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Deep inelastic polarized and unpolarized structure functions for a free nucleon are obtained
in a modified center-of-mass bag model, which includes the symmetry-breaking effects from spin-
dependent interactions. The quark distribution functions, calculated at qo (0.9 GeV/c), are
evolved to a higher q region and compared with the data and other models. The model gives a
reasonable description for the valence part of the structure functions at z ) 0.3. For the small-z
region, the contributions from the sea are necessary. The spin-dependent effects are important in
describing the existing data.

PACS number(s): 13.60.Hb, 12.39.Ba

I. INTRODUCTION

It is well known that quantum chromodynamics
(QCD), the theory of interactions of quarks and gluons,
provides a basic description of strong interactions in the
standard model. For high-energy scattering processes,
the cross section can be factorized into a hard piece,
the parton cross section which can be calculated in the
&amework of perturbative QCD, and a soft piece which
depends on the parton distribution functions inside the
nucleon. In the QCD quark parton model, at the lead-
ing order, the structure functions in the deep inelastic
lepton-nucleon scattering are "charge" squared weighted
combinations of the quark distribution functions qf &(z),
which denotes the probability of finding a quark with Sa-
vor f, momentum &action z, and helicity h within the
nucleon. These distribution functions are essentially de-
termined by the quark-gluon structure of the nucleon.
Since these functions play an important role in standard
model phenomenology and in understanding the nucleon
structure, many recent experiments have been done to
measure deep inelastic unpolarized structure functions
and extract the parton distribution functions. (See [1,2]
for the review of deep inelastic structure functions, [3] for
a comprehensive compilation of the latest deep inelastic
data and [4,5] for the comparisons of data &om difFerent
measurements. )

Among the unpolarized data, recent deep inelastic
scattering data provide some new information of the in-
ternal structure of the nucleon. In particular, from the
recent New Muon Collaboration (NMC) measurement [6]
of difference Fg —Ii2" the Gott&ied sum rule [7] is found
to be significantly less than the quark-parton model pre-
diction of 1/3. This implies that the down sea is larger
than the up sea. Combining with a smaller strange sea
from neutrino scattering [8,9], it seems likely that the
unpolarized sea is not only SU(3) flavor asymmetric, but
also SU(2) flavor asymmetric (i.e., the down sea and up
sea are not equal). However, an SU(2) flavor symmetric
sea is usually assumed.
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For the polarized structure functions, many exper-
iments [10—12] have been performed in the past two
decades. A review of earlier works can be found in [13].
The recent measurement &om the European Muon Col-
laboration (EMC) at CERN shows [12] that the first mo-
ment of g~~ is significantly below the value expected &om
the Ellis-Jaffe sum rule [14]. Furthermore, the EMC data
combined with the Bjorken sum rule [15] and the hy-
peron P-decay data indicate that only a small fraction of
the proton's spin is carried by the spin angular momen-
tum of the quarks, which seems to contradict the naive
expectations &om the low energy constituent quark mod-
els. These conclusions are confirmed by tore most recent
experimental results reported by the Spin Muon Collab-
oration (SMC) [16] and E142 [17] within large errors.
At first glance the E142 data seem to disagree with the
Bjorken sum rule, but a detailed analysis given by El-
lis and Karliner [18] shows that the discrepancy between
the conclusions drawn by the SMC and E142 data can
be eliminated if the q2 variation and higher twist efFects
are taken into account.

There are a variety of theoretical activities attempting
to resolve the quantitative decomposition and the origin
of the spin of the nucleon. For an incomplete list of recent
works and review on this topic see [19—22] and [23—26],
and references therein. In principle, one should be able to
calculate the parton distribution functions from the ba-
sic equations of QCD which determine the quark-gluon
structure of the nucleon. We need to know the basic con-
stituents inside the nucleon and QCD (perturbative and
nonperturbative) interactions among these constituents;
hence, the structure of the nucleon in QCD is remarkably
complex. The lattice QCD [27] has provided a &ame-
work of evaluating the hadron structure (masses, quark-
antiquark potential, and other low energy observables)
in the nonperturbative way. Several preliminary results
[28,29] of the quark-spin &action of the nucleon spin have
been reported. In [29], the quark loop (or "sea" quark)
contributions are calculated. Even so, the evaluation of
the structure functions and parton distribution functions
is still not accessible in lattice approach and has to resort
to various QCD-inspired nucleon models.

The first pioneering work of using the MIT bag model
to calculate deep inelastic (unpolarized) structure func-
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tions was made by Jaffe [30]; then the polarized structure
functions were calculated in the same model by many
authors (Hughes [31],Bell [32], and Celenza and Shakin
[33]) and recently by Jaffe and Ji [34]. Since the mo-
mentum is not conserved in the intermediate state in the
MIT bag model the structure function does not vanish for
x & 1. An attempt to remove this difBculty by restor-
ing the four-momentum conservation and including the
effects of spectator quarks was given in the c.m. (center-
of-mass) bag model [35]. The main idea of the model is
that instead of the single quark current in the MIT bag
model a covariant effective electromagnetic current of the
nucleon was suggested. The current includes not only the
piece of the struck quark but also the pieces of the specta-
tor quarks. The current satis6es translational invariance
so four momentum is conserved. Another approach to
avoid the support problem in the MIT bag model was
suggested by Benesh and Miller [36]. The Peierls-Yoccoz
projection [37] has been used to obtain an eigenstate of
zero momentum. Including pion corrections the valence
structure functions of the nucleon and 4 are calculated.
Another disadvantage of the original MIT bag model is
that the spin-dependent force effect, which has been used
to explain successfully the hadron spectroscopy [38], was
neglected, hence, Fz"(x)/E& (z)=2/3 is a constant in dis-
agreement with data. Many models [39—43] have been
suggested to incorporate the spin-dependent effects in de-
scribing the inelastic structure functions. In Ref. [39], the
nucleon is considered as a composite system of a quark
and a pointlike diquark. The model treats kinematics
relativistically and considers the spin-Bavor dependence
in the nucleon wave function. In Ref. [40], the effect
of one-gluon exchange, yielding the N —6 mass differ-
ence, is incorporated and significantly modifies the result
given in the SU(6)-symmetric model. In [41], the struc-
ture functions are calculated by using two phenomenolog-
ical nucleon models —the nontopological soliton (NTS)
model and color-dielectric (CD) model. For the NTS
model, the authors conclude that an agreement between
zg~z and the EMC data could be obtained even if the pro-
ton wave function is SU(6) symmetric. As the authors
of [39] pointed out, however, the model they considered
cannot reproduce the large body of low energy data. In
Ref. [42], the nucleon, which consists of three confining
quarks, is treated approximately as an ignite &ee Fermi
gas system at finite temperature. In [43], the constituent
quark model [44] of the nucleon is used. In both [42] and
[43], only unpolarized structure functions are calculated.
Most of these model results are fairly close and can com-
pare with the data in spite of difFerent assumptions used
in difFerent models. It should be noted that a common
feature of all these calculations is that the structure func-
tions are evaluated at some very low momentum trans-
fer scale Qo (e.g 0.063 GeV2 for Ref. [39] and [43],

0.068 GeV2 for Ref. [40), ~ 0.09 GeV2 for Ref. [41],
and 0.06 GeV2 for Ref. [42] ); then these functions are
evolved to the higher Q region by using leading-order
perturbative @CD. The problem, as pointed out by the
authors of Ref. [39], is that "in order to obtain the cor-
rect momentum sum rule, it is necessary to go to extreme
value of strong coupling constant o, & 3 —4. Therefore

the use of /CD perturbation theory at the leading order
cannot be justi6ed. " We will show, however, that one
may avoid this ambiguity and still obtain a reasonable
description of deep inelastic structure functions from the
low-energy nucleon model.

Recently, we suggested a modified (m.c.m. ) bag model

[45], based on the c.m. bag model in [35], to calcu-
late both elastic form factors and deep inelastic struc-
ture functions. In [45], the symmetry-breaking effects
coming &om perturbative one-gluon exchange mecha-
nism (color hyperfine interactions) and/or nonperturba-
tive instanton spin interactions are simulated by intro-
ducing a symmetry-breaking parameter. It has been
shown that by including spin force effects, the model
gives a fairly good description for the magnetic moments
of octet baryon and the electromagnetic form factors of
the nucleon. We also show briefiy in [45] that the same
model can fairly describe many aspects of deep inelas-
tic structure functions of the nucleon. In this paper, we

present detailed results of these calculations.
The paper is organized as follows. In Sec. II, we will

define the notation and give the basic formalism of the
model calculation of the structure functions, and list the
approximations used in the model. In Sec. III, the un-

polarized structure functions I'q and I"~ are derived from
the hadronic tensor. In the Bjorken limit, these functions
are scaling and satisfy the Callen-Gross relation. The va-

lence quark distribution functions zu„(x, Qo2), xd„(x, Q2o)

are evaluated around Qo2 (0.9 GeV/c)2 from the model
and then evolved to Q2 = 4, 10.7, and 15 (GeV/c) 2 by us-

ing leading order perturbative /CD evolution equations
[46] and the analytical approach developed in [47]. In-
cluding the sea contributions, the structure functions Fz",

F2", F2 F2", the inte—gral Jo dz [F2 Fg ] i/z an—d the ra-
tio F2"/Fz~ are compared with data and those from other
models. In Sec. IV, the spin-dependent structure func-
tions gq and g2 are derived in the model. The polarized
quark distributions, Au„(z, Q ), Ad„(x, Q ), and their
first moments are evaluated in the model at the same Qo
and then evolved to higher Q2 region [48]. The polarized
sea quark distributions are discussed. Using the Bjorken
sum rule, EMC data, v-p scattering data and the model
results of Au and Ad, a set of sea quark polarizations

is obtained. Including the sea contribution, the zgi" (z),
xgi (x), and gi(z) are compared with the latest data
[12,16,17]. In Sec. V, the second spin-dependent struc-
ture function g2(z), the Burkhardt-Cottingham sum rule

[49] and the higher twist effects are briefiy discussed. A
summary is drawn in Sec. VI. Derivations of some for-
mulas are given in Apaendixes A and B.

II. KINEMATICS AND HADRONIC TENSOR

In the one photon exchange approximation, the deep
inelastic structure functions can be extracted from the
hadronic tensor, which is the Fourier transformation of
the single nucleon matrix element for the commutator of
two electromagnetic currents:
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~..(p, a ~) = , J—d'~""(I' ~ I(~.(~), ~.(o)) I p, ~)

(2.1)

where J„(y) is the hadronic electromagnetic current
which depends on the nucleon model one used, P" and
S" are the four-momentum and spin vector of the target
nucleon (P"P„=M, M is nucleon mass; S"S„=—1
and P S„=0), respectively. The initial nucleon state is

covariantly normalized: (P, S
I
P', S') = (2z) 2Peb (P-

P')hss and q" is the four-momentum of the virtual pho-
ton. The conventional kinematical variables Q2 and v (or
Q2 and z) are defined as Q—:—qz ) 0 and z—:Q2/2M v

(v = P . q/M) with 0 & z & 1.
W„„ in (2.1) can be decomposed into two parts:

(2.2)

where

W„„=(—g„„+q„q„/q )Wi(z, Q ) + (P„—q„P q/q )(P„—q„P q/q )W2(z, Q )/M (2.3)

and

W„'".' = e,.i q"(S MGi(z, Q') + [(P q) S —(q S)P ]G2(» Q')!M) (2.4)

represent, respectively, the symmetric and antisymmetric
parts of the tensor, &om which the structure functions
I"1, I"2 and G1, G2 are defined. In the deep inelastic re-
gion, these structure functions become the scaling func-
tions of the Bjorken variable z only, i.e., in the Bjorken
limit (Q ~ +oo, v ~ +oo with z fixed)

MWi(z, Q ) m Fi(z), vW2(z, Q ) ~ Fz(z) (2.5)

M vGi(z, Q ) m gi(z), Mv G2(z, Q ) m g2(z).

(2.6)

The main purpose of this paper is to calculate these struc-
ture functions by using the current J„given in the modi-
fied c.m. bag model. The assumptions or approximations
we used are listed below.

(a) The effective nucleon current is the sum of a single

quark current, i.e., the virtual photon interacts with only
one quark (struck quark) at a time and the other two

quarks are spectators; this is the impulse approximation.

(b) The nucleon is assumed to be in the Fock state
which only consists of three valence quarks. 56-piet
SU(6) wave functions for the proton and neutron with

spin up are used; the symmetry-breaking effect is de-
scribed in terms of a parameter [45] f = R~&/R"„& 1,
which simulates the smaller spatial size for the scalar
u —d quark pair than that for the vector u —u or d —d
quark pairs in the nucleon.

(c) The effect of quark confinement is described in
terms of a bound state quark spatial wave function, which
is basically determined by the large-scale structure of the
nucleon.

Based on approximations (a) and (b), the pNN vertex
can be written [45]

d' ye" "(p'
I J,(y) I p) = (2~)'~'(p+ q p') & p'14(0-)

I »
3

= 2' b4= ( ~) (p+q —p') ) d r; e' ",q~, (ri, r2, rs)[e~p„]iq~, (r r ir z)s
lm23 i=1

(2.7)

q, .(r„r„r,) = EI q„(r,-)a„ (2 8)

where the b function comes &om the center-of-mass mo-
tion. The integral on the right-hand side (RHS) of (2.7)
denotes the contribution coming &om the pqq interac-
tion and quark internal motion, where subscript 1 of the
operator [eve„]i denotes that the virtual photon inter-
acts with the first (struck) quark and subscripts 2 and 3
denote the spectators. The summation runs over three
quarks (1 -+ 3). The nucleon wave function in (2.7) is

where a~ is the SU(6) spin-fiavor wave function of the
nucleon, and the antisymmetric color wave function has
been omitted. In (2.8), qz (r, ) are the spin —1/2 bound
quark wave functions. To calculate the I.orentz tensor

W~„, we use the nucleon rest kame. In this kame only
the rest frame wave functions q (r;) are involved, they
can be described by, for instance, the cavity solution in
the MIT bag model [30] or other bound quark wave func-
tion in the relativistic quark model [see (9), (10), (19) and

(20) in Appendix A].
Using the current (2.7), the hadronic tensor (2.1) can

be written as
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~ — 8 1r.W e(P, q, d) = ) ) b „,(I;22) e f 'I (q+P —) b;)I, e(k~ —eb)I, (kr)1, (ke) (22)
1~2q3 ck& ~97L1 i —1

kI, e (kr —eb)=fdrgfdrre'"' '"" q, (r~)

xp„g~p„q, (rg') (2.10)

denotes the contribution coming from the struck quark
which interacts with the virtual photon which carries
four-momentum q = (q(), q) while

where b, , (1;23) = (a~
~

[bt (m)e b (m)]q
~

a~) is

the matrix element of e (the charge square operator of
the struck quark), k; and m; are the three-momentum
and spin projection of ith quark, and R, (i = 1, 2, 3)
are the parameters appearing in the wave functions of
the struck quark (i = 1) and spectator quarks (i = 2, 3)
which determine the radius of the quark distributions
(see Appendix A). The integral

b function in (2.9) guarantees four-momentum conserva-
tion.

Using the identity p„gpss„= S„p„p + ie„„p p p,
where S„g„——g„pg„~ + g„~g„p —g„„gp, the integral
(2.10) can be rewritten as

I, „„(k~—q) = S„q„k&"I '
(k& —q)

—ie„„g kg"I~, l (kg —q) (2.12)

in which the symmetric term I~') (kq —q) is indepen-
dent of the quark spin projection and contributes to the
unpolarized structure functions Fq(z) and F2(z), while

the antisymmetric term I, (kz —q) depends on the
quark spin projection and generates the polarized struc-
ture functions gq(z) and g2(z). We will discuss them
separately.

I, (ke)—:f d rr . f d r'e' "I" "' )q, (rr)

xp g.p q . (r'. ) (j = 2, 3) (2.11)

denotes the contributions from the spectator quarks. The
I

III. UNPOLARIZED STRUCTURE FUNCTIONS

A. Formalism

Using standard projection operators and (2.9), we ob-
tain Wq and Wz as (see Appendix A)

d3k.
W; = ) ) b (I;22) , , e f 'I'(q + P —) b, )1 '~(k& —q)I , (ke)1 , (ke)

2

(i =1,2)

(3.1)

where I, (k~) (j = 2, 3. ) are the spectator contributions in the momentum space and have been defined in (2.11).
I ', (kq —q) is the struck quark contribution and is projected out from (2.10) by using (2.12). Their expressions are

given in Appendix A. It turns out that I ', (kq —q), I, (k2) and I,(ks) are independent of the quark spin projections
m, . Hence the subscript m) in P b, , (1;23) can be omitted. Using the bag-type quark wave function (See (10)

CX1 )1%1 3
in Appendix A) and completing the integrals over g d k~, we obtain

Wg(zqQ ) = N(l+ g/2) ) C(1;23)) b~(1;2 )I3~(Rg, ( (2),s
1—+2,3

(3.2)

W2(z, Q ) = [g(1+3'/2)/(1+ g/2)]W) (z, Q ), (3.3)

where N is a normalization constant, g = 1/(1+ v /Q ),
R;/Rg (i = 22 3), C(1;23):— MRg(2(s and

I (Rg., (z, (3) is a dimensionless integral which presents
the collective contribution from three valence quarks.
The detail expression of I (Rq, (2, (s) is given in (17)
and (18) in Appendix A.

If we neglect the symmetry-breaking effects coming
from spin-dependent interactions, then B2 ——R3 —B1
Rq (z —$3 —(g ——1, and I does not depend on
a, i.e., quark flavor, then (3.2) and (3.3) reduce into
the SU(6) symmetric result [35]. We note that in the
SU(6) symmetric limit, one has gb = 1 for the pro-

VR'2 m 2XMS'1, i.e. , Fz(z) = 2zF~(z);

this implies that in the Bjorken limit the Callen-Gross
relation is satis6ed within the model. Furthermore, in

Appendix A we briefly demonstrate the scaling behavior
of the structure functions; i.e. , both Fq(z) and F2(x) are

ton and gb = 2/3 for the neutron; it then leads to

F2(z)/F:(z) =2/3 [301.
It is easy to verify, &om (3.2)and (3.3), that in the

Bjorken limit, (q -+ 2Mz/v ~ 0 and W2/Wz = p(1 +
3'/2)/(1+ g/2) -+ 2Mz/v. Hence one obtains
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scaling in the Bjorken limit and vanish when x —+ 1.
Numerical calculations also confirm this conclusion.

Since b in (3.2) is the matrix element of e, it is easy
to rewrite (3.2) into

+i(z) =
2 ) e,'A(z) (3.4)

where the quark distribution function fq(x) is determined
by the xnodel result I (Ri', (q, (s). Similarly we have

F2(z) = x) e fq(z); (3.5)

these are the parton model formulas as expected, because
the impulse approximation (a) used in our model is the
same approximation used in the parton model. In fact,
the parton model formulas (3.4) and (3.5) can also be ob-
tained in any nucleon model as far as the impulse approx-
imation is imposed. However, the magnitude and shape
of the quark distributions depend on approximations (b)
and (c). We note that in our model only the three-valence
quark configuration is considered; hence, the model re-
sult of the quark distributions should be identified with
the valence part only.

B. Valence and sea decomposition

q*(*) = q'. (*)+ q'. (*) q'(*) = q'-(z) + q'. (z) (3 6)

where the subscripts v and 8 denote the terms "valence"
and "Sea." The Sea contributions will be evaluated by
using the /CD evolution approach with suitable inputs
at some low Q scale. By definition, we have q;„(x) = 0
(q; = u, d, s), s„(z) = 0 and q;, (z) = q;, (z). Then we
have

+"(*) = [+"(*)] + [+'(*)]- (3.7)

For later analysis, we divide the quark distribution
functions q(x) into two parts, one that comes &om the
three-valence quark configurations which the primitive
quark model requires, the other from contributions of
additional effects:

(F(x) = 2NMRE Ig((R;( ', ( ), (3.11)

where R = Rr„'. The integral I„(R;1,() denotes
I (R"„;$2,fs), in (3.2), with n = u, Ri ——R„, (2 ——1
and Q = R&/R"„—:( (( & 1). The same notation is
used for Ig((R;(,( ). Obviously, the I„comes from
the quark configuration [u; u, d] or [u; d, u] and Ig comes
&om the quark configuration [d; u, u]. In obtaining (3.10)
and (3.11), the symmetry I„~(1;2, 3) = I„~(1;3, 2) has
been used, which can be verified &om the explicit expres-
sion of I (Ri, (2, fs) In .a similar manner, we can obtain
the valence quark distributions u"„(z) and d„"(x) in the
neutron and the result shows that

u~(z) = d„"(z) and d~(x) = u„"(z); (3.12)

this is expected because the isospin symmetry for the
nucleon wave function is assumed. Hence, we will omit
the superscript p and n, below and use u„(z) instead of
ui'(z) and so on. We note that in the SU(6) symmetry
limit, ( = 1, one obtains, &om (3.10) and (3.11),u„(z) =
2d„(z).

The calculation of the structure function or quark dis-
tributions in the deep inelastic region is divided into two
steps: (i) The valence quark distribution functions at
Qo2

——(0.9 GeV/c)2 are calculated nonperturbatively by
using the nucleon model [under approximations (a)-(c)],
(ii) using /CD evolution approach to evolve these (va-
lence) quark distributions perturbatively to higher Q2

region, e.g. , Q 4, 10.7, and 15 (GeV/c)~, where the
experiments were performed.

C. Valence quark distributions

For the nonperturbative calculation in step (i), we need
to determine the parameters in the model. One can see
&om (17) in Appendix A that there are only three pa-
rameters: R (= R„"),( (= R~&/Rr„'), and e (=~ p [ „R,
where

~ p [ „is the maximum value of three-momentum
of the struck quark inside the nucleon). The former two
have been determined from the fit of the rms radius of
the neutron and proton [cf. Eq. (8) in [45]],

where

[F2(z)] i = x[9u"(*)+9d".(x)]
4 „1 (r„) = —2[(1 —( )/(4 —( )][(r„)—3/(2M )], (3.13)

and the ratio [cf. Eqs. (9) and (10) in [45]],
(3.8)

and

[F."(*)]--= 2x[9u'. (x) + 9d".(z) + 9s".(z)] (3 9)
4„1 1„

small contributions coming from the charm quarks and
other heavier quarks are neglected. The equality q, (z) =
q, (x) satisfies the following condition: the sea is flavor-
less; i.e., the number of sea quarks with flavor f must be
equal to the number of sea antiquarks with the same Ba-
vor. It should be noted that this condition only requires
a weaker equality J'o q, (z)dx = f~ q, (z)dx.

Using a symmetry breaking SU(6) wave function with
a three-quark configuration, we obtain

u"„(x) = 4NM~ I„(R;1,()

p„/p„= —(2/3) (1 —8MR(1 —()/[4MR(8 + () + c])

(3.14)

where c is a constant. The results were R =5 (GeV/c)
and ( = 0.85, in this paper we take the same values in
order to maintain the consistency. The third parameter
e is a new one and depends on the maximum momen-
tum of the struck quark inside the nucleon. In the zero-
temperature Fermi gas model, [ p [

can be identified
as the Fermi momentum; e.g. , in Ref. [42], k~ = 0.2228
GeV/c is chosen for the u quark and k~ = 0.1539 GeV/c
for the d quark. In our model, we choose e = 3 [for R =5
(GeV/c), it implies

~ p ~

=0.6 GeV/c] to constrain
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TABLE I. Comparison of the calculated moments of unpolarized quark distribution functions
and Gottfried sum rule given by di8erent models with experiments.

Quantity

f u (x)dz

f d„(x)dx

f xu„(x)dz

f xd„(x)dx

f, xq. (x)dx
[Iao~c]
[Icosa].

IGott

Data
2.04+0.14

1.07+0.20

0.275+0.011
0.116+0.017
0.074+0.011

0.333'

0.240+0.016

FG [42]

0.276

0.114
0.062

IK [43]

0.225

0.109
0.085

This paper
1.999
0.986

0.275

0.123

0.079
0.340

-0.092
0.248

Dsts are taken from [1] except Ia, tt,

Input.
'Here f [u„(z) —d„(x)]dx = 1 hss been used. Taking the data of f u„(x)dx snd f d (x)dx one

obtains [Ia «]„=0.323+0.081
Ref. [6].

the valence quark distributions to satisfy the normaliza-
tion conditions

f
1

u„(z)dz = 2
0

and f
1

d„(z)dz = 1, (3.15)
0

which are satisfied within numerical error (see Table I).
For the perturbative calculation, the /CD scale pa-

rameter A is taken to be 0.3 GeV/c. The numerical re-
sults of zu„(z) and zd„(z) at Qz=0.81 and 15 (GeV/c)2
are shown in Figs. 1(a) and 1(b). For comparison, the
results given in the Fermi gas model [42] and the con-
stituent quark model [43] are shown. The main reason
for choosing Qo2 ——0.81 (GeV/c)2 as the renormalization
scale is that the perturbative /CD can be used in a less
ambiguous way above this scale. The running coupling
constant a, (Q2) in the leading order in the modified min-
imal subtraction (MS) scheme (all quarks are assumed to
be massless) is

1.2

1.0

0.8

Solid line: XODEL at Q 0.81 (CeV/c)

Dashed line: QCDEV at Q ~15 (GeV/c)

Dotted One: FG XODEL
Dotted Daahed line: l K MODEL

0.8

0.4

It ~

~ ~

It
~ ~

0.2

combine with the usual parametrized inputs of gluon and
sea quark distributions at this scale, and obtain the sea
distribution in the higher Q region. Hence our sea quark
and gluon distributions are difFerent from those in [42]
and [43]. However, taking a very low Qo [(0.1 (GeV/c) ]
and assuming the initial sea and gluon distributions are

n, (Q ) = 4m/[(11 —2f/3) ln(Q /A )]; (3.16) 0 0.2 0.4 O.S 0.8

this leads to o., 0.4 —0.6 for f = 3 and the /CD scale
parameter: A = 0.2—0.3 GeV/c. We have tried two other
different values of Qo2. (0.8 GeV/c) and (1.0 GeV/c);
the result shows that the predictions for F2 and I"2" etc.
are not too sensitive to the Qo2 value provided that the
normalization conditions (3.15) are imposed.

1.2

1.0

O.e

0.6

: (b)
Solid line: MODEL at Q O.B1 (GeV/c)

Dashed line: QCDEV at Q ~15 (GeV/c)

Dotted line: F G XODEL
Dotted Dashed line: I K MODEL

D. Results arith sea contributions

For the sea quark distributions, we may assume, as
many authors [39—43] do, that the sea and gluon dis-
tributions are zero at some very low Q2o, then use the
leading-order /CD evolution approach to obtain the sea
distributions in the higher Q2 region. But it will face
the ambiguity of using perturbative /CD. On the other
hand, if we start from Q2o 1.0 (GeV/c)2, then some ini-
tial input distributions for sea quarks and gluons at this
scale are needed, but we do not have any information
about these inputs at this scale. Hence we 6rst evolve
the valence quark distributions to Q = 4 (GeV/c), then

04 II

II
II

o.o ~ ' '

0 0.2 0.4 O.S 0.8

FIG. 1. (s) The calculated xu„(x, Q ) at Q =0.81
(GeV/c) (solid line) snd /CD evolved result at Q =15
(GeV/c) (dsshed line) given in this paper. Data are taken
from Ref. [1]. The results given by Fermi gss model [42] (dot-
ted line) snd constituent quark model [43] (dot-dashed line)
are also shown. (b) Same as (s), but for xd„(x, Q ).
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approximately zero at this scale, we obtain, after evolu-
tion, almost the same results as those given by [42] and
[43].

The unpolarized structure functions [Ef(z)]„,
[E2 (z)] +., »d [E2 (z)], [E2 (z)] +„o are show»n
Figs. 2(a) and 2(b). The unpolarized sea and gluon
distributions given by this paper and other models are
shown in Figs. 3(a) and 3(b), where xq, (x) = 2z[u, (x) +
d, (z) + s, (z)] is singlet quark distribution. To separate
the different Savor contributions in the sea, we choose
two options:

(') u (*)=" (*) or d, (x) —u, (x) = 0, (3.17)

(ii) u, (z) ( d, (z) or d, (z) —u, (x) ) 0; (3.18)

both options require s, (x) = 0.25[u, (z) + d, (x)]. Op-
tion (i) implies that sea violates SU(3) Savor symmetry
but maintains SU(2) symmetry, while option (ii) means
the sea even violates SU(2) Savor symmetry. The nu-

merical results for the integrals Jo ztt„dx, J'o xd dz, and

fo zq, dz are listed in Table I. The comparisons of our
Fg and Ez" with other models are shown in Figs. 4(a)
and 4(b), where an SU(2) Savor asymmetric sea, op-

tion (ii), has been used in our prediction. The result
of E2 (x) —E2 (x) and [Ef(x) —Ez"(z)]/z are shown in
Figs. 5(a) and 5(b). A comparison of Eg(x) —E2"(z)
and E2"(x)/Ef (z) given by different models are shown in
Figs. 6(a) and 6(b) respectively.

E. Several remarks

From the results given above, we would like to make
some remarks.

(i) One can see &om Figs. 1(a) and 1(b) that qualita-
tively the results given by different models are the same.
For zu, our result gives a better fit to the data than the
Fermi gas model [42] and constituent quark model [43].
For zd„, however, their results are better. As a conse-
quence, our Ef agrees well with the data [Fig. 4(a)],
but the F2 is somewhat higher than data in the region
x ) 0.3 [Fig. 4(b)]. For 0.1 ( z ( 0.3, both Eg and E2"
given by our model seem to be better than those from the
other two models, this is because our sea contribution is
closer to the data [Fig. 3(a)] in this z range. For very
low z (z ( 0.1), the model dependence is clearly seen;
however, because of large theoretical uncertainties and
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FIG 2. (a) The calculated [F~ (z, Q )] 1 at Q =0.81
(GeV/c) (solid line) and +CD evolved result at Qz=15
(GeV/c) (dashed line). E~~(z, Q ) (dotted line: valence +
symmetric sea; dot-dashed line: valence + asymmetric sea)
are compared with data [3]. (b) Same as (a), but for F~".

FIG. 3. (a) The calculated zq, (z) given in this paper (solid
line) compared with data [1] at q =15 (GeV/c) . The results
given by Fermi gas model [42] (dotted line) and constituent
quark model [43] (dot-dashed line) are also shown. (b) Same
as (a), but for the unpolarized gluon distribution zG(z).
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data errors one cannot make a meaningful comparison
between model results and data.

(ii) In the parton model, the integral IG ttj dx[E2 (x) —E2"(x)]/x would be 1/3 if the sea is
SU(2) flavor symmetric. However, the NMC data
show IG~« ——0.240+0.016. One can see from Fig. 5(b)
that the model result of the valence quark contribu-
tion [E2~(z) —E2"(z)]„~/x (dashed line) is higher than
the data in the low-x region, while the sea contribution
(dot-dashed line) given by (3.18), i.e. , option (ii) leads to
[E2 (z) —E2"(z)],«/z ( 0, and the sum of valence and
sea contributions is consistent with the NMC data [solid
line in Fig. 5(b) or Fig. 5(a)]. The numerical results
for the integrals are listed in Table I. Within our model,
the diH'erence between F&'" given by using a symmetric
sea [option (i)] and asymmetric sea [option (ii)] is quite
small and only appears in the small-z region (z ( 0.2).
However, this small difFerence could be the source which
causes the violation of the Gottfried sum rule.

(iii) The NMC data seem to favor a flavor asymmetric
sea. The idea that the sea might not be SU(2) sym-
metric was suggested by Feynman and Field [50] based
on the Pauli exclusion principle. Since the proton con-
tains two valence up-quarks but only one down-quark,
the Pauli principle would suppress the creation of uu
pairs relative to dd pairs. Ross and Sachrajda [51]showed
that a nonzero value for u, (z) —d, (z) can be obtained

from higher-order /CD contributions. However, the ef-

fect given by perturbative @CD calculations is too small
to explain the deviation of Gottfried sum rule (some ear-
lier works [52,53] also found that the up-sea quark com-
ponent is not identical with the down-sea component
within the proton, the up-sea is larger than the down-

sea). This means that a significant contribution should
come &om nonperturbative interactions. Many diferent
explanations for the violation of Gottkied sum rule, have
been suggested recently, an incomplete list includes Ref.
[54—59]. We note that, however, the experimental data
have large errors in the small-x region, where the sea is
the dominate contribution; hence, more precise measure-
ments of E2 (x) and E2"(z) at small-z region. are needed
in order to verify if, and to what extent, the Gottfried
sum rule is violated.

(iv) The ratio E2"(z)/E2 (z), as shown in Fig. 6(b), is
sensitive to the spin dependent interactions. As discussed
in [45] and [60] that the repulsion between u —u pair
comes from color magnetism which is based on pertur-
bative @CD and derived from one-gluon exchange Breit-
Fermi interactions, while the attraction between u —d

quark pair can only be induced by a nonperturbative
mechanism, e.g. , instanton interactions [61]. One can
see from Fig. 6(b) that for ( = 0.85 ( 1 the model

0.20

0.6
l (a}

0.5

0.4 -+

I

0.3

Solid line: This paper
Dotted line: F G MODEL

Dot-dashed line: I K MODEL

0.15

M

0.10
I

0.05

0.00

Dashed line: Valence quarks

Dot-dashed Line: Sea quarks

Solid Line; Valence+Sea

0.2

0.1

-0.05
0.01

I I I I I I I I

0.05 0.1 0.5

0.4
(b)

0.3
~ ~

~ ~ tl

0.0
0 0.2 0.4 0.6

X
0.8

Solid line: This paper
Dotted line: F Q MODEL

Dot-dashed line: I K MODEL

4 —(b)
Dashed line: Valence quarks
Dot-dashed Line: Sea quarks
Solid Line: Valence+Sea

0.2

01
0.01

»I
0.05 0.1 0.5

0.0
0 0.2 0.4 0.6 o.e

FIG. 4. (a) Comparison of our F~~(x, Q ) with other mod-
els. (b) Same as (a), but for F2"(x, Q ).

FIG. 5. (a) The calculated [F2 (x) —F2"(x)]„~ (dashed
line), [F~~(x) —Fz (x)]„(dot-dashed line), and [F2"(x)—
F2 (x)]~~~+8e~ (solid line) data are taken from [6]. (b) Same
as (a), but for [F~~(x) —Fz (x)]/x
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0.20
Solid linc: This paper (Valence +Sea)

a
Dotted linc: FG model

I

0.15 — Dot-dashed line: I K model

0.10

0.05

tensor W„„,Eq. (2.4). For convenience, we define two
dimensionless quantities: z~ = P"/I and p":—q"/v,
then we have zz = 1, p2 = —Qz/vz, S . Ir = 0, and

p Ir = 1. Using these variables, (2.4) can be rewritten as

W&"„) =.„„,."(S g, ( Q')

0.00

+[S —(p S)~ ]g2(z Q')). (4 1)

-0.05
0.01

I I I I I I I

0.05 0.1 0.5

On the other hand, the hadronic tensor can be calculated
from the dynamical model of the nucleon in which the
hadronic electromagnetic current and the nucleon state
are known. From (2.9) and (2.12), we can write

1.36:(b)

1.00
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Solid linc: This paper (Valence+Sea), $~0.SS
Dotted line: FG model
Dot-dashed line: I K model
Dashed linc: SU(S) model
Short Dashed line: Valence &th g 1.15

~ ~ ~ ~ ~ ~ ~ ~

W~( )(P, q, S) = d„„l, p"I (z, Q ) (4.2)

I(, (kl —q) = (2z) p (kl —q)p p p (kl —q).

(4.3)

where I (z, Q2) is obtained from (2.9) by changingI,(k, —q) into I, (kl —q) and

0.00
0

I I I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 1

FIG. 6. (a) Comparison of our F~P(z) —Fz"(z) with other
models (dotted line: [42) and dot-dashed line: [43]). (b).
Comparison of F~ (z)/F2P(z) with data and other models.
Solid line (short-dashed line): this paper with (=0.85 (1.15),
dotted line: [42], dot-dashed line: [43] and dashed line: SU(6)
limit.

Comparing (4.1) and (4.2), gl and g2 can be easily ob-
tained.

In the nucleon rest frame, Ir" = (1,0, 0, 0), S"
(0, 0, 0, 1), and p" = (1,q/v). Here the nucleon spin
is chosen in the z direction and

] q ]=v(1 + Qz/v2)l~2.
For the direction of q, we can choose (i) q ]]

—S nucleon
longitudinally polarized along q and (ii) ql S nucleon
transversely polarized along q.

In the Bjorken limit, one has (i) p S = 1 for q ]]
—S,

and (ii) p S = 0 for q J S. From these we have

gives a reasonable z behavior of Fz"(z)/FSP(z) (excePt
large-z region), while for ( = 1.15 (which simulates a
larger spatial size for the scalar u —d quark pair than
that for the vector quark pairs, that means the inter-
action between u —d quark pair is more repulsive than
that between u —u or d —d quark pairs) the prediction
seems to confiict with the data. A similar result is also
obtained in the light-cone constituent quark model (see
[62]). It seems to imply that to obtain a correct large-z
behavior of Fz"(z)/FSP(z), in addition to the one-gluon
exchange effect, other mechanisms and nonperturbative
contributions are needed.

IV. SPIN-DEPENDENT STRUCTURE
FUNCTIONS

A. Formalism

The spin-dependent structure functions gq and g2 can
be extracted &om the antisymmetric part of the hadronic

I

L+IL = g'L)
0 3

(4 4)

(i.e., light-cone "+"component of Il, ) and

gl + g2 = I&:gT)3= (4.5)

where I&' denote I (0 = 0, 3) in which the q is chosen in
the opposite z direction and I& denotes I in which the g
is chosen in the opposite x direction. It is obvious that gq
or gL depends only on the "longitudinal" scattering and
gq + g2 or gT depends only on the "transverse" scatter-
ing, while g2 is the difFerence between transverse scat-
tering and longitudinal scattering. In the SU(6) sym-
metric limit, no special direction can be assigned for the
nucleon system; hence, the rotational invariance requires
that the transverse scattering and longitudinal scatter-
ing are equal and the difference between them, which is
gz, would be zero [63]. However, the symmetry-breaking
eÃects lead to a nonvanishing g2.

It can be shown from (2.9) and (2.12) that

W(„)(P,q, S) = e„„&~p"(2(N/m. )CGv ) ) bl „,(1;23)C(1;23)I, , (1;23))
1 +2I3 CXg I~1

(4 6)
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»(z) =
2 ). (4.7)

gi(*) + g2(*) = —).e,'4|~ (z) —ei(z) 1 (4.8)

which determine the longitudinal and transverse spin
structure functions. Similar to the unpolarized case,
the scaling behaviour gl and g~ can be obtained in the
Bjorken limit, and they vanish when x ~ 1.

B. Valence polarizations

where I (1;23) (o'=0,3) are the dimensionless integrals
and given in Appendix B. Since I (1;23) depends on
sgn(m), i.e., the sign of spin projection m of the struck
quark, it naturally leads to the difFerence between spin-
up and spin-down components, i.e. , the spin-dependent
structure functions. Comparing (4.6) with (4.2), one can
obtain IL' and IT, then gl and g2. Their expressions are
listed in Appendix B.

Similar to the unpolarized case, &om the term
b, , (1;23)sgn(mI) in (4.6) [see (B3) and (B7) in

CXg Imp

Appendix B] one can rewrite gq(z) and gi(z) +g2(z) into

size that all parameters used here are the same as those
in the unpolarized case: R=5 (GeV/c), ( = 0.85, and
e = 3, even the normalization factor N is unchanged.
The valence components [zgz(z)] I and [zgI" (x)] I are
shown in Figs. 8(a) and 8(b). One can see from Fig. 8(a)
that the valence contribution [zgz(x)] i at Q = 10.7
(GeV/c) (the dotted curve) is consistent with the data
in the range of x ) 0.3. This implies that the model gives
a good description of the valence components of the spin-
dependent structure functions, the difI'erence between the

[zg~l (x)]„I and data in the small-x region (z ( 0.3) is nat-
urally attributed to the polarized sea contributions. For
comparison, the results given by Ref. [40] are shown in
Fig. 8(a) and 8(b) (dashed curve). One can see that the
results are very similar. For the zg~z(z), both curves are
very close and consistent with data at x ) 0.3. Although
their zgI (z) is larger than ours and becomes negative at
x & 0.02, both curves are consistent with data within
large errors.

C. Polarized sea and flavor decomposition of the
proton spin

For the polarized sea quarks, no information about
their distribution functions can be used as inputs at

The results of Au„(z, q2) and Ad„(z, Qz) at different

q values are shown in Figs. 7(a) and 7(b). We empha-
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FIG. 7. (a) Au„(z, Q ) calculated from the model at
Q =0.81, 4.0, and 15.0 (GeV/c) . (b) Same as (a), but for
b,d„(x, Q ).
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FIG. 8. (a) The calculated [zgsi(x, Q )]„i at Q =0.81
(GeV/c) and QCD evolved result at Q =10.7 (GeV/c), data
is taken from [12]. The dashed curve is given by the SST
model [40). (b) Same as (a), but for [zgi (x, Q )] i, data is

taken from [16,17].
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Qo 1 (GeV/c) to evolve them to required higher Q
region. On the other hand, if we start &om very low
momentum transfer scale, e.g. , Qo &0.1 (GeV/c) and
assume that the sea and gluon polarizations are approx-
imately zero at this scale, the leading-order /CD evo-
lution would generate a positive polarized sea at higher
Q scale which seems to be inconsistent with the SMC
result. Hence, we resort to a difFerent analysis in this
section.

Similar to the unpolarized case, &om the quark-parton
model we can write

1

gi (z)dz = -0.065 6 0.018.
0

Combining (4.13), (4.15), and (4.16) we have

(4.16)

~ ~

1 1

[g~i(z)]„dz = —0.0714, [gi (z)]„dx = —0.0756.
0 0

(4.17)

Using the v —p scattering data [64] As = b,s, + b,s, =
—0.15 6 0.09, we obtain a set of sea polarizations:

where

gi(z) = [gi(z)] I+ [gi(z)]-- (4.9) 26u, = —0.229+ 0.021, 26d, = —0.257 + 0.033,
268, = —0.150 + 0.090. (4.18)

1 4 1
[gi(z)]„,I = -[-c„b,u„(z) + -cgb, d„(z)] (4.10)

4 1 1[gi(z)]„=[ c„A—u, (z) + —cgb, d, (z) + —c,6s, (z)],

l
6u„= b.u„(z)dx = 1.0003,

0
1

4d„—: b,d„(z)dx = -0.2217;
0

(4.i2)

(4.11)

where b,u„(z) = u ~(z) —u„~(z), b,d (z) = d„t(z)—
d„g(z), and Aq, (z) = b,q, (z) (q = u, d, s) are assumed.
In (4.10) and (4.11), the /CD radiative correction factors
c„=1 —(cf —1)n, /(2m) and c& = c, = 1 —(2cf —l)a, /Ir
are manifestly included, where cy = (33 —8f)/(33 —2f)
with f, the number of quark flavors. Similar expressions
for [gi (z)]„ I and [gi (z)]„can be obtained by exchange
u M d.

Prom the model result we obtain
OI
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Dotted Une: Valence quarks only

0 10 Dot-dashed line: Sea quarts
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From (4.18), we have b,d, 1.126,u„As, 0.31(Eu, +
b,d, ) (these asymmetric relations are very similar to
those in the unpolarized case). Assuming the polarized
sea quarks for diKerent Bavors have the same x behavior,
which can be parametrized as

b,q (z) = aq(2 —x)(1 —x) (q = u d s) (4.19)

where a„= —0.557, ag = 1.122a„, and a, = 0.309(a„+
a~). Using (4.19), the [zgi(x)]„ is calculated and the
result is shown in Fig. 9(a) (dot-dashed curve), where the
dotted curve is valence component only. The solid curve

we note that these values will be slightly modi6ed if dif-
ferent Qo2 are used. Hence, we would like to put 5%%uo

theoretical uncertainties on (4.12) and only present the
uncertainties in the final result (see (4.18) below). (4.12)
gives

~~ ~~ ~

1 1

[gi(z)]„ Idz = 0.1974, [gi (z)]„Idz = 0.0106.
0 0
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It implies that the valence parts almost saturate the
Bjorken sum rule; i.e., the sea contributions to gi and gi
are almost the saxne within the model. Using the Bjorken
sum rule fo [gi (x) —gi (z)]dz = s (g~/gv)„~~[1 —a, /vr—
O(o.,)]=0.191 (where n, 0.22 has been used) and the
EMC data
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one obtains
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FIG. 9. (a) The calculated [zg~i(z, Q )] ~ (dotted curve),

[zg~~(z, Q )]„(dot-dashed curve), and [zg~~(z, q )]v~$+se&

(solid curve, data is taken from Ref. [16]). (b) Same as (a),
but for neutron, data is taken from [16,17].
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shows the sum of valence and sea contributions. The
corresponding curves for the xgP(x) are shown in Fig.
9(b). The result for gP(x) is shown in Fig. 10(a), data
are taken from [16,17]. The result for xgz (x) is shown in
Fig. 10(b). It shows that the theoretical predictions are
consistent with data within large errors. The numerical
results and comparison with other models are listed in
Table II.

CY
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x.
() {Q

~JM~ ~ g

D. Several remarks

From the result given above, several observations are
in order.

(i) In the static SU(6) limit, there are no sea contribu-
tions and

0.01

-(b)

I I I I I I I

0.05 0.1 0.5

b,u„= 4/3, 6d„= —1/3,
Au = —4bd„, Au„+ Ad = 1; (4.20)

i.e., 100% proton spin is contributed by the spin of the
(valence) quarks. However, because of the presence of the
quark-gluon interaction, which is described by quantum
chromodynamics (@CD), quark-antiquark pairs and glu-
ons (sea) are produced with the appropriate orbital an-

gular momentum in addition to the usual three-valence
quarks in the 8 state. It is obvious that the valence
quarks can no longer be responsible for carrying 100% of
the proton's spin. The result (4.12) shows

0.05
N
CF
N

15

0.00

-0.05

0.01
I l I I I I 1 I

0.05 0.1

7C

~ ~

~ ~

Au 1.00, Ad —0.22,

d u. = —4.56d. , hu„+ d d„= 0.78. (4.21)
FIG. 10. (s) Same as Fig. 9(b), but for gP(x, Q ). (b)

Comparison of [xgq(x, Q )] with dsts [16,17].

It implies that even in the high Q2 (deep inelastic) re-

gion the valence quarks' spin still contributes a large &ac-
tion of the proton spin. This result agrees with the ear-
lier analysis by Close [65] [in [65] using (g~/gv)„~„=
1.257 = Au„—Ad and assuming Au„= —46d,
the author obtained Au 1.00, Ad„—0.25 and
Au„+ b,d„= 0.75].

(ii) The net sea quark spin polarization is —0.64, i.e.,

the spin of sea quarks is quite large and polarized against
the proton spin. This means that although the valence
quarks are still highly polarized, the sea quarks are spin-

ning in the opposite direction and cancel most of the
valence polarization [the cancellation occurs at small-x

region, see Fig. 9(a)]. From (4.12) and (4.18), one ob-
tains

TABLE II. Comparison of the calculated moments of polarized quark distribution functions and

hyperon P-decay coupling constants given by different models with experiments.

Quantity
Au„
Ad

Du, +Du,
Ad, +Ad,
As, +A8,

F/D

(gA/gv)nmp
(gA/gv)Amp

(g~/gv) z-
(g~/gv)=-

Data

—0.150+0.090
0.58+0.02

0.575+0.016'
1.2573+0.0028

0.718+0.015
0.340+0.017

0.25+0.05

MIT [34]
0.840

—0.210
0.0
0.0
0.0

0.667

1.050
0.630
0.210
0.210

SST [40]
0.951
—0.202

0.703

1.153
0.701
0.250
0.202

This paper
1.0003

—0.2217
—0.229
—0.257
—0.150'
0.584

1.250
0.723
0.329
0.198

Dsts are taken from [72] except As, + b,s, snd F/D.
Ref. [64].

'Input.
Ref. [68 .

'Ref. [73.
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Au = 0.771 6 0.054, Ad = —0.479 6 0.035,
As = —0.150+0.090 (4.22)

and

Au+ Ad+ As = —0.142+ 0.110. (4.23)

So that only 14'Fo of the proton spin comes from the spin
of quarks and antiquarks. The remaining 86%%uo must come
&om other sources, e.g. , the gluon polarization and the
orbital angular momentum of the quarks and gluons.

(iii) The angular momentum sum rule [66] is

olates SU(2) flavor symmetry by measuring the devi-

ation of the Gottkied sum rule, because the u and
d must obey the valence quark number sum rules in

(3.15). In the polarized case no similar constraints

exist. Hence the valence part of the f [g~(z, Q )—
gP(z, Q )]dz, i.e., s f [b,u (z, Q2) —b,d„(z, Q2)]dz is

unknown. To determine the sign of the sea term

s fo [Au, (z, Q ) —bd, ( zQz)]dz, one needs to measure

b,u„(z, Q ) —b,d„(z, Q ) independently in addition to gz
and g~.

1 1—= —) Eq+ Eg+ Lq+s, (4.24)
V. SECOND SPIN-DEPENDENT STRUCTURE

FUNCTION

where the Brst term on the RHS is the quark's spin con-
tribution, Ag is the gluon spin polarization and Lq+g is
the total orbital angular momentum of the quarks and
gluons S.ince PAq 0.14, we have b,g + Lq+s

0.43. If we assume that Ag Lq+g 0.22, then
the "gluonic" contribution [20,22] (due to the Adler-
Bell-Jackiw axial anomaly) to the quark's spin polariza-
tion bl':——[n, (Q2)/2z']bg(Q~) would be very small

( —0.009). Hence, our conclusion given above will not
be affected by adding this gluonic term, except for the
situation that Eg(Q2) is very large (e.g. , see [23,67]).
It should be noted that &om leading order perturbative
/CD evolution (e.g. , see [48]), as Q2 grows, the quark
spin is conserved (b,q does not vary), and the gluon spin
grows like lnQ2, the total angular momentum conser-
vation (4.24) requires Lq+s must grow in the negative
direction to cancel Ag. However, Al does not vary due
to o., (Q2) I/tnQ2

(iv) It is easy to check that our result of flavor de-
composition of the proton spin (4.22) can also accom-
modate the existing hyperon P—decay constants. Using
F +D = b,u —Ad, F—D = b,d —b,s and (4.22) we have
F = 0 461, D. = 0 789 and. F/D = 0.584 (which agrees
well with data &om [68]). A comparison of the predicted
hyperon P-decay constants with data and other mod-
els is shown in Table II. The quark polarizations (4.22)
indeed gives a good 6t to the existing data except for
(g~/gv)=--

(v) Combining our model result (4.13) with Bjorken
sum rule and EMC data, the sea should be negatively
polarized as shown in (4.18). However, as mentioned
above a negatively polarized sea cannot be generated by
leading-order perturbative QCD from very low Q2o (if at
this scale the sea and gluon polarizations are zero), and it
must come Rom some nonperturbative mechanism. It is
interesting to note that a preliminary lattice @CD result
reported in [29] shows that the sign of quark loop ("sea")
contribution to the isoscalar axial vector coupling con-
stant gA is negative. Another possible mechanism which
may cause a negatively polarized sea is nonperturbative
instanton interactions [69].

(vi) Similar to the unpolarized case, the polarized sea
seems to be flavor asymmetric, see (4.18); at least it vi-
olates SU(3) flavor symmetry. In the unpolarized case,
it is relatively easy to verify if the unpolarized sea vi-

For the second spin-dependent structure function g2,
we will not discuss the sea contributions and only briefly
present the results given by the valence contribution, so
the subscript "val" will be omitted below. But bear in
mind that these results, including only valence quarks,
may have substantial modi6cations in the small-x re-
gion as we have seen in the gq case. The model re-

sults for gz"'" are shown in Fig. 11(a). It can be
shown that in the SU(6) symmetric limit ((=I), gq

——gT",

hence, gz("'")(z, Q2) = 0 and fo g2"'" (z, Q )Cz = 0;
i.e., the Burkhardt-Cottingham (BC) sum rule is sat-

0.08

0.06

0.04

uo 0.02

0.00

—0.02

pp4 I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8
X

0.2 — HIT

- (b)

0.1

tg

0.0

-0.1

M@M

I I I I I I I I I ~ I

0.2 0.4

~SST~ /

I I I I I I I i I

0.6 0.8

FIG. 11. (a) The calculated gf(z, Q ) and g2 (z, Q ) given
in this paper (valence contribution only). (b) Comparison of
our g~~(z, Q ) (solid line) and those given by other models.
Dot-dashed line: MIT bag model, dashed line: [40].
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isfied. For SU(6) symmetry breaking wave function,

f g2(z, Q )dz 0; i.e., the BC s»m rule is approxi-

mately satisfied. Similarly, fo g2 (z, Q2)dz is also very
small (10 s) within the model. A comparison of gf(z)
given by difFerent models is shown in Fig. 11(b). The
model dependence is easily seen, all models, however,
give qualitatively similar results; i.e., g2(z) starts posi-
tive {'rom x 0, changes its sign at some x = zo and
after passing through a minimum it tends to zero. There
are two distinctions between our result and those given
by other models: (i) our g2 is smaller than (g2)MlT and

(g2)ssT in the wide range of z and (ii) our zo ( 0.15) is
lower than (zo)ssT ( 0 25) and (zo)MlT ( 0 30).

Unlike the unpolarized structure functions and gi of
nucleon, the second spin structure function g2(z) in-
volves contributions from the quark-gluon correlations
and quark mass effects even in the large Q2 limit. In
the formalism of operator product expansion, these con-
tributions come Rom local operators having twist 3. The
structure function g2(z) can be decomposed into the two
diH'erent twist pieces:

0.4
(a}

0.2

Solid line: ga~(x)
Dotted line: g2 P~
Dot-dashed line: g2 ~(x)

-0.2 —I
I

0.4

0.3
C

CQ

OQ

- (b) Solid line: ga'(x)
. Dotted line: g2"
'Dot-dashed line: Nq "(x)

0.0 ~ 0 ~
~ ~

04 /i « i ] I I I I I. . . , ]. . . , ] I I | I

0 0.2 0.4 0.6 0.8 1

where [70j

g2(z) = g2 (*)+ g2(z) (5.1)
-0.2

1

g, (z, Q') = g, (z, Q2)—+ dyg (y, Q )/y (5.2)
-0 4

0
I I I ' I I I I I I I i I I I I I I I

0.2 0.4 0.6 O.S

is a twist-2 piece and

g2(* Q') = gi (z, Q') + g2(*, Q') —f. dygi(y Q') ly

(5 3)

is the twist-3 piece. The model results of g2 and g2
for the proton and neutron are shown in Figs. 12(a) and
12(b). Similar to other model calculations, our result also
shows that although gs(z) is much smaller than gi(z),
the twist-2 piece g2~~(z) and twist-3 piece g2(z) of the
g2(z) are quite large, in particular in the small-z region.
However, g2 and g2 almost cancel, and the sum of
them gives a very small g2. So the higher twist effects
cannot be neglected. Some numerical results are listed
in Table III.

FIG. 12. (a) The calculated gs (z, Q ) (solid line),
g2ww(z, q~) (dotted line), and g2(z, q ) (dot-dashed line) for
the proton. (b) Same ss (s), but for the neutron.

VI. SUMMARY'

In this paper both polarized and unpolarized struc-
ture functions for a &ee nucleon are calculated at moder-
ate Q2 value by using the modified c.m. bag model and
evolved to higher Q2 region by using leading-order per-
turbative /CD. Despite some approximations we have

made, the model gives a reasonable description for the
valence quark distributions at z & 0.3. For the small z
region, the sea quark distributions are needed. For the
unpolarized case, combining the valence and sea contri-

TABLE III. Comparison of the ealeulated moments of g~'" and gz~'" given by different models

with experiments.

Quantity

gi (z)l-dz
gP(z)1-dz
gi(z)] d*
gi(z)] d*
gi~(z)dz
gi(z)dz
g:(*)]-dz
g2(z)] dz

Data

0.126+0.018
—0.08+0.06

MIT [34]
0.175
0.0
0.0
0.0

0.175
0.0

0.0038

SST [40]
0.220

0.220

This paper
0.1974
0.0106

—0.0714
—0.0756

0.126
—0.065
—0.0016
—0.0047

Data are taken from [12].
Data are taken from [24].



49 MODEL CALCULATION OF NUCLEON STRUCTURE FUNCTIONS 3l83

butions, one can accommodate the existing unpolarized
data except F2 /Fz~ at the large x region. The violation
of the Gottfried s»m rule can be attributed to a Bavor
asymmetric sea. For the spin-dependent structure func-
tions, the existing data can be also accommodated within
the model and a negatively polarized sea is required.

For unpolarized sea, the leading-order QCD evolution
leads to a good or at least qualitative agreement with
the data, if a moderate or very low qzo are used. On
the other hand, the perturbative QCD is unable to give
a negatively polarized sea, and various nonperturbative
mechanisms should be further studied. In addition, it
seems very likely that both the unpolarized and polarized
seas violate SU(2) fiavor symmetry. However, for the
polarized sea, the uncertainties of model result and data
are too large to make a definite conclusion.

The spin-dependent efFect plays an important role in
accommodating the data. In the model calculation, the
magnitude and shape of u, d„and 6u„, 6d„, in partic-
ular F2 /Fz, gP and g2'" are sensitive to the symmetry-
breaking efFect which comes &om spin-dependent inter-
actions. Without the spin-dependent effect, we would
obtain Fz"/Fz~ 2/3, gP=——O, and g2'" ——0 if the sea contri-
butions are ignored. Taking (=0.85, our result for F2"/F2
cannot accommodate the data in the large-x region. The
possible sources which cause this failure presumably are
(i) the cavity approximation for the quark wave function
is too sharp at the boundary and does not have suitable
"soft" behavior, and (ii) the parameter g which simulates
the symmetry-breaking effects of the nucleon wave func-
tion is not good enough to describe difFerent z behavior
between u and d . Further studies on these problems
are needed.

Finally, we note that only leading-order perturbative
QCD evolution has been used. For the momentum trans-
fer scale larger than qzo (0.9 —1 GeV/c), we expect
that perturbative next-to-leading-order QCD corrections
and higher twist efFects do not significantly change the
leading-order result. However, it is well known that these
corrections and higher-order efFects become more and
more important when x approaches the end points 0 and
1. Hence, our results are more reliable at the middle
range of the x and less reliable at z near the end points.

which satisfy

A~ l W„„=Wg, A~ l W„„=W2. (A2)

Using (A2) and Eq. (2.11) in Sec. II, we obtain (3.1),
where

I~ l(l) = A~ ""I,„„(l)
= (1 —g/2)I, (l)+qI' (l)

I, (l) = A ""I,„„(l)
= g[(1 —3g/2)I, (l) +3gI' (l)] (A4)

where g = 1/(1+ v /q ), l:—q —ki and

I-, (l) = (2~)'4, (l)g 4, (l)
I', (l) = (2z) P, (l)PP, (L)(kiP/M ).

(A5)

(A6)

In the nucleon rest kame, I,(l) = I' (l); hence, we

have

I",'(l) = (1+9/2)I .(l)
I~ i(l) = g(1+3//2)I, (l).

(A7)

(A8)

Until now we have not yet chosen the specific form of
the rest kame quark wave function q (r). To maintain
the consistency, we use the same quark wave function as
in [45], i.e., the cavity approximation

()= () '"I
ij i(ur/R)a—rU (A9)

and

(A10)

where t;(o., P) = f x2dzj;(nx)j;(Px) (i=0,1), &u =2.04,

k = k/IkI, R is the bag radius. The normalization fac-

tor is N(u) = 4zRs[1 —joz(ur)]/u2. Using (A10), the
spectator quark pieces (2.11) can be rewritten as
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and the struck quark pieces (A7) and (A8) become

I (ki —q) = Ci(1+ g/2)2kg[to(ld, lRg)

+t', (~, /Rg))

I;(k.- q) = C.~(1+3~/2)
x 2k' [to (~, lR&) + ti (~, lRi)]

(A12)

(A13)

APPENDIX A

We introduce the projection operators

A~„l = [—g„„+gP„P„/M ]/2,
A~„l = g[ g„„+3gP„P„/M —]/2 (A1)

where C; = 8x2Rs/N(u) (i=1,2,3). For brevity, we

define the dimensionless variables: P; = k;Ri (i=1,2),
po

—= loR, =I (M+ q, )R, —A I ps =—po —p2
P:I q k& I R» b—:

I q I Ri and e = (pz)m~% where

(pi) is the maximum value of three momentum of the
struck quark inside the nucleon. Using these variables,
we have
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d k2d ksh i q+p —) k;
and

b+e Po

d k» m 2m b »d 1 (A15)

(0o+P)/2

~ 2m/(pR') f &pap~(lh —po) (&&4)

(~.-~)/2
Substituting (All) and (A12) into (3.1), using (A14)

and (A15) we finally obtain

i.e. , (3.2), where

Wi(x, Q ) = X(1+q/2) ) ) b (1;23)C(1;23)I (Ri,'(2, (s)
»-+2,3 cx

Po

)-( i 6 6) = f A&p f(pl&)~p(4~ ())+"~(~ p))&p'(() p)

(A16)

(A17)

and

(A18)

1
where t;(a, b) = fo x~dxj, (a )jx;(bx) (i =0,1) and u =2.04. Similarly, we can obtain (3.3).

We note that although the quark wave function (A9), or (A10), has been used, other options are allowed. For
instance, a Gaussian-type wave function [71]

(A19)

and its Fourier transformation

(A20)

can be used to calculate the structure functions.
In the Bjorken i~~it, v/I q I

+ 1 )7 ~ 0 and
I q I

—qo + Mx, then po ——(I+ qo —
I q I)Ri ~ ~Ri(1 x) hence

the integral J '
PdP[t2o(u, P) + t2i(u, P)]Ii l(Po, P) depends only on x. Considering that the initial quark momentum

is much smaller than the virtual photon momentum, i.e., I pi I« I q I, therefore e « h, one can see that the )gi value

is restricted in a very narrow region around h: h + e, and the integral over Pi can be approximately given by the

mean-value theorem. Then (A17) becomes

Po

I~(Ri' (2~ (s~) 2e PdP[to(ld, P) + ti ((L), P)]I~ (Po, P) (A21)

which depends only on the variable x; hence, both Fi(x) and I"2(x) are scaling in the Bjorken limit and vanish when

x -+ 1. Numerical calculations also confirm this conclusion.

From (2.9) and (2.12), we have

APPENDIX B

3

W~„~(P, q, S) = e„„g k~ ) p b(1;23)M(4x, B,z) f d k;/(2k;)
»-+2,3 a.1,m1 i=»

xh (q+ P —) I(,;)I&,i (ki —q)I, (k2)I, (ks)

where the axial-vector current piece coming from the struck quark I, (ki —q) has been given in (4.3). Using (A10),



MODEL CALCULATiON OF NUCLEON STRUCTURE FUNCTiONS 3185

it is easy to show that

cr 5 6 —2(P, /P)tote, o = 0
(kg —q)p p P (kg —q) = (2/)r)(B, /N)sgn(m) (2p /p

'

)
(82)

where 0* = l(q —k) )~l&)..
Substituting (82) and the spectator quark pieces (All) into (81) and using (A14) and (A15), we arrive at (4.6).

The results for II', IT, and g~, g2 are listed below.
(i) For q ll

—S:

with

and

II ——Nx P P b „,(1;23)C(1;23)sgn(mq)IL (P ob, e) (i = 0, 3)
lm2, 3 a1,my

IL, (Pp, b, e) = J~;d/3). fo 'dP( —2P, )tp(ur, P)ti(ur) P)I~, (Po, P)

IL (Pp, 8, e) =
f& dP) fo PdP[to(u, P) + (2'/P —1)t) (o), P)]I z (Pp, P),

(84)

(85)

where P, = (P~2 —b2 —P2)/2h and the spectator quark contribution I( )(Po, P) is the same as that in the unpolarized
case, i.e., (A18).

It can be shown

g = (1 —)/) [Il + Ir /gl —)/+ IT,r//(1 —)/)]. (86)

In the Bjorken limit, (86) reduces into (4.4).
(ii) For q J S:

where

IT, ——Nx P g b, , (l;23)C(1;23)sgn(m))IT, (Po, b, e)
1~2)3 exp )mQ

(P„S,.) = f,"'dP, f,' dP(to(~, P) + [(P,' —/3 )/P —l]t (~, P))I (P„P),

(87)

(BS)

where P)~ —(P —P —Pz~)/2h. Similarly, we have

g2 ——(1 —&) [IT II —Il /gl —g]

which, combining (86), reduces into (4.5) in the Bjorken limit.
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