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Pseudostable bubbles
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The evolution of spherically symmetric unstable scalar field configurations ("bubbles" ) is examined for
both symmetric and asymmetric double-well potentials. Bubbles with initial static energies Ep E
where E„;,is some critical value, shrink in a time scale determined by their linear dimension or "ra-
dius. " Bubbles with Eo E,„;,evolve into time-dependent, localized configurations which are very long-
lived compared to characteristic time scales in the models examined. The stability of these
configurations is investigated and possible applications are briefly discussed.

PACS number(s): 11.10.Lm, 98.80.Cq

A remarkable consequence of nonlinear field theories is
the existence of localized, nonsingular solutions of the
classical equations of motion which are nondissipative.
In general, these solutions can be time dependent or stat-
ic. As is well known, the existence and simplicity of stat-
ic solutions is severely constrained by dimensionality [1].
For a single self-interacting real scalar field P(x, t), such
solutions are only possible in 1+ 1 dimensions.
More realistic (3+1)-dimensional static solutions must
invoke more than one field, as in the case of the
't Hooft —Polyakov monopole [2].

Given their relevance to the study of nonperturbative
effects in field theories, static, nondissipative solutions
have been, for the last 20 years or so, the focus of most
efforts in the study of nonlinear solutions in classical field
theories. However, within the last decade, the possibility
that spontaneous symmetry breaking occurred in the ear-
ly universe has called for a better understanding of time-
dependent phenomena in the context of relativistic field
theories. For example, the dynamics of cosmological
phase transitions [3] naturally invokes out-of-equilibrium
conditions, with fields interacting with themselves and
with a hot plasma in the background of an expanding
universe [4].

In the present work the possibility that time-dependent,
localized, nondissipative solutions exist in the context of
simple (3+1)-dimensional scalar field theories is exam-
ined. In particular, the focus will be on models involving
only a single real scalar field with self-interactions dictat-
ed by a double-well potential. Since we know that for a
symmetric double-well potential (SDWP) all field

configurations are unstable, it is possible to obtain
the lifetime of a given spherically symmetric field
configuration by numerically evolving the equation of
motion. By adopting this procedure, it was shown in the
mid-1970's that certain configurations evolved into a
state which was considerably long lived (even though the
lifetimes ineasured then were not very accurate). These
time-dependent solutions were called "pulsons" [S].
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However, not much has been done in order to further ex-
plore the properties of pulsons. A few exceptions, which
are mainly related to the existence of these solutions for
the sine-Gordon potential, different symmetries, and
somewhat contrived stability studies, are listed in Ref.
[6]. In fact, recent studies of bubble evolution in SDWP's
overlooked the existence of pulsons [7]. Also, their ex-
istence has never been investigated for asymmetric
double-well potentials (ADWP's).

Here it will be argued that the existence of pulsons is a
very general feature of models with both symmetric and
asymmetric potentials, depending only on the initial am-
plitude and energy of the configuration. It will always be
assumed that the initial configuration interpolates be-
tween the two minima of the potential (bubbles with am-
plitude below a certain value cannot evolve into pulsons,
as will be clear later) and that it is smooth enough, say,
P(r, t=0)-exp[ r IRO], or—-tanh(r —Ro), with Ro
the initial "radius. " (From now on these configurations
will be called the Gaussian and tanh bubbles. ) It is re-
markable that during the nonlinear evolution of these
configurations a regime of dynamical stability may be
achieved in which energy is practically conserved within
a localized region, due to some as yet unclear conspiracy
between the many degrees of freedom involved.

The action for a real scalar field is

where the subscripts S and A stand for the SDWP's and
ADWP's, with

2
2

Vs(tt )
=—

A field configuration Po(x, t) is a solution of the equation
of motion (an overdot denotes partial time derivative)

VP= —8V(P) lc)p —and has an energy

E[Q ]=of 1 xP(ho+ —,'(Vgo) + V(go)] . (1)
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For a suSciently well-localized spherically symmetric
configuration $0(r, t) (the case of interest here) with linear
"size" -Rp, the integral over all space can be restricted
to a spherical volume containing the configuration

E [Po](t) =Ex (t)+E~(t)+E~( t), (2)
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4(p, , o) = —tanh(p —p, )

e(po, o)=2exP( —P'/Po') —1

where the kinetic, surface, and volume energies are
defined, respectively, by (e & 2)

PRO
Ex(t)=2nf . dr r $0,

p

PRO
Es(r)=2rr f dr r ($0)

p
PRO

Ei.(t)=4m f dr r V($0) . (3)

Introducing the dimensionless variables 4(r, t)
=&A/(r, t)/m, p=mr, and r=mt, the equation of
motion becomes, -for the SDWP (ADWP),

a'C a'e 2 ae =4—4 ( —4+a@ —4 ), (4)
Br' Bp2 P 5P

where a=a/&1, . Note that for the ADWP a solution
where 4=0 is the local minimum is possible only if
a & —,'. The equation above was solved numerically using

a finite-differencing method fourth order accurate in

space and second order accurate in time. Since the prob-
lem is two dimensional, a very fine grid could be used.
By taking the lattice spacing to be h =10 and the time
step to be 8=5 X 10, energy was conserved throughout
the evolution to 1 part in 10 .

Let us concentrate on the SDWP for now. In this case
all bubbles are unstable, since there is no gain in volume

energy in going from one vacuum to another. Take the
vacuum to be at 4= —1 and consider configurations
which interpolate between the two minima. Both thick-
and thin-wall bubbles will be considered. In Fig. 1 the
energy within a spherical shell [Eq. (2)] is shown for ini-
tial configurations 40(p, O)= —tanh(p —po), with pa=3
and po=10, and for 40(p, O)=2exp[ —p /po] —1, with

pp=4 and pp=8. Note the existence of an extended

period of stability of duration -(10 —10 )m ', where
practically no energy is radiated away. Thus a necessary
condition (which was verified numerically) for the ex-
istence of this pseudostable behavior is, from Eq. (2},

dE~
dt

dEs dsv
dt dt

+ V(p, ro)g„=k,„g„,
dp p dp

(6)

An interesting point is that the value of the energy at
the plateau is fairly independent of the initial
configuration. This suggests the existence of an attrac-
torlike configuration in field space which is approached in
the course of the bubble's evolution. An extensive (but
not exhaustive) search indicates that only for
configurations of initial energies Eo & 60m/I, —=E„;,does
this behavior occur. This corresponds to a Gaussian bub-
ble of radius R0-2.4/m. For smaller energies, the
evolution is well fitted by the relation E(t)
=Eoexp[ t/rL (—Ro)], where rL (Ro) is the bubble's life-
time. For Gaussian bubbles of radii mR. p

= 1 2,
m rL (R 0 )=3.5, 12, respectively

From Fig. 1 it is clear that the evolution of large
enough bubbles can be divided into three stages. First,
the bubble sheds its initial energy by quickly shrinking
into a thick-wall bubble of energy roughly E-50m/A, .
For thin-wall bubbles, such as the tanh bubble with

pp )& 1, this shrinking is mell described by the relativistic
motion of the bubble wall. (See, e.g., Ref. [7].) The field
then settles into the pulson configuration. At any given
time, the configuration is well approximated by a half-
Gaussian, but with softer asymptotic behavior
4(pleo, r)-exp( —p). The field is localized within a
small volume with linear size -3/m, while its amplitude
is rapidly oscillating about a value between the two mini-
ma. (In this author's opinion, a better name for these
configurations would be "oscillons. "} Finally, during the
last stage of the evolution, the amplitude of oscillations
decreases and the pulson quickly radiates its remaining
energy away.

In order to gain some insight into the properties
of the pulson, consider the behavior of radial pertur-
bations about 40(p, r ), defined as 4(p, r ) =40(p, r)
+54(p, r). Since 40(p, r) satisfies the equation of
motion, expanding 54(p, r) in normal modes,
54(p, r) =Re+„g„(p)exp(ice„r),it is found that the am-
plitudes P„(p) satisfy the radial Schrodinger equation
(only the I =0 mode will be considered here)
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FIG. 1. Energy within a spherical shell surrounding several
initial con6gurations as a function of time for the SDWP.
Larger bubbles have shorter lifetimes.

where V(p, ro)=3@0(p,ro) —3 and A,„=co„—2. Here A,
„

is introduced to make sure that V(p~ ae )~0. The sta-
bility of a given configuration at time 7p Cp(p 7p) is
determined by the lowest eigenvalue being positive, cop & 0
or Ap) —2.

Clearly the general problem is quite complicated, as
the potential V(p, r) is time dependent. A reasonable
simplification is to solve this equation for a given time ~p
for which the field configuration @o(p,ro} is obtained by
evolving the equation of motion. This implicitly assumes
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that 4o(p, r) varies slower than 54(p, r). Otherwise, un-
stable modes would not have enough time to grow and
destabilize the pulson. One can then find the eigenvalue
for a succession of snapshots and thus investigate its time
evolution. The Schrodinger equation was solved using
the shooting method [8]. To make sure the method
worked, the equation was solved for the Coulomb poten-
tial and for the "kink potential" V(p)=3cosh (p/~2),
since in both cases the eigenvalues are known analytically
[9]. [For the kink case, one must recall that the first ei-
genvalue in three dimensions (3D) corresponds to the
second in 1D, Eo(3D)=Ei(1D)= —

—,', due to the bound-

ary conditions at the origin. ]
The results are shown in Fig. 2 during part of the pul-

son stage. Clearly, the pulson is stable against small radi-
al perturbations. (No instability was detected during the
whole pulson stage using the above method. An argu-
ment to explain the pulson's final disappearance is ad-
vanced shortly. )

Next, the existence of pseudostable behavior for
ADWP's is investigated. The asymmetry is controlled by
the dimensionless coupling a. As two examples, consider
the nearly degenerate case a=2. 16 and the nondegen-
erate case a=2.23. In the context of first-order phase
transitions (finite temperature), a state initially localized
at 4=0 will decay by the nucleation of bubbles larger
than the critical bubble, which is an extremum of the
O(3)-invariant Euclidean action. The critical bubble is
thus the energy barrier for vacuum decay. For a given
value of a it is easy to obtain the critical bubble and its
energy numerically by using the shooting method. (Now
the method finds the value of the field in the bubble's
core. ) For the two values of the asymmetry above, the
energies and radii of the critical bubble are, respectively,
E(a=2. 16)=6.12X 10 m/", , R(a=2. 16)= 19.6/m and
E(a=2.23) =1.17X 10 m/A, , R(a=2.23) =7.9/m. The
interest here is in investigating the evolution of subcritical
bubbles to see if they display the pseudostable behavior
observed for the SDWP. The results are shown in Fig. 3
where the energy within a spherical shell surrounding the
initial configurations is shown as a function of time. For
each value of a, two tanh bubbles with initial radii pp= 3
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FIG. 3. Energy within a spherical she11 surrounding several
initia1 configurations as a function of time for the ADWP.

and 4 were examined. Again, the existence of very long-
lived pulsons is observed, with E„;,and lifetimes depend-
ing on the asymmetry. In Fig. 4 the phase-space portrait
of the pulson's core (p=0) for a=2. 16 and po=4 is
displayed for ~ 1000. Note the similarity with the
motion of a "damped" (an)harmonic oscillator. During
the pulson stage, the motion is restricted to a band in
phase space. As the pulson becomes unstable, it will

spiral around the final stable point 4=0 and 4=0; as en-

ergy is gradually radiated away, the maximum possible
amplitude (that is, for 4=0) is driven below a critical
value for stability. Bubbles with initial amplitudes below
this value, roughly about the maximum of V(4), and
small kinetic energy will quickly shrink. Note that this is
the value below which the potential is approximately par-
abolic, so that nonlinear effects become subdominant.
(Of course, small-amplitude but high-velocity bubbles can
still escape the attractive well centered at 4=0, as during
the pseudostable pulson stage. )

The present work raises many questions for future in-
vestigation. Apart from a more detailed study of the
pulson s properties and stability, it is still not clear why
the initial configurations evolve into the pulson stage.
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FIG. 2. Time evolution of lowest eigenvalue. For clarity,
points with ~o & 2 were displayed as cop=2.

FIG. 4. Phase-space evolution of pulson's core for ca=2. 16,
po= 4, and w + 1OOO.
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The pulson's behavior is suggestive of some sort of non-

linear resonance efFect occurring between the difFerent

modes of the field. It should be possible to separate the
field into short and long wavelengths, with a cutoff
around m '. The short-wavelength modes would act as
a perturbation, which due to the nonlinear coupling
might induce the observed behavior. Apart from their
potential interest for, among other topics, nonlinear op-
tics and long Josephson junctions [10],these solutions are
also of interest in the context of cosmological phase tran-
sitions [3]. Consider two possible regimes of interest,
defined by the ratio of time scales
R =rt lrU ((()lg)l(mp, /T )-Tlm p„where T is the
temperature and m p, is the Planck mass. For % —10
corresponding to the grand unified theory (GUT) scale,
the extended lifetime of one subcritical bubble can be
relevant to the dynamics of a first-order transition. The
Universe cools off quite fast, and if the subcritical bubble

lives long enough, it can become a critical bubble. For
R —10 ', corresponding to the electroweak scale, many
subcritical bubbles can be present before a critical bubble
nucleates [11]. Given their long lifetimes, they could
serve as nucleation sites for critical bubbles, very much
like impurities in ordinary phase transitions, speeding the
process of vacuum decay considerably. Finally, in the
context of late-time phase transitions, it is desirable to
have bubbles live longer in order for matter accretion to
be efficient [12]. These and related questions are current-
ly under investigation.
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