCD. We cite in particular
the calculation of the complete first order corrections to
the dominant QCD production channels [1, 2] and [3—5]
and comparisons with data on inclusive b-quark produc-
tion from the UA1 [6] and Collider Detector at Fermilab
(CDF) Collaborations [7]. We mention also the recent
work on resummation of leading logarithmic contribu-
tions for the one particle inclusive cross section [8]. In the
single particle inclusive approach, the kinematical vari-
ables of the heavy quark's (or antiquark's) partner and of
the final-state light partons are integrated over with the
attendant limitation that it is not possible to examine
quark-antiquark correlations or the cross section difFer-
ential in the transverse momentum qT of the QQ pair.
Correlations have been studied at leading order [9] and
at next-to-leading order [10, ll]. One may expect that
next-to-leading order QCD should provide reliable expec-
tations for the distribution in qT at large qT. At small

qT, the relatively large mass mg of the heavy quark Q
justifies perturbation theory, but the presence of the two
disparate scales mg and qT requires care.

Perturbative QCD has been used for a successful de-
scription of transverse momentum distributions in mas-
sive lepton-pair production, the Drell-Yan process [12].
There one studies the reaction hadron + hadron
e+ + e +X, where the electron-positron pair is detected
and its transverse momentum q~ is measured [13—16].
Important for the quantitative description of the trans-
verse momentum distribution at modest values of q~ is
the resummation of logarithmic contributions associated
with emission of soft gluons in the initial state of the hard
scattering process quark + antiquark + e+ + e + X.
We follow closely the analogy with the Dre11-Yan case
for the reaction hadron + hadron -+ Q + Q + X and
concentrate on the transverse momentum distribution of
the QQ quark pair. Heavy quark pair production is, how-

ever, more involved than massive lepton-pair production.
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New complications arise &orn soft gluon emission &om
the final-state heavy quarks, effects that are absent in
the Drell-Yan reaction. We will argue that the resum-
mation technique for dealing with initial gluon radiation
should still be applicable in our case. Soft gluon emission
from final-state heavy quarks has been studied in [17].

For the process hadron + hadron ~ Q + Q + X, we
choose to study the cross section differential in the vari-
ables M2 and q&, M is the invariant inass of the QQ pair
Knowing M and q~, we can judge how far the QQ sys-
tem is away &om the back-to-back configuration in the
transverse plane. To be more specific, when M is near
the mass threshold 2m of the QQ pair, the momenta of
the Q and Q are close to zero in the center of mass frame
of the QQ system. Only a small amount of q~ then suf-
fices to put the Q and Q in a configuration that is not
back to back in the transverse plane in the laboratory
system of reference. On the other hand, at large M, the
Q and Q have large relative momentum in the center of
mass frame of the pair. At large M, large q~ would be
needed to produce a QQ pair that is not back to back in
the transverse plane in the laboratory system.

At large and moderate values of q&
——O(M ), the QQ

pair production cross section can be computed perturba-
tively as

2= n, (ai+ a2n, + asn, + ).dM2dq~2

At any fixed order of n, and q2& g 0, the cross section
is well behaved after the hard scattering cross section
has been properly defined. At low q&2 g 0, however,
the convergence of the perturbative series deteriorates.
For small q&2 P 0, the dominant contributions (i.e., the
leading logarithmic contributions) to Eq. (l) have the
form

Gg A (M'l
dM'dq~2 q~

'
( q~2 )
, t'M'l

yb2n ln
~ 2 ~+«i)

The convergence of the theory is therefore governed
by n, ln (M /q&2) instead of n, . The logarithms arise
through emission of soft and collinear gluons. At suS-
ciently low q&2, n, ln (M2/q&2) is large even when n, is
small and any fixed order calculation breaks down. In
order to obtain a reliable prediction, one must resum the
leading contributions to all orders in o,

The remainder of this paper is organized as follows. In
Sec. II we present the perturbative calculation of the q&
distribution using exact order n, /CD matrix elements.
We describe how to obtain the asymptotic expression at
q&

—+ 0 &om the exact order o., matrix elements. In
Sec. III we discuss the formalism for resumming the ini-
tial soft and collinear gluon contributions. We match the

I

resummed result in the low-q&2 region to the exact O(ns)
result in the high-q& region. Results and examples of the

q& distribution for specific hadronic reactions are given
in Sec. IV.

II. PERTURBATIVE CALCULATION

We begin our discussion with the hadronic reaction in
which a QQ pair is produced:

p;(ki) + p, (k2) m Q(pi) + Q(p2) + X, (4)

where p;~ are the initial partons &om the proton and
the antiproton. The relationship between the momenta
of the hadrons and partons is

ki ——(iKi, k2 ——QK2.

The four-momentum of the system made up of the QQ
pair is

q" =»" +»".
We also define several useful invariants for our calcula-
tion:

S = (Ki + K2),
a=(ki+k2) = (i(2S,

M'= q' = (pi + p2)'
M M2

Xg— 2
2q Kg 2q K2
1 1Y= —ln(q K2/q Ki) = y+ —ln((i/(2),2 2
2q Kxq K2 M2 2q. kgq. k2

K, K2 k& k2

We remark that y S is the collision energy of the pro-
ton and antiproton; M is the invariant mass of the heavy
quark QQ pair; q& is the square of the transverse momen-
tum of the pair, equal to the square of the vector sum of
the individual transverse momenta of the Q and Q; Y is
the rapidity of the QQ pair in the center of mass frame
of the proton and antiproton; and y is the rapidity of the
QQ pair in the center of mass frame of the interacting
initial partons.

The differential cross section for reaction (3) is ex-
pressed as a convolution of partonic cross sections and
parton distribution functions:

p(K, ) + p(K, ) ~ Q(p, ) + Q(p, )+ X.

In this expression, p and p denote the proton and antipro-
ton, respectively. The quantity X stands for all the final
particle states that we sum over so that the above pro-
cess is semi-inclusive with respect to the outgoing final
particles. We use capital letters for the momenta of the
proton and antiproton to distinguish them from those of
the quarks, antiquarks, and gluons. The corresponding
partonic subprocess can be written as

2 1 1 2) d(1 d(2 fi/P(fli 0') fj/P((2~ V) dM, d, d
q q g +min 7min /(1 l.
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q(&i)+ q(k2) ~ Q(») + Q(»)

g(I i) + g(k2) ~ Q(pi) + Q(»)
(9)

The symbols inside the parentheses denote the momen-
tum assignments for the partons. The Feynman graphs
that contribute to the Born amplitude are shown in Fig.
1.

Here ~;„= (gM~ + qz + q~) /8, and
d o,~ &qx/dM dq&dy is the fixed-order reduced par-
tonic cross section obtained by first calculating Feynman
diagrams up to a given fixed order in @CD perturbation
theory and then implementing a renormalization scheme
to remove any ultraviolet divergences. The soft diver-
gences at q~ ~ 0 are canceled between the virtual dia-
grams and the bremsstrahlung diagrams. The collinear
divergences (mass singularities) at q~ -+ 0 are absorbed
into the definition of the parton distribution functions.
Therefore the fixed-order reduced partonic cross section
is well behaved for any value of q&2, in particular q&2 ——0.
[Note that the apparent divergence at qz~

——0 in Eq. (2)
is canceled by a b function that arises from virtual dia-
grams. ) An advantage of calculating the order ns diKer-
ential cross section in terms of q& is that q& can be used
as a cutoK variable for both the infrared and collinear
divergences in the bremsstrahlung diagram calculations.
This means that at any finite value of q&, the order n, dif-
ferential cross section can be calculated by evaluating the
bremsstrahlung diagrams without explicit concern about
soft gluon cancellation and factorization of the collinear
singularity.

We now consider QQ pair production in @CD pertur-
bation theory. It proceeds by the following two reactions
in the Born approximation (order a2):

000000000 000000000
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'000000000' 'oeoeoeooo

FIG. 1. Feynman diagrams at order a, .

The magnitude squared of the Born amplitude, aver-
aged over initial colors and spins and summed over final
colors and spins, can be written as [18)

2 g
IM Iqq+~q

——g CP A@ED,

g, ( tiui)
IMIss~qq =, '

I
&s —&A I ++EDX2 —1( s

with

t~+u~ 2m
/ED — +

(10)

u, 4m's ( m'sl
BqED= + +

I
1

ul tl tlul ( tlul )
tq and ui are defined as

ti ——(&2 —p2) —m, ui ——(It, i —p2) —m . (12)

It is easy to verify that

qqss Q gI 1
I

gI 1
I

g(q2) qqss&

dM2dq&2dy k ~i )
The total partonic cross sections are [19]

(13)

2xo. C
cr -(M )= ' P(1gg

l'l(M')= " '
99 M2 N2

2xo~ CA
M2 N

+ 2m'/M'),

M')
—

I
1+ M, IP —

I
1

4m'l t'

5 m')

m2
+ M2

4m4
lnz

8m'l
I
inz

(14)

with

1 —P
P = Ql —4m2/M2, x =

1+P
The CA and C~ are the Casimir invariants for the adjoint
and the fundamental representation of SU(N). For the
particular case of SU(3),

N —1
CA ——N, C~ ——

2N

Observe that the differential cross section Eq. (13) is pro-

I

portional to b(qz), because in the Born approximation
the heavy quark pairs are produced with q&

——G. The

total partonic cross sections o.
q (M ) and o'ss (M ) are(O) 2 (O)

inversely proportional to M . This dependence can be
understood because the lowest order graphs either have

only s-channel poles or fermion exchange lines. Most of
the heavy quark pairs are therefore expected to be pro-
duced near threshold) M = 4m .

At order a, the contributing partonic subprocesses in-
clude gluon bremsstrahlung diagrams and (anti)quark-
gluon scattering diagrams:
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q(k. ) + q(k. ) ~ g(k. ) + Q(p. ) + Q(p. ),
g(kl) + g(k2) 1 g(ks) + Q(pl) + Q(p2),

g(k, ) + q(q) (k2) ~ q(q) (k, ) + Q(p, ) + Q(p2),
0000000 000000000

plus virtual correction diagrams [20] to the lowest order
processes Eq. (9). In Fig. 2 we show some examples
of the gluon bremsstrahlung diagrams that contribute at
order o,

In the order as processes (18), q& is no longer con-
strained to be zero; a spectrum of values of q&2 will be
produced. The q&2

—+ 0 limit means that the parton
with momentum ks in the processes (18) is either soft
and/or collinear to one of the initial- or final-state par-
tons. We note that in the qq channel there are diagrams
with a gluon emitted &om an initial quark or antiquark
line; these look diagrammatically exactly the same as
corresponding graphs in the Drell-Yan reaction. In ad-
dition there are diagrams with a gluon emitted &om a
6nal heavy quark or antiquark line; these are absent in
the Drell-Yan reaction. The initial gluon emission dia-
grams can be soft and/or collinear divergent at q&2 ~ 0.
The 6nal gluon emission diagrams can have only a soft
divergence at q&2 ~ 0 because the 6nal-state quarks are
massive. The same statements can be made for the gluon-
gluon-initiated subprocesses which are usually the domi-
nant processes for QQ pair production. The quark-gluon
scattering diagrams have only a collinear divergence &om
light quark emission. The square of the matrix element
for the order as processes Eq. (18) has been published
[21]. We will make use of those results in our calculation.

To calculate the partonic differential cross section
do . . -&/dM2dq&2dy at order as we must integrate over

variables which are independent of M, q&, and y for the
I

000000000 000000000
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FIG. 2. Examples of order a, Feynman diagrams arith a
gluon emitted kom an initial quark or gluon line or &om Snal
heavy quark line.

gluon bremsstrahlung and quark-gluon scattering pro-
cesses. We choose the QQ center of mass frame in which

(up ———Ql —4m2/M2.
M
2

We obtain

(20)

q" = (pl + p2)" = (M, 0, 0, 0),

pl = (M/2, Mp Sill 81 S1I182, tdp SlI1 81 COS 82, 4/p COS 81),

p2 = (M/2, ldp slI1 81 slI1 82, —fdp sin 81 cos 82, —ldp cos 81),
(19)

with

'&~qql,
( )

z& x~ t' »& /' ») q~/M
dM2dq~2dy 128~'sM2 ~ ~2 ( E (I) g (2) 1+q~2/M2~

d3

2
p' ~((q-»)'-m') IMI;, qqa2J'1

(21)

The integral f dspl can be expressed explicitly as

f d 2 ] 2'
o ~((q —»)' —m') IMI;, qqg, = -41 —4m'/M' (22)

0

2
and IMI; ~qql, is the square of the matrix element for the order a, processes (18), averaged over spin and color.

It ls possible to perform the angular integrations analytically. However, the squared matrix elements for the QQ
production process are lengthy and the integrals are dificult making the calculation formidable Fortunately for any
finl«value of q& the order a, differential cross section Eq. (21) is free from any soft and collinear divergences so
that the angular integrals Eq. (22) can be dealt with numerically. Then the di8'erential cross section for the proton
antiproton reaction, Eq. (3), can be calculated by convoluting the partonic cross section Eq. (21) with the parton
distribution functions according to Eq. (8).

A quantity of interest and importance is the average of the square of the transverse momentum at a fixed invariant
mass M. It can be calculated as [22]

2

(
2 (M)) l( I'I-'~gqxl

q dM
= dq q dMd')

1 1 (& ™) l(4~) d 0..) 41 42 f '/ ((I p) fj /p((2 V') dqi qJ
M2/S M2/'(gz S 0 dM2dq~
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where

1) gi (!2 f;rp(6 I ) f)lp(& I ) d'M2 +
M /S M /(/AS)

&)2=9)0)

1 1 (o)

42 f;y„(6,1 ) f&yp(6 c )
M&/S M~/(g, S)

(24)

K denotes the familiar K factor, not necessarily a con-
stant in this case. The transverse momentum averaged
over all values of invariant mass can also be calculated in
the same way.

As remarked in the Introduction, the convergence of
the perturbation series deteriorates in the region q& &(
M2. For predictions of improved reliability in that do-
main, one must try to sum leading contributions Rom all
orders in a, . We will use the procedure for resumming
contributions Rom initial-state soft and collinear gluons
developed by Collins and Soper [13]. To begin, we must
first extract the leading contributions in the region of
small q&2 &( M from the c), cross section. This is done

by calculating the angular integrals in Eq. (22) analyti-
cally. Fortunately, in the limit qz/M2 —) 0 the squared
matrix element simplifies substantially and the angular
integrals can be calculated analytically without too much
difficulty [3].

We take the limit q&2
—+ 0 of the exact expressions for

the square of the order as matrix elements and do the in-

tegration under the same limit. The calculation is accom-
plished in two steps. First, we calculate the soft gluon
contributions by setting the gluon momentum k3 -+ 0
everywhere in the matrix elements except in the denomi-
nators that are singular as k3 -+ 0. The soft gluon matrix
elements have also been derived in the literature [see Eqs.
(5.1—5) in Ref. [3] and Eqs. (2.24—26) in Ref. [4]]. In the
limit k3 -+ 0, the 2 m 3 kinematics can also be approx-
imated by 2 ~ 2 kinematics, which we can implement
effectively by replacing the h function in Eq. (21) by

&ir & (l2r 1+&i/M )

(25)
(,'i r

I

The singularities in the denominator can be replaced by

t' *il (
&ir E ('2)

2

M2 (26)

Second, the hard collinear contributions can be calcu-
lated if we replace the first b function in Eq. (21) by

1+~i/&'~

+ . (27)
8'(1 —

X 1/(i ) b (1 —Z2/(2)
(1 +2/62)+ (1 &i/(i)+

The + prescription in the above equation, defined as

f f( ) d
' f(*)—f(1)d

o (1 —*)+ o
(28)

ensures that there is no double counting in the phase
space region where the soft and collinear divergences
overlap. Both replacements Eq. (25) and Eq. (27) im-

ply significant simplification for our calculation. Their
origin has been well demonstrated, e.g. , in Eqs. (2.11—13)
of Ref. [23]. After we perform the angular integrations
and convolution with the parton distribution functions
we obtain the asymptotic expression for the differential
cross section for process (3) in the form

0

+ Avp(»)(&g s @f~)p)(»)+ (&' -sf (,)(»)f )p(») (29)

8P x = yP &zl dy

k") " (30)

The functions AI l come purely from initial-state soft

The symbol denotes a convolution of the parton distri-
bution function f and Altarelli-Parisi splitting function
P, defined by

with

(~) (~) (~)I+,F (32)

I

and collinear gluon radiation:

The functions 8,. ) can be split into two parts, in terms
of initial- and final-state gluon radiation:
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B I ———3', B &
——2C~+ 2' (1 —2m /M ),

(~)B
(

—
) I 0!)

B I ———2Pp, B & ——2Cp + 2CF (1 —2m /M ),

(~)B() ~
——O.

(33)

Quantities z and P have been defined in Eq. (16). Our
coefficient Pp of the P function is normalized to

(34)

To verify our calculation we have checked that the 1/e2,
1/e pole terms generated by dimensional regularization
&om the terms not proportional to the Altarelli-Parisi
splitting functions in the expression Eq. (29) cancel the
infrared pole terms from virtual diagram calculations [3,
4].

The expressions for the initial-state gluon radiation
terms for the qq channel, A ~ and B I, are exactly(~) (&)

the same as those in the Drell-Yan reaction. For initial-
state gluon radiation in the gg channel, our expressions
A~~sl and B~~sl also agree with those found by Catani,
D'Emilio, and Trentadue [25] and by Kauffman [23] for
production of a color singlet state from gluon-gluon fu-
sion. The agreement in both cases follows the expecta-
tion that the initial-state soft gluon radiation does not
depend on the type of hard process under consideration
[26, 27]. It indicates that the effects of initial-state gluon
radiation can be resummed to all orders of o., for QQ pair

I

I

production, as in the cases of the Drell-Yan reaction [13,
14] or Higgs boson production through gluon fusion [24,
25, 23]. In the next section we will attempt the resumma-
tion of the initial soft and collinear gluon contributions
using the formalism developed for the Drell-Yan process
[28, 29].

The expressions for final-state soft gluon radiation,

B & and B +, are the same for the qq and gg chan-(~) (~)
+@i& QQi+ ~

nels. This can be understood since the final-state soft
gluon radiation occurs Rom the final-state (anti)heavy
quark lines in both the qq and gg channels. Soft gluon
emission &om final-state heavy quarks has been studied
in Ref. [17].

III. RESUMMATION

The technique for resumming contributions Epsom

initial-state soft and collinear gluons was developed by
Collins and Soper [29], and it has been applied to massive
lepton-pair production [14], single vector boson produc-
tion [30,31], Higgs boson production [24, 25, 23, 32], and
ZZ-pair production [33]. In our case, the appropriate
expression analogous to that of Collins and Soper is

0
dM2dq2 dY

»i=a 0 e

o;~ l(M ) dbb Jp(bq~) W;i(M, b),
2 0

(35)

where Jp(z) is the zeroth order Bessel function. The function W~i(M, b) sums all the logarithmic terms of the form
cP, ln (M2b2) with 1 & m ( 2n in the impact parameter b space. The all orders structure of W is given by the
functional form

c,'M'
d 2 (C2M2)

W„(M, b) =exp( — 1a A;, (a, (q )) +Ba(a(q )),
c~ps& q2 ( q2

x C |S,g„xg, C g ~y„- x2,

The parameters C~, C2, and C3 are somewhat arbitrary.
They are associated with the choices of renormahzation
and factorization scales in a fixed-order perturbative cal-
culation. We use the standard choices

Cg ——C3 ——2e ~~ = b0, C2 ——1, n=1
(39)

where p~ is Euler's constant. The symbol denotes a
convolution, defined in Eq. (30). In the limit q&/M ~ 0,
the parton momentum &actions are

(38)

The functions A, B, and C(z) may be expanded in a
perturbation series in o;,:

C,, (a, a.) =S,,-S(i —x) + &
C("'

(
—')".

The reason for the bar over the j in the expression for
C;z(z, a, ) is that the fiavors of i and j must be the same
in the case of qq.

We work to first order in the expansions of A and B
which corresponds to summing the first two powers of
ln(Mz/q&2) at every order in o.„i.e, the double-leading
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logarithm approximation. The A~". 's and B,". 's depend
implicitly on the choices of t g 2 3 The simplest forms

result from the choices in Eq. (37). The coefficients A;

and B; .in Eq. (39) can be obtained by formally expand-(~)-

ing Eq. (35) in a series in o., and then comparing with
the asymptotic perturbative calculation from our previ-
ous section. For initial-state gluon radiation, the expres-
sions for A, in Eq. (39) are the A, of Eq. (31), and the

B; are the B, Iin .Eq. (33). For C, we make the sim-

plifying choice C, = b; b(1 —x—) since we are working in
perturbation theory to the first nontrivial order in n, for

large q~. [Note that crI
l in Eq. (35) is proportional to

n2. ] Our neglect of C~ l will only affect the normaliza-

tion at q~ = 0 to O(ns) and the distribution for q~ g 0
to O(a4). These statements imply that our calculation

I

includes resummation of the double-leading logarithms
to all orders in o.„but the total integrated cross section
is accurate only to second order in o,

We comment that the validity of the resummation for-
malism [29] was demonstrated for the Drell-Yan reaction
and for W, Z production where there is no final-state
gluon radiation. We are making the reasonable assump-
tion here that the same formalism is valid for dealing with
the effects of initial-state soft and collinear gluon radia-
tion in the case of heavy quark pair production. Resum-
mation of soft gluon emission from the final-state heavy
quarks has been studied in Ref. [17].

The gluon resummation formula, Eq. (35), provides the
cross section in the region of small q~', for the high-q~
region we use the exact O(ns) perturbative calculation.
We will join the results for the low-q~ and high-q~ regions
using a matching procedure employed previously [24, 23]:

d0' ddt ddt do
(match) =

2 (pert) + f (q~/M) 2 (resum) —
2 (asym)

dM de dg dM dqidy dM2 dq~2 dy dM dq~dy
(40)

The function

1'("™=
1+ (3,./M)

(41)

W(b) m W(b, )e (42)

b

Ql + bz/b2
(43)

Large values of b are thereby cut off at some b

exp[ —SNp(b)] parametrizes the large-b dependence due
to nonperturbative physics. In principle, exp[—SNp(b)]
can be measured, but in practice one can approximate
the function with a simple Gaussian parametrization:

SNp(b) = b [gg + g2 ln(b M/2)].

According to Davies and collaborators [14),

g~ = 0.15 GeV, g2
——0.4 GeV, b „=(2GeV)

(44)

The values of gq and g2 are obtained by fitting massive
lepton-pair production data at ~S = 27 and 62 GeV.

serves to switch smoothly &om the matched formula to
the perturbative formula [23]. For details of the matching
procedure we refer the reader to papers by Arnold and
Kauffman [31] and subsequent publications.

Before presenting numerical evaluations, we end this
section with a few remarks. As discussed by Parisi and
Petronzio [28], the resummed expression Eq. (36) is ill
defined when b & I/AqcD because confinement sets in
and n, diverges. Procedures have been proposed in
the literature [28, 29, 14] to deal with this diFiculty and
parametrize nonperturbative effects. In this paper we
follow the method used by Collins and Soper [29] and
by Davies and collaborators [14]. We replace W(b) in
Eq. (36) by

I

There is no strong reason to believe that the contri-
bution &om nonperturbative intrinsic transverse mo-
mentum should be identical for subprocesses initiated
by gluon-gluon scattering, as in our case, and quark-
antiquark scattering, as in massive lepton-pair produc-
tion. When substantial samples of data become available
on cc and bb production, it should be possible to refine
the choices made here. Particularly informative in this
respect will be data on the azimuthal angle (P) depen-
dence. The extent to which the quark and antiquark are
produced with P near 7r is particularly sensitive to the net
transverse momentum imparted to the quark-antiquark
pair [10, 11].

IV. RESULTS AND DISCUSSION

In this section we present and discuss some phe-
nomenological applications of our analysis. We use
Harriman-Martin-Roberts-Stirling (HMRS) parton dis-
tribution functions [34] and the one-loop-corrected for-
mula for the running coupling constant n, (p) with A4 ——

190 MeV. The factorization scale and the renormalization
scale are chosen to be the same as the invariant mass of
the heavy quark QQ pair, i.e. , p = M, unless stated
otherwise.

In Fig. 3 we show the lowest order result for the dis-
tribution in invariant mass of a bb pair produced in a pp
collision at the Fermilab collider energy ~S = 1.8 TeV.
The bottom quark mass is chosen as mp ——4.75 GeV. The
distribution peaks at a value of M a few GeV above the
bb pair mass threshold of 2m'. It then decreases quickly
as M increases. This implies that most b's and/or b's are
produced at the Fermilab collider with small momentum
in the bb center of mass &arne. Next-to-leading order
/CD contributions change the overall normalization of
this curve, but more important for the sake of our present
discussion, they should not change the shape of the low-
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FIG. 3. bb pair invariant mass distribution computed from
lowest order +CD processes.

est order curve except very near threshold or far above
threshold [35].

In Fig. 4, the average quantity (q&2(M))K is plotted as
a function of the pair invariant mass M; the factor K was
discussed in Sec. II. The quantity (q&2(M))K is propor-
tional to the square of the average transverse momentum
of the bb pair. Its value is about 80 GeV2 near threshold
and rises linearly with M in the range shown in the 6g-
ure. At the 6xed rapidity value Y = 0, the function has
the same shape and magnitude as in Fig. 4, understand-
able because the bb pairs are produced centrally. (An ap-
proxixnately linear rise with M of the average transverse
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I I I I I

I I I I I
I I I I

I
I I I I
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FIG. 4. Average of the square of the transverse momen-
tum of a bb pair, multiplied by the factor K, as a function of
the pair invariant mass M. This curve is obtained from the
purely perturbative order o., calculation.

momentum in the region 7 = M /S (( 0.05 would be ex-
pected &om sixnple dimensional arg»ments. The growth
of the square in Fig. 4 is less rapid than quadratic. )

An important inference may be drawn &om Figs. 3 and
4. We may estimate &om Fig. 3 that the average invari-

ant mass (M) = 15 GeV. Glancing at Fig. 4 we notice
that near and above the pair mass threshold (q&2(M))K
is larger than 80 GeV2. Using K 2.4 (see Refs. [1,
4]), we deduce that bb pairs produced at the Fermilab
collider are expected to have an average transverse mo-

mentum about 5 GeV. As will be discussed below, after
integrating over all values of M, we 6nd that the square
of the average transverse momentum (q&~) is 36.0 GeVs

in the purely perturbative order as approxixnation. Tak-
ing the square root, we deduce (q~), , 6 GeV. This
value is comparable to, and slightly larger than, the typ-
ical momentum of an individual b or b in the bb center
of mass &arne. Correspondingly, a significant &action
(about one-quarter to one-half depending upon how one
defines the back-to-back configuration) of bb pairs at the
Fermilab collider is expected to be produced in a config-
uration that is not back to back in the transverse plane.

The differential cross section do/dMdq~ is presented
in Fig. 5 for three 6xed values of mass, M = 15, 25,
and 50 GeV. The dashed curves are &oxn our fixed-order

a, perturbative calculation. They are most applicable
in the region q~ = O(M) where there is essentially only
one hard scale in the problexn. The fixed-order n3 re-
sults become inapplicable if q~ ((O(M) where, as dis-

cussed earlier, the effects of soft gluon contributions xnust

be incorporated in order to obtain a more reliable re-
sult. The dot-dashed lines show the asymptotic results,
Eq. (29), obtained from the fixed-order o.s results in the
limit q~ ~ 0. At small q~ the asymptotic results agree
with the perturbative results, as expected. At larger q~,
the asymptotic results manifest unphysical characteris-
tics that can be traced to the fact that the functions
AI. l and BI.l have opposite signs [cf. Eqs. (31) and (33)].
Accordingly, we take the asymptotic results at face value

only at small q~. The cross sections obtained &oxn re-
summation of the effects of initial soft gluon radiation
are shown by the dotted lines.

The resummed results are not expected to follow the
asymptotic results because only the initial-state soft
gluon radiation is included in our resummed formalisxn.
The resummed and the purely perturbative order n~

curves nearly coincide for q~ about 5 GeV and greater, as
might be expected since the mass of the bottom quark is
the relevant physical scale at sxnall q~. Owing to the ef-

fects of resummation, the shapes of the two curves differ
significantly for q~ less than 5 GeV.

The solid lines in Fig. 5 present our 6nal xnatched re-
sults, obtained from Eq. (40). The matched results agree
with the resummed results in the region of small q~ and
with the perturbative results at large q~. These three fig-
ures demonstrate how the final res»mmed and xnatched
results differ &om the perturbative results in the small-

q~ region. They also show that the simple matching
procedure seems to work adequately in our case [36].

To preclude confusion, we stress that do/dMdq~ is
presented in Fig. 5; thus, the vanishing of the resumxned
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curves as q~ goes to zero has a kinematic origin. The
divergence apparent in Eq. (2) is not present in the re-
summed calculation.

In Fig. 6(a), the perturbative, asymptotic, and
the resummed results from Fig. 5(a) are replotted as
do/dMdqz vs q&. This figure illustrates the behav-
ior of the cross section at small q~ in a different way,
without the phase space factor of q~ that is present in
do'/dMdq~ shown in Fig. 5(a). The same results are
plotted again in Fig. 6(b) but with the switching function
Eq. (41) included as a multiplicative factor in the asymp-
totic and resummed results. A comparison of Figs. 6(a)
and 6(b) demonstrates the effects of the switching func-
tion included in the matching formula Eq. (40). At small

q~, the switching function is close to 1 and does not
modify the asymptotic and resummed results. At large

q& 50 GeV, the switching function suppresses the
asymptotic and resummed results by almost a factor of
10.

In Fig. 7 our anal results are shown for the distribution
in the square of the transverse momentum of the bb pair,
do'/dqz. Here we have integrated over M. As remarked
at the start of this section, for consistency, all curves,
including the purely perturbative order as curve (dashed
line), are computed with the one-loop-evolved form for

s
For q~ g 0, the differences between the matched (solid

curve) and fixed-order ns (dashed) results in Fig. 7 are
formally of order n, and higher [except that our inte-
grated cross section is valid only to O(o., ), as explained
in Sec. Ilj. These difFerences will affect, among other ob-
servables, the predicted average transverse momentum of
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FIG. 5. bb pair transverse momentum distributions for three values of invariant mass, M = 15, 25, and 50 GeV. We show
our fixed-order n, perturbative results as dashed lines, and our initial-state soft gluon resummed results as dotted lines. The
asymptotic results are represented as dot-dashed lines. The final matched results are shown as solid lines.
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the bb pair. Computations of the integrals over all q~ of
the product of q&~ times do/dq&~ are straightforward for
both the solid and dashed curves in Fig. 7 since this prod-
uct is finite and well behaved as q~ approaches zero in
both cases. The integral of do/dq&~ itself is straightfor-
ward for the matched case, where there is no divergence
as q~ approaches zero, but is more involved in the purely
a, case. In the a, case, full account must be taken of vir-
tual diagrams that contribute at q&2

——0 [19,1, 3, 4]. Car-
rying out the computations, we obtain (q&2) = 36.0 GeV2
in the purely perturbative order n, approximation and
(q&2) = 66.7 GeV~ for our matched case. We have checked
that use of the two-loop-evolved form for o., changes the
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FIG. 6. (a) The perturbative, asymptotic, and resummed
results f'rom Fig. 5(a) are plotted as do/dMdqz vs q~. (b)
The same results are plotted again but with the switching
function Eq. (41) included as a multiplicative factor in the
asymptotic and resummed results.
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FIG. 7. Distribution in the square of the bb pair transverse
momentum. Our final matched results are shown by the solid
line. For small q& we integrate the leading logarithmic re-
summed result, Eq. (35), over M. The pure O(a, ) result is
represented as the dashed curve, the initial-state soft gluon
resummed result as a dotted line, and the asymptotic result
as a dot-dashed line.

purely perturbative order as value of (q&2) by less than
1 GeV2

Using the numbers in the paragraph above, we note
that (q&2) is increased by 30.7 GeV2 as a result of soft
gluon resummation and matching. Taking square roots,
we find (q~), , 8.2 GeV in the matched case, to be
compared to 6 GeV in the purely perturbative order
o;3 case. It may seem remarkable that an additional 2
GeV is associated with soft gluon resummation. It would
be useful to be able to compare this predicted increase
with that expected for (q&2) in massive lepton pair pro-
duction (the Drell-Yan process) at Fermilab Tevatron en-
ergies, at massive lepton pair masses in the vicinity of
10—20 GeV, comparable to those for bb pair production.
However, to our knowledge, no calculations have been
published for the resummed q~ distribution for the Drell-
Yan process at such masses at Tevatron energies. Cal-
culations at lower energies [29, 14] and/or higher masses
[30, 31] may not be a useful guide since the distribution
should broaden with energy at fixed mass. We remark,
however, that the q~ distribution should be significantly
broader for bb pair production because the coefficients in
the resi~mmation expression, Eq. (36), are much larger:

Agg = 2C~ vs Agq = 2C~.
It would be interesting to compare the solid line in

Fig. 7 with data. We comment that our result is for
production of a pair of b and b quarks, not a pair of B
and B mesons. To compare with measurements of the
transverse momentum of a pair of B and B mesons, one
must include efFects associated with &agmentation of the
b and b quarks, and try to estimate efFects associated
with final-state gluon radiation. In a Monte Carlo sim-
ulation of the single b or b inclusive spectrum, Kuebel



EDMOND L. BERGER AND RUIBIN MENG 49

101

s I I I I

[
I I I I

[
i I I I

[
I I I I

[
I I I

:l
-1 Ms=38.7 GeV

PP coQisions

p 100

a~
U'

b
10—1

l

f0 E I I I I I I I I I I I I I I I I I I I I I 1 I I

0 1 a S 4
cc Traoeveree Momentum q [Gev ]

FIG. 8. Distribution in the square of the cc pair transverse
momentum for proton-proton collision at v S = 38.7 GeV
(corresponding to fixed-target beam energy 800 GeV). Curves
are labeled as in Fig. 7.

and collaborators showed that the efFects of final-state
and initial-state gluon radiation tended to compensate
in some instances, with final-state radiation tending to
soften the spectrum and initial-state radiation broaden-
ing the distribution [10]. To obtain the ti-quark inclusive
cross section, the UA1 Collaboration [6] and the CDF
Collaboration [37] use a Monte Carlo procedure to take
into account the &agmentation efFects of b quarks into
observed B mesons or single leptons before they com-
pared their data with theoretical predictions. A similar
procedure is required before comparison can be made of
data with our theoretical prediction of the pair transverse
momentum distribution.

In Fig. 8, we show a distribution in the square of the
transverse momentum for production of a pair of charm
quarks, cc pair production in a 6xed-target proton beam
experiment with Eb, ——800 GeV. In the case of charm,
the average transverse momentum is so small that non-
perturbative physics may dominate in the region of small
q~. We will not dwell here on applications of the resum-
mation method to charm pair production. In another
paper, we plan to present further phenomenological ap-
plications for bb pair production.

A fundamental issue not addressed in this paper is the
extent to which the complete Collins-Soper-Sterman re-
summation formalism beyond the leading logarithm ap-
proximation can be taken over without alteration and
used in the case of heavy quark pair production. Un-
like the case of massive lepton pair production, there is
soft gluon radiation in the 6nal state. This is a nonlead-
ing logarithm eKect, as indicated in Eqs. (29), (32), and
(33), but it will certainly change the formalism from the
massive lepton pair case if one is to be complete, result-
ing in a difFerent impact parameter dependence. (Soft
gluon exponentiation has not been demonstrated for a
color octet 6nal state. In further research, one could

consider a decomposition of the amplitudes for gluon-
gluon, quark-antiquark, and gluon-quark scattering into
color singlet and color octet parts, and then proceed with
the soft gluon formalism only for the color singlet piece. )
In this paper, as stated in the text, we resum only the
initial-state radiation. In an attempt to obtain a quan-
titative estimate of the difference that might arise from
inclusion of the subleading final-state radiation, we re-
computed the resummed result (shown as a dotted line
in Fig. 5) including the full expression for the functions
B, not just their initial-state contributions. The result-
ing change is fairly slight; the most noticeable change
is an increase in the magnitude of the resummed result
at its peak by about a factor of 1.5, followed by a more
rapid decrease with qT . At M= 15 GeV, the curves cross
at qT ——5 GeV. It is not possible to separate initial-
and final-state radiation at large qT. We use the purely
perturbative result at large ql, meaning that final-state
radiation is included there. Both intial- and 6nal-state
gluon radiation are included in our "asymptotic" contri-
bution. Since we resum only the initial-state radiation, it
is only the nonsingular pieces of the 6nal-state radiation
that are included in our answers at moderate or small

qT .
In this paper, we have focused on the distribution in

transverse momentum of a pair of heavy quarks. In car-
rying out our calculation, we integrated over (angular)
variables in the QQ rest frame. Correspondingly, certain
limitations must be accepted. In the context of our cal-
culation, we are not able to describe the fully differential
distribution in the momenta of the Q and Q separately,
notably the azimuthal angle (P) dependence in the trans-
verse plane, or correlations in rapidity. The limitation on
the description of rapidity correlations appears insignif-
icant since these differ little at leading [9] and next-to-
leading order [11]. On the other hand, the azimuthal
angle dependence is sensitive to the net transverse mo-
mentum imparted to the QQ pair [ll, 10], and it would
be valuable to develop our approach further in order to
examine the inHuence of soft gluon resummation on the

P distribution.
A calculation of the fully exclusive parton cross section

for QQ pair production at order as has been published,
along with examples of distributions at collider and fixed-
target energies [ll]. As in the calculation reported here,
those results include the lowest order o.2 cross section for
production of a QQ pair, the order as virtual corrections
to the lowest order cross section, and the order o., cross
section for production of a QQ pair along with a light
parton. That calculation does not include the eKects of
soft gluon resummation presented in this paper. On the
other hand, included in Ref. [11] is an exploration of
certain other effects that go beyond the pure n, /CD
calculation. The parton shower Monte Carlo program
HERwIG [38] was used to simulate the efFects on the P dis-

tribution of finite intrinsic transverse momentum of the
initial partons. Substantial broadening of the P distribu-
tion was observed, tantamount to what one would expect
if the incident partons carried an intrinsic transverse mo-

mentum of about 1.7 GeV. While such a large intrinsic
contribution was questioned in Ref. [11] as perhaps an
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unreliable artifact of the parton shower algorithm, the no-
table inBuence of the added transverse momentum on the
P distribution underscores the importance of the type of
study carried out in the present paper. We recall that our
soft gluon resummation introduces substantial additional
(q~). As a step in the direction of a full investigation of
the in8uence of soft gluon resummation on the P distri-
bution, it might be possible to incorporate the matched
distributions shown in Figs. 7 and 8 into a modified order
a, event generator.

In summary, we have studied the distribution in the
transverse momentum of a pair of heavy quarks produced
in hadronic reactions. For large q~, the order n3 pertur-
bative result should be applicable. In the region of small

q~, we argued that resummation techniques developed
in the study of the Drell-Yan reaction should apply for

initial-state soft gluon radiation. Use of the resumma-
tion method, plus a matching of results in the small-
and large-q~ regions, permits an improved prediction of
the full q~ spectrum. Numerical results for the small-q~
region were presented for bb pair production at the Fer-
milab collider and for cc pair production in fixed-target
experiments.
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