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Chiral perturbation theory is extended to nonrelativistic systems with spontaneously broken sym-

metry. In the effective Lagrangian, order parameters associated with the generators of the group
manifest themselves as effective coupling constants of a topological term, which is gauge invariant

only up to a total derivative. In the case of the ferromagnet, a term connected with the Brouwer
degree dominates the derivative expansion. The general analysis includes antiferromagnetic magnons
and phonons, while the effective Geld theory of Quids or gases is beyond the scope of the method.

PACS number(s): 11.40.Ex, 11.30.+c, 11.30.Rd, 75.10.—b

I. INTRODUCTION

The various low energy phenomena considered in the
present paper are very well explored, at a level which goes
much beyond the general discussion given below. The
aim of the paper is not to contribute to the detailed phys-
ical understanding of the many difFerent systems known
to exhibit spontaneous symmetry breakdown, but to an-
alyze their low energy structure from a unified point of
view, relying on the method of effective Lagrangians.
This method is widely used in condensed matter physics
[1], but, as far as I know, a general analysis is not avail-
able. In particular, an effective Lagrangian describing
the behavior of a ferromagnet at large wavelengths does
not appear to exist in the literature. The main result of
the present work is an expression for the general effective
Lagrangian. As it turns out, the expression contains a
term of rather remarkable structure, which distinguishes
ferromagnets &om other systems.

The analysis is based on general considerations, ap-
plicable to any system, for which the Goldstone modes
represent the only excitations without an energy gap. It
amounts to an extension of the effective theories used
in particle physics [2—6] to the nonrelativistic domain.
This extension is by no means trivial. The relativistic
situation is considerably simpler, because Lorentz invari-
ance imposes strong constraints on the low energy struc-
ture of the theory and, e.g. , prevents the charge densi-
ties from picking up an expectation value in the ground
state. These constraints do not apply to condensed mat-
ter, where the center of mass distinguishes a preferred
frame of reference. Moreover, the lattice structure of a
solid singles out preferred directions, such that the effec-
tive Lagrangian is not invariant under rotations either.
In the case of a cubic lattice, the anisotropy, however,
only shows up in the higher orders of the derivative ex-
pansion. As the following discussion mainly concerns the
leading contributions, I disregard this complication and
assuxne that, at large distances, the correlation functions
are invariant, both under translations and rotations.

I consider a spontaneously broken exact symmetry in
d = 3 + 1 dimensions (spontaneous breakdown of sym-
metries only occurs for d ) 2 —the low energy behavior
of the two-dimensional nonlinear o-model, e.g. , cannot

be analyzed in terms of an effective Lagrangian [7)). The
Hamiltonian is symmetric with respect to a Lie group G
with generators Q;,

[Q;, H] = 0, [Q;, Q, ] =if";,Qk (1)

but the ground state ~0) is invariant only under a sub-

group H ~ G. For Lorentz invariant theories, the Gold-
stone theorem [8] states that the spontaneous symmetry
breakdown gives rise to dim(G) —dim(H) massless par-
ticles. In the noarelativistic regime, the occurrence of
order parameters also implies that there are modes of
excitation, for which the frequency ~ disappears when
the wave vector k tends to zero, but the number of inde-
pendent such states and their dispersion law depend on
the properties of the system [1,9].

The generators Q; of G are space integrals over the
corresponding charge densities:

q; = f ~'*z,'(*) . (2)

Identifying the zeroth component of the coordinate vec-
tor with the time (zP = t, no factor of c), charge conser-
vation takes the local form

B„J,"(z) = Bp J, .(z) + B,J,"(z) = 0 .

I am using the external Geld method and study the re-
sponse of the system to the perturbations generated by a
slowly varying external field. In the framework of effec-
tive field theories, the method was introduced in connec-
tion with the low-energy structure of the strong interac-
tions [6]. In the context of condensed matter physics, the
power of the external field method is demonstrated in a
remarkable series of papers by Frohlich and collaborators
[10]

Denote the ground state of the Hamiltonian by ~0)
and consider the perturbations caused by external fields

fp(z) and f„'(z),coupled to the charge densities J,. (z)
and currents J,"(z), respectively, H ~ K —J' dszf„'J,"
The generating functional I'(f j describes the transitions
generated by the perturbation: e' &~& is the probability
amplitude for the system to remain in the ground state
for t ~ +oo, if it was there at t —+ —oo. This amplitude
is determined by the correlation functions of the unper-
turbed system,
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e'"&~& = ) —, d zi . . d z.f„",(zi). . . f„'"(z.)(o~T(J;",'(zi). 1,
":(z-)halo).

n=o

The generating functional thus collects the time-ordered
correlation functions of the charge densities and currents.

The correlation functions play a central role in the
analysis of the low-energy structure. The construction of
the effective theory relies on the Ward identities, which
express the symmetry properties of the system in terms
of these quantities. If the theory does not contain anoma-
lies, the Ward identities are equivalent to the statement
that the generating functional is invariant under gauge
transformations of the external field:

6f„'(z)= D„g'(z),

The gauge functions g (z), g (z), . . . are arbitrary in-
finitesimal quantities. They may be viewed as coordi-
nates of a space-time-dependent group element g(z) c G
in the in6nitesimal neighborhood of unity.

The low energy analysis concerns the behavior of the
correlation functions at distances large compared to the
intrinsic scales of the theory. In particular, the distances
under consideration are assumed to be large compared
to the lattice spacing a —the effective theory does not
resolve the microscopic structure of the system, i.e. , refers
to the continuum limit. In the language of the generating
functional, the effective theory concerns slowly varying
external fields, such that Of/Oz (( f/a

The Fourier transforms of the various correlation func-
tions contain singularities at low energies and momenta,
due to the propagation of Goldstone excitations. The sin-
gularities arise &om processes involving the emission of
Goldstone bosons, which travel over a long distance be-
fore being absorbed. In particular, one-particle-reducible
contributions generate poles, while the simultaneous ex-
change of several Goldstone modes produces cuts.

II. EFFECTIVE LAGRANGIAN

The following discussion exclusively deals with the con-
tributions due to the Goldstone excitations. As witnessed
by superconductivity or by the Higgs sector of the stan-
dard model, the presence of additional degrees of freedom
without an energy gap may change the low energy struc-
ture, even qualitatively: Gauge fields may absorb the
Goldstone bosons. In the following, it is assumed that, at
low frequencies and large wavelengths, the spectrum ex-
clusively contains Goldstone excitations. More precisely.
the discussion relies on the PCAC (partial conservation
of axial-vector current) hypothesis, according to which
the poles generated by the Goldstone bosons dominate
the low energy behavior of the correlation functions.

As is well known, the singularities due to the exchange
of Goldstone bosons may be described in terms of an
efFective field theory [2, 3]. I refer to the variables of
the effective theory as "pion" fields, using the symbol

(z) (in the applications to be discussed below, the "pi-

I

ons" represent magnons or phonons). Unlike the num-

ber of Goldstone particles, which depends on the form
of the dispersion law, the number of fields needed to de-

scribe them is universal: The effective theory involves

dim(G) —dim(H) real fields. If the dispersion law is of the
form ur(k) = v~k~ + O(k ), as is the case for Lorentz in-

variant theories, the number of independent one-particle
states of momentum k is the same as the number of Belds.
For a dispersion law of the type u(k) = pk2 + O(k ),
on the other hand, the number of states is given by

2(dim(G) —dim(H)). The difference is related to the
order of the corresponding wave equations. In the first
case, the wave equation is of second order in the time
derivatives. The Fourier decomposition then contains
both positive and negative frequencies and a real Beld suf-

fices to describe a particle. In the second case, the wave

equation takes the form of the Schrodinger equation, such
that only positive &equencies occur and a complex field

is needed per particle.
In the language of the effective Geld theory, the one-

particle-reducible contributions responsible for the poles
are represented by the tree graphs. The pole terms arise
from pion 6eld propagators, whose form is specified by
the kinetic part of the effective Lagrangian, i.e. , by the
part which is quadratic in the pion field. The interaction
terms of the effective Lagrangian are in one-to-one corre-
spondence with the amplitudes for emission, absorption,
and scattering. In addition to the purely pionic vertices,
describing the interaction of the Goldstone bosons among
themselves, the Lagrangian also contains vertices involv-

ing the external field, which desc.-ibe the transitions gen-
erated by the perturbation f„'J," The ma. trix element

(O~ f„'J,". ~ir), e.g. , which represents the probability ampli-
tude for the external Geld to excite one of the Goldstone
states, is represented in the effective Lagrangian through
a term linear in the fields f„'(z),ir (z).

The low energy analysis relies on an expansion of
the vertices in powers of the momenta. In the lan-

guage of effective Beld theory, this corresponds to
a derivative expansion of the Lagrangian, l:,ff

ff (ir, O„'ir,O„O 7r, . . . ; f, O„f,. . .). The generic term oc-
curring therein contains P pion fields, E external fields,
and, altogether, D derivatives, some acting on 7r (z),
some on f„'(). zIt is convenient to count the external

field on the same footing as the derivatives, f' oc O~, but
to distinguish between the time and space components of
these quantities. The derivative expansion then consists
of a double series of the form

(6)

The term 6 & exclusively contains the pion Beld and

does not involve derivatives, 2,& collects the purely pi-(o, i)

onic vertices with one time derivative, as well as those
invol~ing one factor of fo, but no derivatives, etc. Note
that the number of Goldstone bosons entering the ver-
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tices is not specified —the various terms occurring in
the derivative expansion represent functions of the pion
field.

The tree graphs yield the leading term in the low en-

ergy expansion of the generating functional, loops only
generating corrections of nonleading order [5]. The tree
graphs of a quantum field theory represent the cor-
responding classical field theory. More precisely, the
tree graph contributions to the generating functional are
given by the classical action

thus starts with 8,& . Invariance under space rotations
permits two contributions of this order:

(10)

The space derivatives of the pion field only show up at the
next order of the expansion, where the general form of
the Lagrangian consistent with rotation symmetry reads

hS,~(n, f)
&r (z)

(8)

The Ward identities are obeyed if and only if the gen-
erating functional is gauge invariant. For this to be the
case at leading order of the low energy expansion, the
value of the classical action at the extremum must be
gauge invariant:

The action is to be evaluated at the extremum, where
the pion field obeys the classical equation of motion

Note that terms involving second derivatives of the pion
field or first derivatives of the external field may be re-
moved by adding a suitable term of the form 8„~",which
does not contribute to the action.

The term 8(& ) does not occur in Lorentz invari-
ant efFective theories —it represents the main novelty
in the extension of these to nonrelativistic systems [in
addition, Lorentz invariance implies that the functions

g s(m), h;(7('), k;g(7r) coincide with the corresponding un-

barred quantities, up to a factor of c ]. The value of e;(vr)
at z = 0 yields a term in the effective Lagrangian, which
is linear in the external field and hence determines the
one-point-function:

The pion field thus simultaneously obeys the two dif-
ferential equations (8) and (9). While the first one is the
standard equation of motion, the second incorporates the
Ward identities connected with the hidden symmetry and
very strongly constrains the form of the Lagrangian. In
fact, this constraint determines the leading terms of the
derivative expansion up to a few constants, which play
the role of effective coupling constants (a detailed analy-
sis of the same two differential equations for the case of
a Lorentz invariant efFective theory is given in Ref. [11]).

III. LEADING ORDERS
OF DERIVATIVE EXPANSION

For the &amework to be internally consistent, the form
of the two difFerential equations (8) and (9) must be
compatible with the derivative expansion. The leading
term occurring in that expansion, 8,&, does not con-

0 ~ (o,o)

tain derivatives of the pion field. To leading order, the
"equation of motion" then reduces to a purely algebraic
condition on this field, M & (vr)/87r = 0. It is evident
that the loop expansion does not make sense if the kinetic
term only occurs among the higher order corrections: If
this were so, the pions would not propagate at all, the
"propagator" taking the form of a b function. Indeed, it
is well known that the hidden symmetry not only protects
the Goldstone bosons &om acquiring mass, but also sup-
presses their mutual interactions at low energies. Current
conservation implies that all of the vertices disappear if
the momenta become small, such that purely pionic ver-

tices without derivatives do not occur, 8 ~
——0.

The derivative expansion of the efFective Lagrangian

For non-Abelian symmetries, the charge densities
transform in a nontrivial manner under G, such that
their expectation values represent order parameters. The
ground state of a fermmagnet, e.g., singles out a direction
of the magnetization, given by the expectation value of
the spin density. The corresponding "charges" generate
the group G = O(3) of spin rotations. The direction of
the magnetization need not be correlated with the ori-
entation of the lattice. For the Heisenberg model, e.g. ,
the spin rotations play the role of an internal symmetry;
at long wavelengths, the Green functions of this model
are indeed invariant under Euclidean transformations of
three-dimensional space, as it is assumed here. The case
of the antiferromagnet shows, however, that the expecta-
tion values of the charge densities are not necessarily dif-
ferent from zero. The constants e;(0) represent coupling
constants of the efFective Lagrangian; symmetry alone
does not tell what values these constants take.

IV. SYMMETRY PROPERTIES
OF THE LAGRANGIAN

As discussed above, the pion field must simultaneously
obey the equation of motion (8) and the Ward identity

Notation: i, j, k = 1, . . . , dim(G) label the generators of the
group, a, b, c = 1, . . . , dim(G) —dim(H) denote the compo-
nents of the effective Seld, and r, s, t = 1, 2, 3 refer to the
spatial coordinates. Repeated indices are summed over.
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(9). In general, the leading term in the derivative ex-
pansion of the equation of motion is of first order in the
time derivative, while the space derivatives only enter at
second order, through a term from 6 &, proportional(2,o)

to Lz. The equation of motion thus takes the form of
a Schrodinger equation, leading to a dispersion law of
the type w oc k . It is convenient to organize the book-
keeping accordingly, counting energies like two powers of
rnomenta. The terms 8,& and 8,& then represent ex-(o 1) (2 o)

pressions of the same order k, while the remainder of the
derivative expansion is of order k or higher. The Ward
identity is of the same form as the equation of motion,
also relating m to La. The two equations are consistent
with one another only if they are linearly dependent.
Solving the equation of motion for 7I. and inserting the
result in the Ward identity, one obtains a relation which
only involves the pion field, its spatial derivatives, and
the external field. Since these are independent from one
another, the condition is obeyed only if the coeScients
occurring therein are equal to zero. This subjects the
functions c (vr), e, (m), g b(x), h, (vr), k,b(vr), which spec-
ify the vertices of the effective Lagrangian, to the condi-
tions:

(a) d, h, —d~h, = f",, h b

(b) V' hb, + 7'bh, = 0,
(c) k, b = g h;hbb

(d) d;e, = f",,eb

(e) h ' (cthe~ O~cb) Oo, c

h7r = h, (7r) g' (14)

The geometry of the groups G and H fixes the func-
tions h, (vr), except for the choice of field variables. The
symmetry also very strongly constrains the form of the
metric. In particular, if the Goldstone bosons transform
irreducibly under H, the metric is fixed up to an effective
coupling constant I": Denoting the intrinsic metric of the
quotient space G/H by g b(vr), the metric relevant for the
effective Lagrangian is given by g b{vr) = I" g b(7r). A
detailed discussion of these statements is given in Ref.
tll], where it is also shown that the conditions (a), (b) „

To simplify these formulas, I have used the following no-
tation: The matrix g b(x) plays the role of a metric on
the manifold of pion field variables. Indices are lowered
and raised with this metric and its inverse, g (vr), e.g. ,

h, = g ht,;. The symbol V'~ is the corresponding co-
variant derivative, formed with the Christoffel symbol,
V' hg,. ——0 hg, —I"&h„,and d, stands for the differential
operator d, = h, (7r)0 . Note that the above relations ex-
clusively involve derivatives with respect to the pion field
variables, which represent the arguments of the functions
occurring in the efFective Lagrangian, 0—:0/Ovr .

The first three relations are identical with those rele-
vant in the relativistic case, where c (vr) = e, (x) = 0.
They state that the metric g b(vr) describes a symmet-
ric space with isometry group G. The functions h, (~)
represent the corresponding Killing vectors, which spec-
ify the shift in the pion field generated by infinitesimal
group motions:

and (c) ensure invariance of l: & under a simultaneous(2,o)

gauge transformation of the fieids f„'(x)and vr (x). For
the case of an Abelian symmetry, the coordinates may be
chosen such that both the Killing vectors and the metric
are collstants, h, (K) = h;(0), g~b(7r) = g~b(0)

The new couplings e, (vr) and c (vr) only occur in the
conditions (d) and (e). The first one of these states that,
under the transformation (14) of the pion field, the vector
e, (7r) transforms according to the adjoint representation
D' (g) =—b' + f' &g" + of G. Since the action of the

group is transitive on G/H, this property fully deter-
mines the function e, (x) in terms of its values for z =-- 0,
i.e. , in terms of the magnetization. The relation (e) then
specifies the rotation of c (vr) and thus fixes the function
itself up to a gradient. The reason why c (x) is not fully
determined is that one may modify the Lagrangian by
a total derivative without changing the generating func-

tional: The operation c (vr) ~ c (7r) + 0 w(vr) is equiva-
lent to 2,& ~ l:,ir + &, ~(7r). Except for this ambiguity,
which is without physical significance, the effective cou-

pling constants of the new vertices are fully determined

by the order parameters (0]J, ~0).
In the case of an Abelian symmetry, f", = 0, the rela-

tion (d) shows that e;(7r) is a constant and the condition

(e) then implies that c (vr) is a pure gradient and may

t, hus be removed, c (vr) = 0. Accordingly, the terin 2,&
(0,1)

takes the form e, (0)fo Since th. is expression does not in-

volve the pion field, it leads a life of its own, exclusively
generating an expectation value for the charge densities.
For Abelian symmetries, the equation of motion is there-
fore of second order in the time derivative, such that the
dispersion law takes the form cu Ix ~k .

From a methodical point of view, the most remarkable
property of the new couplings is that the corresponding
contribution to the effective Lagrangian in general fails
to be gauge invariant. Subjecting the fields f„'and x
to the infinitesimal gauge transformations (5) and (14)
and using the relations (d) and (e), one finds t,hat the
effective Lagrangian picks up a total derivative;

hC, ~ =-
q, (g' Ic (vr)h, (vr) + e;(7r)]) {15)

Now, this may merely be due to a bad convention.
If the expression in square brackets is of the form

h, (~)0 cu(7r), it suffices to modify the Lagrangian by
a total derivative, to make it gauge invariant [C,ir
E,rr + &&u(n)]. So, if the function e, (x) is of the form

e, (7r) = h, (7r)e (vr), with e = —(c + 0 w), there is no
problem with gauge invariance. The condition, in par-
ticular, requires the vector e, (0) to be contained in the
subspace spanned by the Killing vectors at m = 0.

Denote the Lie algebras of G and H by G and H, re-

spectively, and set G = H + K. The Killing vectors span
the subspace K. Hence, for the Lagrangian to be gauge
invariant, the vector e, (0) must be contained in this sub-
space.

The Lie algebra G transforms with the adjoint rep-
resentation of G. The corresponding representation of
the subgroup H maps the two subspaces H and K onto
themselves; in particular, K carries a representation of
H Since the order .parameters e;(0) are invariant under
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H, this representation must contain a one-dimensional
invariant subspace. Unless this is the case, the charge
densities can receive nonzero expectation values only if
the Lagrangian violates gauge invariance. For the ferro-
magnet, e.g. , the magnetization e;(0) belongs to H rather
than K —the corresponding effective Lagrangian neces-
sarily breaks gauge invariance.

V. FERROMAGNET

0 cq —B~c = —Ze;. 0 U't9 U~ U" (17)
The right hand side is reminiscent of a topological invari-
ant: Up to a factor of 4mZ, the integral over the sphere
is the Brouwer degree of the map U(n).

The difFerential equation (17) may be integrated with
the technique used in the construction of the Wess-
Zumino term. Consider a point m on the sphere and join
it sxnoothly to vr = 0, along the path a [vr, A], 0 ( A & 1,

I now discuss the case of the ferromagnet in some de-
tail, i.e., consider the groups G = O(3), H = O(2). The
corresponding structure constants are given by f'I,
e,~j„there are three conserved currents, i = 1, 2, 3, and
two pion fields, a = 1, 2. In the Heisenberg model, e.g. ,
the magnetic moment of the lattice sites may be repre-
sented as ps„,where s„is the spin of the site. In the nota-
tion used here, the interaction with a constant magnetic
field, pg„s„H,corresponds to the term f dszfo Jo
The spin rotations are generated by the total angular
momentum, such that P„s„=Jd zJO. Accordingly,
the time components of the external Geld are related to
the magnetic field by fo

——pH'.
It is convenient to use a covariant representation for the

pion Beld, replacing the two variables vr, vr by a three-
dimensional unit vector U = (U, U, U ), which trans-
forms with the fundamental representation of O(3). The
nonlinear transformation law (14) then takes the linear

form bU' = s;~sU~g". In this notation, the term Z~& l is
proportional to the square of the covariant derivative of
U,

Z""=--'Z'D U'D U'
efF

D,U' = B„U*+ s;~ r,f~ U" .

As mentioned above, symmetry determines the form of
this part of the Lagrangian, up to one effective cou-
pling constant F The corr.esponding explicit expres-
sions for the metric and for the Killing vectors are g g

——

F20 U'BsU', h, = F2e;,x,8 U~U".
The analogous representation of the function e, (ir) im-

mediately follows &om the completeness of the spherical
harmonics on the two-sphere: There is only one set of
three functions of the pion Geld transforming according
to the fundamental representation of O(3). Hence the
vectors e;(7r) and U'( r) rare proportional to one another,
e; = Z U'. The constant of proportionality Z is the mag-
nitude of the magnetization.

The expression for the function c (vr) is more compli-
cated. Using the completeness relation for the Killing
vectors, P,. h;h~ = F g g, the condition (e) may be
rewritten in the form

with o [ir, 0] = 0, 0 [7r, 1] = x . Define the function
c (ir) as the integral

1

c (~) = Z dAs, ,x, B U'BpU'U",
0

(18)

with U' = U'( 0'[vr, A]). The vectors 8 U and BpU, which
denote the derivatives with respect to vr at constant A

and vice versa, are orthogonal to U. Since the tangent
plane only contains two linearly independent directions,
the quantity s,~~ 8 U' OsU~ B~U" is equal to zero. Using
this property, one readily checks that the function defined
in (18) indeed obeys the difFerential equation (17). As
noted above, any other solution differs from this one by
an irrelevant gradient.

Together with the contribution involving the external
field, the Lagrangian thus becomes

1

Z."„'=Z dA. ..„a,U a, U&U" +sf;U* .
0

(19)

The forxn of the path 0[s, A] affects the result only
through a total derivative. For the particular choice
U'( 0[sr, A]) = AU'( )z, i = 1, 2, the derivatives of the
interpolating Beld may be expressed in terms of those of
U'(7r) and the integral may then be performed explicitly,
with the result

Zs;, rU~U" + Zfo+ F bU' = cxU', (21)

where 6 = D„D„is the covariant Laplacian and o. is a
Lagrange multiplier, arising from the constraint bU U =
0. The result may be rewritten in the vectorial form

EU+ Zf0xU+ F AUxU = 0 . (22)

Indeed, this equation is known to describe the spin waves
of a ferromagnet —it is referred to as the Landau-
Lifshitz equation [1,12]. The above discussion merely
identifies a known model within the present &amework:
The Landau-Lifshitz equation is the equation of motion
associated with the leading terms in the derivative ex-
pansion of the general efFective Lagrangian, for G=O(3),I = O(2). The Lagrangian contains a term related to
the Brouwer degree of the map U'(vr); the corresponding
effective coupling constant is the expectation value of the
charge density.

The dispersion law of the spin waves may be worked
out by considering the fiuctuations of the field in the
vicinity of the ground state U0 ——const. Taking the mag-
netization to point along the third axis, Uo ——(0, 0, 1),
the linearized equation of motion only involves the par-
ticular combination

= Z(1+U ) (BoU U —BOU U )+Ef'U'

(20)

Visibly, the expression violates gauge invariance.
The corresponding equation of motion is obtained by

evaluating the change in the action generated by a defor-
mation of the pion field. Using the representation (19)
for 8,&, the calculation yields
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f = fo + v e. bs~. f,', F2
y= E (23)

of external fields. Collecting the two transverse compo-
nents of U in a complex field u = U + iU2, the equation
of motion reduces to

Note that G b(z) describes the propagation of a single
particle —although the efI'ective theory contains two
pion fields, there is only one magnon of a given momen-
tum. The propagator may be written in the form

G~b(x) = s~eb G(*)+bbsaG( x) r ~~ = (1~ ') r

—iu —pEu= f, (24) (29)

with f = f + if2. So the dispersion law of the magnons
takes the form

~(k) = pk + O(k4),

where p is fixed by the two efI'ective coupling constants
F and Z, according to (23).

A constant magnetic field, fo ——pH(0, 0, 1), explic-
itly breaks the symmetry and generates a magnon "mass
term, " Zf&U' = ZpH(1 —2u*u+ ), much like the quark
masses explicitly break the chiral symmetry of /CD, pro-
viding the pions with mass. In the present case, the per-
turbation merely lifts the energy of all lattice sites by pH,
such that the dispersion law remains the same, except for
an overall shift, u(k) = p k2 + pH.

VI. CORRELATION FUNCTIONS
OF A FERROMAGNET

The same coupling constants also determine the low

energy behavior of the correlation functions of the charge
densities and currents. The corresponding two-point
functions are given by the part of the generating func-
tional which is quadratic in the external field. At lead-
ing order of the low energy expansion, the generating
functional is the classical action of 8,& + 2,&, evalu-(o, i) (2,0)

ated at the solution of the equation of motion. Since the
functional collects the time-ordered correlation functions,
Feynman boundary conditions are relevant: The solution
U'(z) is to contain only positive (negative) frequencies as
t ~ +oo (

—oo). For the combination u = Ui + iU2, the
solution is given by

u(x) = d'y G(* y)f(y)—

which explicitly shows the degeneracy of the propagation
matrix.

Inserting the solution (27) in the expression for the
action, one finally obtains

(30)

with f = fo +ps bshe„f„The. term linear in fi) repre-
sents the one-point function (ol J, lo) = b, Z. The coeffi-
cient of the contribution which is quadratic in fo is the
leading term in the low energy expansion for the correla-
tion function of the transverse charge densities,

(OIT(J.'(z) J,'(o)}lo) = (-i)z G.b(z) (31)

The Fourier transform thereof contains a pole, whose
residue represents the square of the transition matrix ele-
ment (ol J ]x(k)) between the ground state and a magnon
of momentum k. Using the nonrelativistic normalization

{x(k')]vr{k))= (27r) 8 {k' —k)

the result for the matrix element reads

(32)

(OlJ lx(k)) = s v Z . (33)

Euclidean invariance requires the corresponding ma-
trix element of the currents to be proportional to the
vector k. Current conservation then shows that the co-
efIicient of proportionality is given by

(Ol J'lm(k)) = k's p v Z = k'e F'/~Z . (34)

& (*) = f ~'w & ~(* —
w) I'(y),

where G b(x) is the relevant Feynman propagator:

G b(x) = Gb (—z)
= 2b b(G(x) + G(—z)}

+ 2ie~bs(G(x) —G( —x)}

(27)

(28)

G(z) =
(27r) 4 p k 2 —(u —i e

d3k= i8(t) ik x—ipk t

(2') s

Note that the Feynman solution is complex: The expres-
sion for the combination u = U —iU does not coincide
with the complex conjugate of the solution u, but is de-
termined by the complex conjugate of f, according to
u(x) = f d y G(y —x)f*(y) The resultin. g expression for
the pion field is of the form

The corresponding expression for the correlation function
of the currents is obtained by extracting the part of the
generating functional which is quadratic in f„(z).The
result reads

{olT(J."(x)J;(o)}lo) = iF'q B„B,G.b(x)
+iI'b„.6 6b'( )x+. . .

(35)

The contact contribution (x h (x) is required by the Ward
identities; it arises from the second term on the right
hand side of (30).

With the above explicit form of the effective La-
grangian, it is a matter of straightforward calculation
to work out magnon-magnon scattering amplitudes and
to establish a low energy theorem analogous to %ein-
berg's prediction for the scattering lengths of vrvr scatter-
ing [2]. Likewise, the expansion of the magnetization in
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powers of the temperature may be evaluated by repeating
the analogous calculation for the quark condensate [13],
where the expansion has been worked out to order T .
In that work, the explicit symmetry breaking due to the
quark masses is taken into account, indicating that the
same methods also allow one to study the perturbations
generated by a weak, constant magnetic field.

Both the physics of magnon scattering and the struc-
ture of the low temperature expansion for the magneti-
zation are well understood since the pioneering work of
Dyson [14]. What a reanalysis of the same phenomena
by means of an efFective Lagrangian may add is a better
understanding of the fact that many of the low energy
properties of the system are immediate consequences of
the hidden symmetry, while the microscopic structure of
the system only manifests itself in the numerical values
of a few efFective coupling constants. Also, the method
may prove to be more efBcient, allowing one to carry
the low energy expansion to higher orders. %ork on ap-
plications of the efFective Lagrangian constructed in the
present paper is in progress [15].

VII. ANTIFERROMAGNET

Symmetry does not prevent the charge densities &om
picking up an expectation value, but does not ensure this
to happen either. The antiferromagnet is a well-known
system where the expectation value of the spin density
vanishes. The corresponding efFective field theory is dis-
cussed extensively in the recent literature [16]. The work
goes beyond the leading terms of the low energy expan-
sion and also includes an analysis of the anisotropies gen-
erated by the lattice. The present section does not add
anything to what is known about antiferromagnetic sys-
tems. I merely wish to identify these within the general
framework of effective field theory and to compare their
low energy structure with the one of the ferromagnet.

In the language of the efFective Lagrangian, antifer-
romagnets represent the special case where the effec-
tive coupling constants e, (0) happen to be zero. As
discussed above, the conditions (d) and (e) then im-

ply that the functions e;(7r) and c (n ) vanish alto-
gether, such that the derivative expansion of the ef-
fective Lagrangian only starts at second order, with
the contributions listed in (11). The form of the
functions g s(7r), h;(vr), k;g(7r), g s(x), h;(vr), k;g(x) oc-
curring therein may be worked out along the same lines

as before. In the absence of the term 2,&, the standard(o, i)

power counting used in particle physics, which treats
energies and momenta as quantities of the same alge-
braic order, is more appropriate than the one introduced
above. The comparison of the two difFerential equa-
tions (8), (9) then again leads to a set of conditions,
which these functions need to satisfy for the effective La-
grangian to give rise to a gauge invariant generating func-
tional. In fact, the conditions for g ~(vr), h;(vr), k;~(vr) are
identical with those found previously: These quantities
are subject to the conditions (a), (b), and (c) of Eq. (13).
Moreover, the barred quantities must obey precisely the
same constraints. The solution of these conditions was
discussed in Sec. IV. As mentioned there, the resulting

expression for the e8'ective Lagrangian is gauge invariant—a topological term only arises if the charge densities
do pick up an expectation value.

I again specialize to the groups G=O(3), H=O(2),
where the expectation values of the charge densities are
given by e, (0) = bs E; the present discussion thus con-
cerns the special case Z = 0. As mentioned above, the
functions g s(vr), h,.(7r), k;q(7r) are also fixed up to a con-
stant. Since the barred quantities obey identical con-
straints, the same is true for these. The Lagrangian thus
contains two copies of the same expression:

u)(k) = v]ki + 0(k') . (37)

The known results of the low energy analysis for the
strong interactions may be taken over as they are, merely
replacing the velocity of light by v and adapting the num-
ber of components of U. There are now two magnons
because the equation of motion for the effective field U
happens to be of second order with respect to time. In
the nonrelativistic normalization of the states used in the
preceding sections, the transition matrix elements of the
charge and current densities are given by

(0~J ~m (k)) = ib ~k~F2/Q2(u,

(0~J"~x (k)) =ib k"vF /v2ur

(38)

In the case of the antiferromagnet, the transition ele-
ments of charge density and current are of the same order
in the momentum and tend to zero for k —+ 0, while in
the ferromagnetic case, they are of different magnitude,
the charge density generating transitions even at infinite
wavelength.

VIII. PHONONS IN SOLIDS

Historically, the phenomena associated with the prop-
agation of sound were among the very Grst to be analyzed
in terms of an effective Geld theory. For a solid, the rel-
evant effective fields are the components of the vector
g(x) = (( (x), (2(x), ( (x)), which specifies the displace-
ment of the material from the position in the ground

D„U'= B„U'+s;,gf„'U" (36)

At leading order in the derivative expansion, the La-
grangian involves two effective coupling constants Fq and
F2 Exce.pt for the number of components of the vector
U and for the magnitude of the constants Fq and F2,
the effective Lagrangian is the same as for @CD with
two quark Havors or for the Higgs sector of the standard
model. There, the two coupling constants are related
by the velocity of light, F2 ——t."F~. This shows that, for
the antiferromagnetic systems under discussion here, Eu-
clidean invariance implies Lorentz invariance, except that
(i) the velocity of light is to be replaced by v = F2/Fq
and (ii) the statement only holds at leading order of the
low energy expansion. In particular, the dispersion law

corresponds to a massless particle moving with velocity
v:



H. LEUTVVYLER

state. The corresponding equation of motion follows from
the conservation of momentum:

8„0""(z)= 8p0 "(x) + 8,0'"(x) = 0 .

The quantity 0 " is the momentum per unit volume, while
0"' is the stress tensor describing the momentum Bow per
unit area and time. To first order in the amplitude of the
deformation, the momentum density is proportional to
the mass density p of the solid and to the velocity field:

gOr jv (40)

0" = —p("' —Kh" 8

gva 8 (a+8 Er 2grs8
(41)

The constants p and K are referred to as torsion and
compression modules, respectively [17].

The conservation law (39) shows that, at large wave-

lengths, the sound waves of a solid obey the wave equa-
tion

For simplicity, I consider a cubic lattice. Symmetry under
reflections then implies that, to first order in the deriva-
tive expansion, the stress tensor is invariant under rota-
tions:

tries, the effective theory involves as many pion fields as
there are coordinates in G/H .Accordingly, one might
expect that the effective field theory requires a matrix
field R(x) as well as two vector fields v(x), a(x). The
standard analysis sketched above, however, only involves
a single vector field g(x). Indeed, the fields R(x) and v(x)
are redundant: The transformation law x —+ R x+vt+ a
shows that space-time-dependent translations also cover
boosts and rotations. The local form of the symme-

try group G is the set of general coordinate transforma-
tions; infinitesimally, these are described by space-time-
dependent translations, x" ~ x" + a"(x). The sponta-
neously broken part thereof consists of the translations in
space. The state exp[i a(x) P] ~0) represents a deformed
ground state, the point x being shifted into x + a(x).
Hence the field a(x) coincides with the e8'ective field

((x) introduced above. One may thus view the phonons
of a solid as Goldstone bosons associated with spon-
taneously broken translation invariance: At long wave-

length ~k~ ~ 0, the frequency of the sound waves tends
to zero, because there is no restoring force for displace-
ments of the solid as a whole. The fact that the solid
also breaks invariance under rotations and boosts does
not give rise to additional Goldstone bosons.

The wave equation (42) is the equation of motion of
the Lagrangian

p$ —p E( —(K+ sp) 8(8 g) = 0 . (42)
&.ir = —,'p("(' —

—,'V("'O' —
—,'K(8 ()' (45)

The corresponding dispersion law is of the form u(k) =
v

~

k
~

+O(k2). For transverse vibrations (g J k), the
velocity of sound is determined by the torsion module,
v~ —— gp/p, while longitudinal waves propagate with

(K+ -', ~)/~
The energy density also admits an expansion in pow-

ers of the effective field and its derivatives. The leading
contribution arises from the rest energy of the material
and is of first order in g, while the energy of the wave
itself only shows up at second order. The leading term is
readily obtained from the energy conservation law

which is of the same structure as the effective Lagrangian
relevant for the spin waves of an antiferromagnet. The
mass density plays the role of the effective coupling con-
stant Fi, while p and K are the analogues of F2. In the
present case (i) the relevant symmetry group G is the
Abelian group formed by the space translations rather
than the group O(3) considered in the preceding section
and (ii) the symmetry is now fully broken, such that there
are three Goldstone bosons rather than two —the sub-

group 0 only contains the unit element.

a0000 + O„e"'= 0 . (43)
IX. LOCAL FORM

OF THE TRANSLATION GROUP

In view of the symmetry 0" = 0 ", this yields

g" = -~(8 4) (44)

In the notation used here, the energy density is given
by c 0, such that the undeformed solid corresponds to
0 = p. The expression (44) represents the change in the
density generated by the deformation, p -+ p(1 —8 f ).
Note that the contribution &om the ground state itself is
dropped, in 0 as well as in 0 '.

The sound waves may be viewed as Goldstone excita-
tions of spontaneously broken space-time symmetry: G
is the Poincare group and H is the group of time trans-
lations (in the nonrelativistic domain of interest here, G
may equally well be identified with the Galilei group).
The elements of the quotient G/H are parametrized by
a rotation matrix B, a velocity v, and a space trans-
lation a; the corresponding generators are the angular
momentum J, the boost K, and the momentum P, re-
spectively. For spontaneously broken internal symme-

As noted above, the relevant part of the space-time
symmetry which characterizes a solid is the group G of
space translations, spontaneously broken to H = (e).
The generators of G are the three components of the to-
tal momentum. Accordingly, the charge densities J,. co-
incide with the components 0 ' of the energy-momentum
tensor, while the currents J,". are represented by 0"'.
Their correlation functions may again be obtained by ex-

posing the system to an external field. In the present
case, where the sources of interest are the components
of 0" (x), the relevant external field is the gravitational
field g„„(x).The Ward identities obeyed by the correla-
tion functions of the energy-momentum tensor are equiv-
alent to the statement that the generating functional is
invariant under general coordinate transformations.

The change in the Lagrangian due to the external field

may be worked out as follows. Denote the metric of
Minkowski space by q„and set g„„(x)= g„+f„„(x).
Since the energy-momentum tensor is the variational
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2 ff =
2 pDp( Dpf" —4p ="'="—2K(D„(")
+2foonD. ("+-", (49)

Do(" = ("—J'p D.(" = ~.("—
:""'= ("' —f..+ —,'~"fu .

We could just as well have applied the machinery of the
preceding sections to the case of the translation group.
Introducing external fields coupled to the charge densi-
ties 8 ' and currents 8"' and imposing gauge invariance,
the result would have been the same (except for the ad-
ditional term involving the external field fpp, which is
not related to the charge densities and currents of the
group G). The point is that the Lagrangian describing
the phonons of a solid exnerges &om the above general
discussion as the special case which corresponds to the
Abelian symmetry of the translation group. In particu-
lar, sound waves illustrate the rexnark made in Sec. IV,
according to which the Goldstone bosons generated by
the spontaneous breakdown of an Abelian group obey a
dispersion law of the form u oc ~k~. The transition matrix
elements of the charge densities and currents between the
ground state and a Goldstone boson may also be calcu-
lated in the same manner as before, with the result

derivative of the action with respect to the metric, the
modification of the Lagrangian is given by 8 —

2 f„„8""+
O(f2). The effective Lagrangian picks up the analogous
term linear in f„„,involving the above representations
of the energy-momentum tensor within the effective the-
ory. In the presence of an external gravitational field, the
effective Lagrangian thus becoxnes

&.ff = —,'S ("("—
—,'V("'("' ——,'K(&.()'

+-,'fop'~ 4 —fo. n('+ ,'f-—VC'

+2f„„KB.)+ (46)

The conservation laws ensure that the corresponding ac-
tion is invariant under the transformation

f„„-+f„„+B„a„+B„a„ (47)

of the gravitational Geld —the linearized form of a
general coordinate transformation on Minkowski space
axnounts to an Abelian gauge transforxnation. If the 6eld
g(z) solves the wave equation for f„„(z),then the solu-
tion belonging to the transformed gravitational 6eld is
given by g(z) + a(z). Under a gauge transformation of
the external Geld, the effective field thus transforms ac-
cording to

g-+/+a . (48)

Although the tixne component a of the coordinate trans-
formation changes the Lagrangian by a total derivative,
it does not affect the solution at all. The essential part
of the symmetry is contained in the spacial components
a, which represent the gauge transformations associated
with the symmetry group G. Under these, the quantities
("—fp„and 8„('+8,("—f„,are gauge invariant. Com-
pleting the squares in (46), one thus arrives at a gauge
invariant effective Lagrangian:

(0~8 ~z.(k)) = —i~p k s//2(u;
(0~8o"~x(k) ) = —i~p (u s"/y'2(u;

(0~8"'~7r(k)) = i ~—p (v~ (k"e' + k's" —2h"k . s)

+v~, b"'k sj/+2(u, (50)

X. PHONONS IN FLUIDS AND GASES

Finally, I brie6y comment on sound waves in Huids
or gases. Since the corresponding ground state is in-

where e is the polarization vector of the phonon.
Despite these evident similarities with the sponta-

neously broken internal symmetries discussed in the pre-
ceding sections, the fact that the translation group acts
on space-time gives rise to soxne peculiarities. I add two
remarks regarding the difference between phonons and
Goldstone bosons of an internal symmetry.

The first point concerns the transformation proper-
ties of the generators under space rotations. While the
charges considered in the preceding sections were as-
suxned to be invariant, the generators of the translations
transform with the vector representation of the rotation
group. Euclidean invariance then prevents the charge
densities from acquiring expectation values, (0~8o"~0) =
0, while those of the currents may be different &om zero,
(0~8"'~0) = h"p (p is the pressure in the ground state).
Apart kom this modi6cation, the general discussion of
Sec. IV, however, applies. As pointed out there, the or-
der parameters associated with the charges of an Abelian
group lead a life of their own and do not manifest them-
selves in the dynamics of the Goldstone bosons. Indeed,
in the above equations, the contributions to the energy-
moxnentum tensor from the ground state were simply
dropped.

The second remark is more signi6cant. The form of
the Ward identities is controlled by the loca/ version of
the syxnmetry group. The local form of the translation
group is the set of general coordinate transformations and
is not Abelian —it reduces to the set of Abelian gauge
transformations (47) only at the linearized level. The in-
trinsic difference between the global and the local struc-
ture of the group shows up in the commutation rules:
While the generators P" of the translation group com-
mute among themselves, they do not commute with the
corresponding charge densities and currents, but obey a
commutation rule of the form [P",8""(z)]= iM 8""(z)
The phenomenon is related to the fact that an Abelian
group admits different local versions. For the deforma-
tions of a solid, the one which xnatters is the group of
coordinate transformations, while for the groups associ-
ated with the U(1) charges of particle physics, the local
form relevant for the Ward identities is the set of Abelian
gauge transformations. The full effective Lagrangian de-
scribing the deformations of a solid is gauge invariant un-
der the transformation (47) only at the linearized level
considered above. When imposing the symmetry on the
higher order terms, the expansion of the coordinate trans-
formation is needed to higher accuracy, such that the
transformation laws of the fields f„„ad(n" then involve
additional terms.
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variant under rotations as well as translations, the gen-
erators J and P now belong to the subgroup H. The
spontaneously broken part of the space-time symmetry,
G/H, is generated by the boost operators K. Accord-
ingly, the efFective field is the field associated with space-
time-dependent boosts, v = v(x). To lowest order in this
field, the leading terms in the derivative expansion of the
energy-momentum tensor now take the form

F00 gOr ~ gv s grs—p) —pV p (51)

and the conservation laws for energy and momentum be-
come

v —r8(8 v) =0 (53)

The phonons thus obey a wave equation which is similar
to the one valid in solids (v ~ Ie). The term proportional
to ~ is the analogue of the one involving the compression
module, K = p K. A torsion term, on the other hand,
does not occur here: In fluids or gases, torsion does not
generate stress. A divergence-&ee velocity field obeys
v = 0, indicating that transverse modes do not oscil-
late. According to Eq. (53), layers perpendicular to the
wave vector k glide along one another without transfer
of energy or momentum.

In reality, the energy contained in the transverse modes
dissipates. The attenuation rate is determined by the vis-
cosity of the material, which manifests itself in the stress
tensor, at the next order of the derivative expansion [17]:

8"' = b"' p —g(B,v' + B,v' —-b"' 8 v ) —(b"8 v .

(54)

Instead of a wave equation, the transverse modes obey a
di8'usion equation,

pv=gLv . (55)

One may thus conclude that, in the case of fluids or gases,
there is only one Goldstone particle. The two other de-
grees of freedom of the group G/H are dissipative and do
not propagate like particles with real momenta and en-
ergies. Instead, the corresponding "dispersion law" cor-
responds to a pole in the complex plane, occurring at
~(k) = —ik 2i1/p.

For the efFective Lagrangian method, this, unfortu-

p+ 8 (pv) = 0, (pv)'+ Bp = 0 . (52)

In general, the local configuration of the system depends
on several variables, which, in principle are independent
of one another: In addition to the temperature, the chem-
ical potentials of the various particle species also need to
be specified. To the extent that the sound waves repre-
sent adiabatic deformations, the change in the pressure is,
however, determined by the one in the density, bp = r. bp.
The coefficient of proportionality is the adiabatic com-
pression module per unit mass, K = (Bp/Bp), (a detailed
discussion, in particular also of the adiabatic approxima-
tion, may be found in Ref. [17]). Eliminating jr in favor
of p and retaining only terms linear in the velocity field,
the time derivative of the momentum conservation law
may be rewritten as

nately, is the end. In the presence of phenomenologi-
cal dissipative forces, the equation of motion cannot be
formulated in terms of a Lagrangian. This does not
mean that effective field theory is unable to cope with
the motion of fluids or gases quite to the contrary, the
Navier-Stokes equations describe this motion perfectly
well. They do represent an effective field theory, for
which the velocity field v(x) is the relevant dynamical
variable. That theory, however, cannot be represented in
terms of an effective Lagrangian. The systematic expan-
sion in powers of the derivatives provided by the effective
Lagrangian method is not available here. In this expan-
sion, the contributions arising at higher orders, &om si-
multaneous exchange of several Goldstone bosons, are
accounted for by the loop graphs, i.e., by the quantum
fluctuations of the effective field. If the effective field
theory does not admit a Lagrangian formulation, it is en-
tirely unclear how to set up the corresponding quantum
theory. Presumably, in the presence of phenomenologi-
cal dissipative terms, it is impossible to extend the low

energy analysis beyond leading order.

XI. SUMMARY AND CONCLUSION

(1) The paper deals with the effective field theory rele-
vant for the low energy analysis of spontaneously broken
symmetries in the nonrelativistic domain. The discus-
sion applies to any system for which the only excitations
without an energy gap are the Goldstone modes.

(2) The analysis is based on the Ward identities obeyed
by the correlation functions of the charge densities and
currents. The discussion assumes that the Ward identi-
ties are anomaly &ee and exploits the fact that the gen-
erating functional is then invariant under gauge transfor-
mations, i.e., under a local form of the symmetry group.

(3) The number of effective fields needed turns out
to be universal. Denoting the symmetry groups of the
Hamiltonian and of the ground state by G and H, re-
spectively, the number of effective fietds required to de-
scribe the properties of the system for large wavelengths
is given by dim(G) —dim(H). While, for relativistically
invariant theories, the number of Goldstone particles co-
incides with the number of effective fields, this is not in
general the case for nonrelativistic systems, where the
above number only represents an upper bound.

(4) Nonrelativistic kinematics does not prevent the
generators of the group from having expectation val-

ues in the ground state, representing order parameters
of the spontaneously broken symmetry. The main re-
sult of the present paper is the statement that the phe-
nomenon manifests itself through a term in the effective
Lagrangian, which is of topological nature and does not
occur in the effective field theories relevant for particle
physics. The relevant term, in particular, violates gauge
invariance of the effective Lagrangian.

(5) The form of the leading contributions in the deriva;
tive expansion of the general Lagrangian is discussed
in detail. In the case of G = O(3), H = O(2), the
two Goldstone fields may be described in terms of a
three-component vector U*(x) of unit length, O'U* = 1.
The derivative expansion of the effective Lagrangian then
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starts with the charge density does not acquire an expectation value.
The dispersion law then takes the form

C,tr = Z did, ~i, OoU'OgU' U" + zFi BoU'BoU'
0 Z=O . (59)

—2F20„UOU +.. . . (56)

The 6rst term is the topological object mentioned above.
The corresponding effective coupling constant Z is the
order parameter associated with the charge densities.
In the case of a magnet, Z is the magnetization of the
ground state. The other two efFective coupling constants
I"i, F2 are determined by the one-particle matrix ele-
ments of the charge densities and currents.

(6) The above expression for the effective Lagrangian
implies that the dispersion law of the Goldstone bosons
is of the form

Z(u+F~ cu —F k + = 02 2 2 2 (57)

(i) If the charge density acquires a nonzero expectation
value —as it is the case with the ferromagnet —the first
term is different from zero. At low frequencies, it then
dominates over the second, such that the dispersion law
is quadratic in k:

In this case, the wave equation is of second order in the
time derivative, such that there are two Goldstone parti-
cles.

(7) The phonons of a solid represent a peculiar case,
as they are associated with a spontaneously broken space
symmetry, translation invariance. The relevant gauge
group is the set of coordinate transformations. Accord-
ingly, the Ward identities for the correlation functions of
the energy-momentum tensor play a central role in the
corresponding effective theory.

(8) While the efFective Lagrangian method is perfectly
suited for the low energy analysis of the deformations of a
solid, the method fails for fluids or gases. There, the low

energy behavior of two of the three effective fields is dom-
inated by dissipative forces, which cannot be described
in terms of a Lagrangian.
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