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Small massless excitations against a nontrivial background
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We propose a systematic approach for finding bosonic zero modes of nontrivial classical solutions
in a gauge theory. The method allows us to find all the modes connected with the broken space-time
and gauge symmetries. The ground state is supposed to be dependent on some space coordinates
y and independent of the rest of the coordinates x'. The main problem which is solved is how to
construct the zero modes corresponding to the broken x'y rotations in vacuum and which boundary
conditions specify them. It is found that the rotational modes are typically singular at the origin
or at infinity, but their energy remains finite. They behave as massless vector fields in z space. We
analyze local and global symmetries afFecting the zero modes. An algorithm for constructing the
zero mode excitations is formulated. The main results are illustrated in the Abelian Higgs model
with the string background.

PACS number(s): 11.10.Kk, 11.27.+d, 98.80.Cq

I. INTRODUCTION

Massless excitations (zero modes) against nontrivial
classical backgrounds play an important role in many
physical problems. In higher-dimensional theories [1,2]
they are treated as observable fields in physical dimen-
sions and are the main subject of investigation. For cos-
mic strings [3,4] these excitations induce such phenomena
as cosmic-string superconductivity [5] and baryon num-

ber violation [6]. Zero modes were extensively discussed
in connection with the quantization of classical solutions
in field theory [7]. Domain walls in 1+1 [7], vortices in
1+2 [8], monopoles in 1+3 [9] dimensions and instantons
in four-dimensional Euclidean space [10] give well-known

examples of such solutions. Zero modes appearing in the
excitation spectrum about these solutions are connected
with the translational and internal symmetries breaking
in vacuum. The rotations between time and space coor-
dinates are also broken. Do they induce new zero modes?
The answer is no. However, if one embeds any of these
solutions into a space with additional dimensions, we
will really find new massless excitations with very spe-
cial properties. These modes will be the main subject for
our study.

Consider, for example, a vortex solution in (1+3)-
dimensional Minkowski space-time (string solution). Let
the string background depend on y (n = 1, 2) coordi-
nates and let two additional coordinates be x' (i = 0, 1).
Then the massless excitations of the string describe a
two-dimensional theory of x-dependent fields. It includes
the zero modes connected with the broken translations in

y and those for the broken rotations in the x'y planes.
At x coordinates transformations they behave as scalar
and vector fields, respectively. For the U(l) x U(l) model
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of cosmic string [5] the electromagnetic U(1) field is ab-
sent in vacuum and it reduces the x-vector modes to the
gradient of some scalars. Such excitations can be treated
as Goldstone bosons of the electromagnetic U(l) gauge
group [11].Their interpretation becomes unambiguous if
the gauge field is nonzero in vacuum [12]. In this case two
vector modes and a series of the scalar modes localized
at the origin were found. A very interesting feature of
the modes connected with the broken rotations is their
singular behavior in y coordinates. They inevitably con-
tain singularities at

~ y ~~ oo or at
~ y ~

—i 0, but their
energy remains finite.

The idea that we live inside a topological defect [13—
15] gives another example of zero mode manifestation.
Rubakov and Shaposhnikov [13]considered a domain wall
in the fifth coordinate as a ground state in the 4 model
defined on a five-dimensional Minkowski space-time M .
The only zero mode is confined inside a potential well in
the fifth dimension and connected with the broken trans-
lations in this direction. The domain wall also breaks
the rotational symmetry between the fifth and the rest
of the four coordinates, but in scalar theory it does not
give new massless excitations. This approach allows us
to get massless fermion and scalar particles living in 1+3
physical dimensions.

To get Lorentz-vector massless excitations, we should
choose a ground state with a nontrivial gauge field in
the additional dimensions. Lorentz-vector zero modes are
connected then with the broken xy rotations. The sim-
plest system of this kind is the Abelian Higgs model in
M . At low energies there are four-dimensional massless
vector and scalar fields interacting with each other [15].
The masslessness of the vector fields guarantees some
gauge symmetry of the lower-dimensional Lagrangian.
An interesting feature of such a theory is spontaneous
symmetry breaking on the scale which is naturally small
in comparison with the mass scale in the original higher-
dimensional theory [15]. One can expect a non-Abelian
gauge symmetry in the low-energy limit for some clas-
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sical solutions embedded in a higher-dimensional Bat or
curved space-time manifold (for exainple, an instanton in
Ms). However, we will not discuss here the interaction
between massless excitations leaving it a topic for future
publications.

The z'y -rotational modes and the gauge modes (see
below) have been studied in a few works [11,12,15] where
very special features of the modes have been stressed.
Diferent methods for the description of the modes have
been used, but they were heuristic rather than systematic
and so could be applied only to the particular problems
which were solved. In this paper we propose a common
approach to the description of small massless excitations
against a nontrivial background. All the modes con-
nected with the broken space-time or gauge symmetries
are treated on the same basis. The paper is organized as
follows. In Sec. II we investigate the coordinate trans-
formations inducing zero modes for an arbitrary back-
ground solution in a Yang-Mills-Higgs theory. An analy-
sis is given for some gauge group G in a D-dimensional
Minkowski space-time. In Sec. III local and global sym-
metries affecting zero modes are discussed. In Sec. IV we

analyze the zy-rotational modes and formulate bound-
ary conditions for them. A common algorithm for con-
structing the zero mode excitations is also presented in
this section. The explicit solutions are given in Sec. V
for string backgrounds in the Abelian Higgs model. In
Sec. VI we present our concluding remarks.

A' =0, A =A (y), 4g =4s(y), (2 6)

X" w X"+("(z,y) (2.9)

with a small arbitrary vector P (z, y). At such a variation
the vector and scalar fields get the increase

where M coordinates are X" = (z', y ), and z'(i =
0, 1, . . . , d —1) will be the coordinates in a lower-
dimensional theory. The boundary behavior of the so-
lution (2.6) is not important at this stage.

Variation of the classical equations of motion gives the
equations describing small excitations about the back-
ground (2.6):

[D„(D"V"—D"V" ) ] + gC s,Vs„F,""—ig (D"P) 8 4

ig(D"—4)8 P+g (48s8 4) Vs ——0, (2.7)

(D~D"&)~ &g8si—(D~@)&V."—igD, (8 @V.") g

+ (82V/BCsBC) ) P) = 0, (2.8)

where D„ is the background covariant derivative and
V"and P are the variations of the vector and scalar fields,
respectively.

Among all the excitations there are a few zero modes
connected with the broken transformations of the space-
time symmetry. To extract these modes, one considers
the coordinate transformation

II. COORDINATE TRANSFORMATIONS
INDUCING ZERO MODES

bgA" = (8„$") A" —("B„A", (2.10)

F„„F""+ ———( D„4)„(D"4' )„—V (O), (2.1)

where V(4) is some G-invariant polynomial in 4, and
where

Consider a Yang-Mills-Higgs theory in a D-dimen-
sional Minkowski space-time M . Let A" and 4g be
the gauge 6elds and real scalar 6elds, respectively. The
Lagrangian of the system which is locally gauge invari-
ant under some compact Lie group G with structure con-
stants C.&, is

h, e = -PB„e, (2.11)

where hg is the Lie difFerential with respect to (". We
should find those functions ("(z,y) which generate the
zero modes we are looking for. For this purpose one takes
the variation of Eqs. (2.4) and (2.5) with respect to ("
and demands the field increase to be an excitation of
the ground state. Applying the hg operator to Eq. (2.5),
one gets the left-hand side of Eq. (2.8) with V" = h~A~
and P = bye plus some additional terms. These terms
are connected with the metric and the spin connection
variations:

F" = BA —0 2" +yC 2 A (2.2) bing"" = 8"f"+ 8"P, (2.12)

(D„C')„=8„4g —ig8q(4(A „ (2 3) hgF~„= —8„8 (~. (2.13)

(D„F"") —ig (D"4) 8 4 = 0, (2.4)

( D„D"4 )„+BV/BOg = 0. (2.5)

A solution with finite energy is supposed to be dependent
on y coordinates (o. = 1,2, . . . , D —d):

The indices p, v run from 0 to D —1. The scalar 6elds
belong to some, in general, reducible representation of G,
with corresponding representation matrices of the gener-
ators 0&&.

Consider a nontrivial vacuum state which obeys clas-
sicaI equations of motion: +ig (8 C ) ApB~ (8 ( ) + (8 8 (~) Bp@

—8;8*(b~4) +ig (8 4) 8; (b~A') = 0. (2.14)

Here we have taken into account that vacuum depends
only on y coordinates.

Let bye' and bye be the massless excitations in the
sense that they satisfy the equations

Since we consider bgA" and bye as one of the possible
excitations, the additional terms must be zero:

h g~~ 8 8 4+ g2 (8~8s4) A A&s
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0;8' {bye) = 0,

0, [0' (bgA') —0' (b~A*) )
= 0.

(2.15)

(2.16)

D D (bing'PAp) +g (48 8 4) bing'PAp

= 0' ( 0 (p ) F P. (2.22)

Then, in the Lorentz gauge for btA*, Eq (2.14) can be
treated as an equation for ( (x, y). The most common
solution is

(x, y) = C (x) + C P(x)yp, (2.17)

D„D (bing'PAp ) + g (Ce osC ) b(g'PAp

—0'(8 (p) F P —D [8'(b(g P) Ap],

+0, [
0' ( bt. A~ ) —8' ( bt A' ) ] = 0,

B,O' (btA ) + D (O,b(A*) = 0,

(2.18)

(2.19)

respectively. Again, let bgA' and bye be the massless
excitations, i.e. , btA' satisfy Eq. (2.16) and

B,B' (bgA ) = 0. (2.20)

In this case (2.19) is held true in the Lorentz gauge. In

Eq. (2.18) the term D [8' (bing
P

) Ap] must vanish and
that implies

(2.21)

if we are not interested in pure y-dependent ( . It co-
incides with Eq. (2.17) for ( (x, y). All the other terms
give an equation for ('(x, y):

where C (z) and C P (x) are arbitrary functions of x'
and C P =——CP . According to Eqs. (2.11) and (2.15)
the functions C (z) are massless scalar fields in the
lower-dimensional space-time M". The same conclusion
can be drawn for the functions C P(z) if there is no resid-
ual symmetry leading to bye = 0 for some space trans-
formations. Possible types of the residual symmetry will

be discussed in the next section. The interpretation of
the fields C (x) and C P(z) is obvious and well known.
They can be considered as the parameters of the broken
space transformations. C (z) correspond to the broken
translations in y and C P(z) to the broken rotations in
the y y~ planes. Their x dependence is connected with
the fact that the ground state does not depend on x'
coordinates.

There are many ways for the description of the trans-
lational modes and in this respect we did not say some-
thing new. Our goal is to apply the same approach to the
modes arising as a result of breaking z'y rotations. We
can deal with the xy-rotational modes on the same basis
as was done for the translational ones. To this end one
takes bt from Eq. (2.4) and after some transformations
one gets, for v = i and v = o. ,

Solutions of this equation allow us to construct the rota-
tional zero modes, which appear in the lower-dimensional
theory on M" as vector fields. We will discuss the solu-
tions and the boundary conditions for them, but first let
us turn to the residual symmetry of the background.

III. SYMMETRIES ON ZERO MODES

A. Residual symmetry

S„4(y) = 0, ( S„)p AP (y) = 0. {3.1)

Here S„[n = 1, 2, . . . , dim(S)] are the generators of the
group S. These generators can be explicitly constructed
as linear combinations of the y y~ rotations:

S„=—a Mp,2" (3.2)

where M p are the rotational generators in the corre-
sponding representation (scalar or vector) and a„P are
the numerical coefficients forming a Lie algebra of the
group S,

P~ ~~ P~ ~~ ga a —a a = ~~~IaA, (3.3)

If vacuum is S symmetric, then not all of the rotational
parameters C P(z) have to appear as massless fields.
Some linear combinations of C P(x) should not satisfy
the d'Alembert equation because of the symmetry con-
straints. Really, one considers transformations from the
S subgroup of the group SO(D —d) for the fields 4 and
A

b(~C = o.„(x)S„4(y), b~ A = a„(z) (S„) AP(y),

(3.4)

To specify the structure of the lower-dimensional the-

ory, it is important to know the residual symmetry of the
ground state. The d-dimensional fields will be the sub-

jects of this symmetry. In the studied model the vacuum
solution breaks all the translations in y directions, but
it can admit some rotational symmetry. The maximal
symmetry group is SO(D —d).

Two kinds of residual symmetries can exist. We will

refer to them as the direct and the combined symmetries.
In the first case the vacuum is directly symmetric under
some group S C SO(D —d). In the second case it is H
symmetric up to a gauge transformation and so the group
H must be contained in SO(D —d) & H and in the gauge
group G ~ H. Vortices, monopoles, and instantons give
well-known examples of both cases [7].

The conditions of the direct symmetry are

The y y~-rotational modes are quite similar to the trans-
lational ones and they have no special interest.

where

n„(x) = a„PC p(x) (3 5)
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The field variations vanish as a result of Eq. (3.1) and
n„(z) remain arbitrary functions. We can conclude that
a„(z) are the parameters of the local group 9 which af-
fects massless fields in the d-dimensional theory.

The combined symmetry is defined by the conditions

(3.6)

where the coefBcients y„extract the H subgroup &om
the group G. The operators H„are constructed in
the same way as it was done for the direct symmetry
[Eq. (3.2)]. H transformation for the fields is quite similar
to that for the S group, but in the case of the combined
symmetry the field variations are not zero in accordance
with Eq. (3.6). Therefore, the group parameters n„(z)
must obey the equation 8;8'a„(z) = 0 and H symmetry
will act as a global group on massless fields. We could
also conclude that bP@ and hPA are the zero modes.
However, it would be a hasty conclusion. These excita-
tions really obey Eqs. (2.8) and (2.7) with p = o., but
Eq. (2.7) with p = i knows nothing about the z depen-
dence of | p. Really, substituting SPY and SPA in it,
one finds

8;a„(z)[(D D g„) + gz (48 8s4 ) ys ] = 0. (3.7)

Generally speaking, it will hold true for n„(z)=const. 2

Indeed, one can obtain the same result &om our basic
equation (2.22). Although we consider it as an equation
for ('(x, y), it can impose some restrictions on C p(x).
In Sec. V, where an example is analyzed, we will see that
the restriction can arise &om the demand for f'(z, y) to
be single valued in y

Thus, not all of the rotational parameters appear as
zero modes. The linear combinations of the parameters
corresponding to the direct symmetry of vacuum remain
arbitrary functions of z and describe the parameters of a
local symmetry group instead of zero modes. Those for
the combined symmetry are reduced to arbitrary con-
stants which are the parameters of a global group. Mass-
less excitations are subjects of these local or/and global
groups.

B. Gauge transformations and gauge modes

If there are massless vector fields in a theory, there
must be some gauge symmetry to guarantee their mass-
lessness. Now we are going to discuss the origin of this
symmetry. The residual group S is not a good candidate
since the vector modes do exist even if the ground state
does not possess the direct rotational invariance. More-
over, S symmetry cannot become apparent on small ex-

citations because an excitation gets the increase of the
second order under a small 8 transformation.

Local G symmetry of the original theory induces the
gauge transformations for small excitations:

V' + V'+ 0'y,
V mV +Dy,
p ~ p+ igy4' (3.8)

Here V'(z, y) obeys Eq. (2.22). Let us note that any
vector excitation of the form

V' = hgg' A + 8'Q

with Q solving the equation

(D D g) +g (48 8sC)g =0

(3.10)

(3.11)

will also obey Eq. (2.22) and can be treated as a zero
mode. Since 8'Q and b'gg' A obey the same homoge-
neous equation, the gradient part can be absorbed into
the rotational part of the excitation. However, one should
remember that Eq. (2.22) is an equation for ('(z, y) and
there may exist some solutions of Eq. (3.11) for which
an appropriate (' cannot be found. Only in such cases is
8'Q in (3.10) important.

Up to now we have discussed zero modes connected
with the broken space-time symmetry. The ground state
also breaks the gauge group G and induces additional
modes. For the string solution one of these modes was
discussed in connection with cosmic-string superconduc-
tivity [5], another mode was shown to play a specific role
for the string excitations in the Abelian Higgs model
[15]. Detailed analysis of the modes for the string so-
lutions has been carried out in Ref. [11]. We will ca11
them the gauge modes stressing their origin kom gauge
symmetry breaking. One can find the explicit form of
the gauge modes transforming (3.9) with the gauge func-
tion y(x, y) = &p(z, y) obeying Eq. (3.11). The gradient
can be absorbed into the rotational part (or into 8'Q if
Fgg' A vanishes) and we find the zero mode:

V'=0, V =D (p, Q=ig(p4'. (3.12)

Now one can write down the expansion of an arbitrary
massless excitation in the complete set of zero modes:

V' = hgg' A +8'vj),

V =(pF P+D rp,

(pDP4 + igy4'. — (3.13)

where y(z, y) is a Lie-algebra-valued function. Consider
the massless excitations connected with the broken space-
time symmetry. To work with explicitly G-covariant ex-
pressions, it will be useful to make the transformation
(3.8) with y = ( A . Then the excitations can be writ-
ten as

V' = bgg' A, V = (pF P, P = (pDP4—. (39)

We cannot exclude some exceptional cases (especially for
curved space-time manifolds) when the term in the square
brackets is zero, but such cases will not be discussed here.

The gauge transformation (3.8), with y(z, y) obeying
Eq. (3.11), transforms massless excitations into them-
selves and, therefore, it will afFect d-dimensional fields.
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V' = h'(g' A + 8*(g —(p),

V =(pI' ~,

(pD~—O. (3.14)

That is just the symmetry we are looking for. Under
it action d-dimensional vector fields get usual gradient
type increase and gauge modes get shift like the phase
of some scalar. 'Iranslational and y y~-rotational modes
do not change at all.

By a gauge transformation one can exclude the gauge
modes from V and P and present (3.13) in the alterna-
tive form

V'(* y) = C*(z)f(y) (4.1)

The normalization factor Z one Gnds integrating over

y the kinetic term (O'V~ —cPV') in the quadratic in
excitations part of the Lagrangian:

Z = d g g (4.2)

is defined up to a numerical factor. It is convenient to
choose this factor so that the x-dependent part will be
normalized as a d-dimensional Geld. To be more precise,
let us suppress the inner structure of a vector mode and
present it in the form

Indeed, if bgg' A vanishes, the physical mode is (g —p).
The reason why we kept both of the functions g and &p

in the expansions (3.13) or (3.14) is the explicit gauge
invariance of the mode (Q —y).

The corresponding d-dimensional physical Geld is

W*(*) = Z'~'C'(z)

and the excitation can be written via this field as

(4 3)

IU. BOUNDARY CONDITIONS V'(z, y) = W'(z) f (y) Z (4.4)

We have described the method for constructing of the
zy-rotational modes with the help of Eq. (2.22). Only
in exceptional cases this equation contains nonsingular
solutions. In a common case a solution is singular at the
origin or at infinity. Singular behavior of an excitation
is not the reason to reject it. Any zero mode can be
represented as the product of an z-dependent field and a
definite y-dependent function. The separation procedure

l

If the function f(y) is singular (in the sense that Z ~
oo) at the origin or at infinity, we will get special kinds of
excitations which are confined at the origin like b function
or displaced to infinity.

What we really must care about is not the singularity
itself but finiteness of the excitation energy. Consider the
quadratic in the excitation part of the Lagrangian:

L i = ——(D„V„—D V„) + —(D„P) — Cs,F„„V—"V'

g 2
ig(D"4'8 p+ D"—$8 4) V„+ — (48 8sO) V„V "+ (02V/OOg84() QI, Q(. (4.5)

d"z d "yO D V' —O'V V. = 0. (4.7)

Of course, working with small Gelds and small gauge func-
tions we cannot distinct Abelian and non-Abelian transforma-
tions. For this end it is necessary to consider the interaction
between zero modes.

The energy will be finite if the second-order surface term

I.,"„'„= a„[ (D-v"-8 "v ).v„-+ yD~y2 1

ig($8 C ) V "], — (4 6)

disappears after integration. Strictly speaking, we must
integrate in all z and y coordinates. The integral is de-
composed into two parts containing the integrals over an
infinite surface in x and over a surface around the singu-
larity in y. The integral over z' bounds the z dependence
of the excitation in the usual way. In the integral over

y all the terms which do not include V' vanish [in the
gauge (3.14)] since they are regular. The only nontrivial
restriction is

Here the excitations are supposed to be written via
the normalized d-dimensional fields in a way similar to
Eq. (4.4). It is expected that Eq. (4.7) bounds the y de-

pendence of V', but we left in it the integral over the z
volume since a special kind of excitation may exist for
which Eq. (4.7) restricts the z dependence of the gauge
modes at space-time infinity [12] (see also Sec. V).

Special analysis should be given for the excitations V'
which can be represented as gradient of some scalars (gra-
dient modes). The difference &om true vector modes is

connected with the origin of the kinetic term. For the
gradient excitations the kinetic energy appears from the
quadratic in the V term which does not contain deriva-

tives with respect to x', that is just the structure in I,„,f
we have demanded to be zero. Thus, there is no need to
impose condition {4.7) on the gradient modes. For these
modes any singularity is permitted since the strongest
singularities can be hidden in the normalization factors.

Above we have discussed the gauge transformations
for small massless excitations assuming that the gauge
functions y{z,y) are arbitrary solutions of Eq. (3.11). It
is not quite correct. The reason is that we consider only
the quadratic in the excitation part of the Lagrangian
(4.5). It is invariant under the gauge transformations
(3.8) only up to a surface term:
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—C.s F.pXs (DpX). + gC s.F. Xi V.p

2

8——(D O8 8s4) y yb

+ig (D 48 P) y (4.8)

Therefore, true gauge functions affecting small massless
excitations must obey the condition

(4.9)

It is assumed here that the gauge functions are normal-
ized as vector zero modes to provide correct gauge trans-
formations of the d-dimensional vector fields.

Now we are able to formulate the whole algorithm for
constructing zero mode excitations. One starts &om the
basic equation

(D D X) +g (4884)Xs=0, (4.10)

which describes the gauge functions X = y(x, y), the
gauge modes X = rp(x, y), and homogeneous part of the
vector modes X' = bing' A . One finds a complete set
of the solutions and normalizes every solution as was de-
scribed schematically in the beginning of this section. All
the solutions are divided into two classes. The first class
includes the solutions which are singular at the origin
or nonsingular at all. Together with the translational
modes it contains the excitations localized (in y coordi-
nates) inside the ground-field configuration. The second
class consists of the solutions which are singular at in-

finity and therefore localized outside the ground state.
Each class can be analyzed independently because they
describe different physics. The next step is to find among
the solutions those normalized gauge functions obeying
(4.9). The allowed gauge modes are the same. The
solutions which do not satisfy Eq. (4.9) should not be
rejected. The corresponding vector excitations lose the
gauge &eedom and for this reason they must be reduced
to the gradient of some scalars. Since the kinetic energy
for such modes comes kom another term in L~ ~, the ex-
citations have to be renormalized. After that Eqs. (4.7)
and (4.9) do not restrict the modes at all. The exis-
tence of a gauge function for a given vector excitation
does not guarantee that it is not reduced to the gradi-
ent form. Real vector excitations must be represented
as X' =

bing* A, where X' is a solution of Eq. (4.10).
It is considered as an equation for ('(x, y). The vector
modes are those for which it can be solved. If the solution
cannot be found, K' is reduced to the gradient form.

The vector excitations which are not reduced to the
gradient form must obey Eq. (4.7). Substituting V'(x, y)
in the gauge (3.14), one can find those vector modes
which survive. We would like to stress that careful anal-
ysis of Eq. (4.7) has to be done to not iniss the solutions
which satisfy the equation only after integration over the
x volume. An example is analyzed in Sec. V.

V. ABELIAN STRING AS AN EXAMPLE

The above-described algorithm gives a kame for the
constructing of zero mode excitations against a nontriv-
ial background. Details depend on the classical solution
which is considered and on the physical problem which
is solved. It was not our goal to describe in this paper
as many examples as possible, but it is important to il-

lustrate the main features of the developed approach by
a simple and at the same time nontrivial example. For
this purpose we have chosen the Abelian Higgs model
with a string solution as a ground state. Originally the
most important aspects of massless excitations in this
model have been studied in Refs. [15,12j. Since we did
not specify any particular physical problem in this paper,
all possible massless excitations will be described.

Consider the string solution in the model

A' = 0, A = PPypA(r), 4'i, ——e&" (8)Oo(r),

(5.1)

where k = 1,2, e ~ is the two-dimensional antisymmetric
tensor, r and 8 are the polar coordinates in the yqy2

plane, e&" is the unit vector corresponding to the winding
number n:

(„)(~) cos(n8)
sin(n8)

The boundary conditions for the functions A(r) and
4p(r) are

A(r) ~ const, 4o(r) ~ const x r" for r m 0,

A(r) + n/gr, 4'0(r) M @p = coilst foi' r —i oo. (5.3)

The broken translations in the y directions generate the
translational zero modes

V*=0, V =F PCp(x), Q= —(D 4)C (x).

(5 4)

The ground state (5.1) also breaks the rotational symme-
try in the yiy2 plane if n g 0. The field increase can be
compensated by a gauge transformation and we get the
simplest example of the combined symmetry 0 = U(1).
In Sec. III we concluded that this symmetry is the global
one and does not induce the zero mode. Let us show it
directly from Eq. (2.22), which has the following form in
our case:

8 8 (b(g'pAp)+ g'Co(r) (bgg*pAp) = O'C(x)e pF p.

(5 5)

If one denotes the common solution of the homogeneous
equation as v'(x, y), the solution of Eq. (5.5) will be

bing'p

Ap = v'(x, y) + O'C(x) e pyp ( A —nO 8 ) .

(5.6)

It should be considered as an equation for ('(x, y) at
given ( (x, y) [see Eq. (2.17)j. A solution for (' also can
be divided into two parts corresponding to the common
and partial solutions of Eq. (5.5): ('(x, y) = (,'(x, y) +
(„'(x,y). As is easy to see, there is no single value in the 8
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function („*(z,y) producing the second term on the right-
hand side of (5.6). So, one can conclude that C(z) =const
in accordance with the expectations.

A quite diH'erent conclusion can be drawn for n = 0.
Indeed, such a ground state is unstable, but it is not
important for investigation of zero modes. The case
gives us an example of the direct symmetry S = U(1)
in vacuum. Really, for n = 0, Eq. (5.6) is solved at
('(z, y) = —ct'C~(z)y and C(z) remains arbitrary de-
scribing a local group parameter.

To find the solution v'(z, y) of the homogeneous equa-
tion and together with it the gauge mode Ip(z, y) and
the gauge function y(z, y), one expands them in Fourier
series:

v'(z, y) = ) C' (z)e.' '(~)f-(r)
m=O

v(*,y) = ).v- (*) .' '(~)f-( )
m=o

X(z y) = ) X-(z)e.' '(~)f-(r)
m=o

(5 7)

The coefficients C' (z), p (z), and y (z) can be
treated as d-dimensional vector fields, gauge modes, and
gauge functions, respectively. The functions f (r) sat-
isfy the equation

f" + -f' —I&'@p(r) + m'/"lf- = o. (5.8)

As was explained, in the common case the solutions of
Eq. (5.8) must be singular at the origin or at infinity
where they behave as

ln(r), m = 0,r, m&0, rm0 (5.9)

for the solutions regular at infinity and as

exp(g4 pr ) (5.10)

for those regular at the origin. The only exception exists
for the n = 0 string. In this case there is a special solution
proportional to the background function A(r):

fi(r) = rA(r), (5.1i)

which is regular at any r.
All the described solutions of Eq. (5.8) contribute to

p(x, y) and y(x, y) but not to v'(x, y). Let us see the
reason. Since (,'(z, y) is single valued, it can be expanded
in a Fourier series. Calculating bgg' A, one finds that
the term with m = 0 does not appear in the expansion
and we should choose C' p(x) = 0. However, such a term
appears in V'(z, y) from 0'g, as was explained in Sec. III,
and C'p(x) may be represented as the gradient of some
scalar.

Now one introduces normalized d-dimensional fields
and gauge functions instead of C* (x), p (x), and
X-(x):

W. (x) =Z'~'C. (z), P (x) = Z' '(p (x),

q. (x) =Z'~'q. (*), mgo. (5.12)

The normalization factors Z are calculated from the ki-
netic energy of the vector fields (see Sec. IV) and in our
case they are Zi ln(rp), Z r p

+ (m ) 1) for the
excitations localized at the origin and Z exp(2g@pR)
for those at infinity; ro and B are the corresponding cut-
oH' parameters. With the normalized excitations we can
examine Eq. (4.9) in order to find the permitted gauge
functions. There are no restrictions on the gauge func-
tions concentrated at infinity. The same conclusion is
true for the functions localized at the origin if the wind-

ing number n ) 1. For the most interesting case n = 1

(stable string) the allowed singularities in y(z, y) are not
stronger than 1/r Ther. efore, we expected all the coef-
ficients y (z) to be zero for m ) 1. The vector fields
W' (z) which correspond to the forbidden gauge func-
tions y (z) lose the gauge transformations and there
is no reason for them to be zero modes. Hence, these
vectors must be reduced to the gradient form. We can
see how it happens by analyzing the boundary condition
(4.7).

One substitutes in Eq. (4.7) the excitations in the
gauge (3.14). It is easy to discover that the integral over

y vanishes only for the regular mode (5.11). It seems
quite natural that all the other zero modes ought to be
reduced to the gradient form. That is really so for the
modes which lost the gauge &eedom, but we should be
careful for those which did not. After integration over y
one has, instead of (4.7),

B dz W —t9p —0 (5.i3)

VI. CONCLUSION

We have proposed the method for constructing small
massless excitations about a nontrivial classical solution
which depends on part of the space coordinates. These
excitations can be important for difFerent physical prob-
lems. In particular, they describe a lower-dimensional
theory of massless fields, which can be considered as the
low-energy limit of the initial theory. The results of this

where B can be finite or divergent depending on which
excitation is considered. Equation (5.13) can be in-

terpreted as a boundary condition for the gauge mode
rp (x). It becomes obvious in the Lorentz gauge
B,W' = 0 where Eq. (5.13) can be obeyed by means
of choosing a singular component in p (x) at space-
time infinity. Such a singular behavior is allowed for the
gauge modes. Really, under the gauge transformations
these modes get a shift p ~ p + y as the phase
of some scalar field. They do not appear in the quadratic
in the fields part of the Lagrangian as the phase does.
Singular behavior at space-time infinity is not forbidden
for such degrees of freedom. It should be stressed that
(5.13) is an unusual boundary condition in field theory.
It may be important for interacting fields [12].
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paper allow one to construct the subjects of such a theory
but do not define their interaction. In this connection we

would like to make some comments.
Interaction of the zero modes has been analyzed for the

n = 1 string in the Abelian Higgs model in Refs. [15,12].
The lower-dimensional Lagrangian was found to possess
the global 0(2) symmetry, which comes from the com-
bined symmetry of the string background, and the local
U(1) symmetry connected with the gauge transforma-
tions in the initial theory. The direct symmetry of a
ground state generates another local group as was shown
in Sec. III. To understand how this symmetry becomes

apparent in interaction, one can investigate the simplest
model which is the n = 0 string in the Abelian Higgs
model.

When we analyze the interaction of the zero modes
which are singular in y, one can expect additional trou-
ble with singularities. They do not appear in the Abelian
Higgs model since the terms describing interaction are of
second order in singular fields. The problems can ap-
pear if the initial model is non-Abelian. Then the terms
responsible for the self-interaction of the vector modes
are expected to give additional constraints on the vector
excitations to guarantee their finite energy.
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