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N-string vertices in string field theory
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We give the general form of the vertex corresponding to the interaction of an arbitrary number of
strings. The technique employed relies on the "comma" representation of string field theory where

string fields and interactions are represented as matrices and operations between them such as multipli-
cation and trace. The general formulation presented here shows that the interaction vertex of N strings,
for any arbitrary N, is given as a function of particular combinations of matrices corresponding to the
change of representation between the full string and the half string degrees of freedom.

PACS number(s): 11.25.Sq

I. INTRODUCTION

String field theory has provided a consistent picture for
the treatment of open strings [1]. Recently, some ad-
vances have been made in the formulation of a field
theory for closed strings [2]. This is welcomed from a
phenomenological point of view since closed strings ap-
pear to give a suitable picture of string physics at low en-

ergy. A complete understanding of low energy string
physics seems to require the treatment of strings in this
framework.

The closed string field theory (CSFT) proposed in [2]
has the particularity of requiring a nonpolynomial action
in which at every step one has to include a term in the ac-
tion corresponding to the interaction of an arbitrary
number of strings over a world sheet given by the so-
called restricted polyhedra. The edges of these polyhedra
play the role of the modular parameters, and one restricts
the region of integration over these in a prescribed way.
In the theory, the interaction terms are interpreted as the
overlapping of closed strings in a way which resembles
the original theory for open strings due to Witten [1]. On
the other hand, there is the suggestion in [3] that the
overlapping of closed strings can be formulated, using the
property of repararnetrization invariance of the string
amplitudes, as the overlapping of standard string seg-
ments which, following the example of the open strings,
can be considered as half-strings. In turn, one interprets
the string functionals as matrices and the interaction be-
tween strings as the product and trace of these matrices.
This feature shows that, even in the case of closed strings,
the half-string picture is relevant in the construction of
the string interaction. However, the formulation from a
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Fock space approach seems to be a formidable task since
in the absence of a compact formulation one should cal-
culate separately every term in the action.

Hence our main motivation comes for the fact that,
following [3], the N-faced polyhedra describing the in-
teraction of N strings at the level of the action can be
written as a reparametrization of the vertex in a contact
interaction. Thus, as a first step, one finds it useful to
work out the contact interaction vertex for an arbitrary
number of strings.

The purpose of this work is then the study of the N-

string contact interaction in a general form. This will
form the basis of a compact formulation of the closed
string vertex in the nonpolynomial theory. We perform
the calculation of open strings since their formulation at
the level of Fock space is firmly settled. On the other
hand, they share many of the peculiarities of the operator
formulation for closed strings [4]. The results obtained
here are very similar, from a technical point of view, to
those for the closed string, and so they can be adapted,
with minor modifications, to the latter.

Related to this point, we will see that, apart from the
fact that half-strings play a conceptual role in the formu-
lation of closed string interactions, linking the CSFT [2]
with the approach described in [3], they are revealed as a
useful technical tool for the treatment of string ampli-
tudes, both for open and closed strings.

In the theory of Witten [1] for string fields, the interac-
tion between strings is defined by a product (e) and in-

tegration ( f ) which are defined through the joining of
half-strings. In particular, the interaction between two
strings to give a third one is defined from the e as

(4+ 4)[x]= IDye[xi;y ]4 [y ~xn ], (1)

where g represents the string fields. The interaction
takes place through the joining of half-strings. The opera-
tion of integration, which allows us to obtain invariant
quantities, is defined as
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Therefore the fundamental degree of freedom from the
interaction point of view is the half-string. It is then
justified to adopt an approach in which the half-string
plays explicitly an important role. We will base our for-
malisrn on the "comma" representation of string field

theory developed in [5].
In the "comma" formulation, we single out the mid-

point and represent string fields as matrices. The string is
divided into left and right parts which play the role of
row and column indices of these matrices. Interaction
takes place simply by multiplying [product (1)] and tak-
ing the trace [integration (2)] over the matrices. The ad-
vantage of this approach is that one can handle in a com-
pact form the N-string contact interaction for any arbi-
trary N. In fact, the vertex for N strings is simply given

by

y")((r, r) =x(cr, ~)—x(n. /2, r),
y' '((r, r) =x(m —o, r) —x(n. /2, r),
o e[O, m-/2],

(4)

where x(o, ~) are the string coordinates (space-time in-
dices will be suppressed throughout). From their
definition, it is clear that y'" and y' ' are related to the
left and right parts of the string, respectively (henceforth
we will call them "comma" coordinates}.

The boundary conditions as well as the constraint im-
plied in the change of representation (see [5] for details)
imply the Fourier expansion of the "comma" functions in
terms of odd cosine modes with the explicit form

g"((r,~)=&2 g y(„")(r)cos(2n —1)o

V~= x —Tr A)A2 . A
2

(3) where r=1,2, o E[O,n. /2] . (5)

where A, are the matrices representing the string states.
We must point out that the former equation does not

give the tree level N-string interaction, but only the con-
tact term. In order to get the tree level amplitude, one
could consider the reparametrization approach as de-
scribed in [3] to get the correct moduli space of parame-
ters. This, however, is beyond the scope of this paper, al-
though work in this direction is under way in order to
find a formulation suitable for the nonpolynomial CSFT.

To finish the Introduction, some comments are neces-
sary about the ghost degrees of freedom. It is known that
in Witten's theory the violation of the ghost number at
the vertices and the ghost number of physical states fixes
the value of N In this se. nse, the vertex (3) vanishes un-
less N =3. This is of no relevance to us since our purpose
is just the calculation of the ¹tring interaction vertex in
order to get some insight of the structure of the terms in
the theories of [2]. Hence in the following we will ignore
the ghost degrees of freedom, although they certainly
could be treated with the techniques presented here [6].

The plan of the paper is as follows. In Sec. II we
present the formulation of the half-string degrees of free-
dom ("comma" representation). In Sec. III we discuss
the construction of the string physical states, thereby set-
tling the basis for the calculation of the N-string vertex.
This calculation is performed in Sec. IV. In Sec. V we
find the Fourier coefficients of the Neumann functions for
the appropriated geometry of the vertex. A comparison
with particular cases worked out previously is also given.
Finally, we summarize our results in Sec. VI.

II. STRING AND "COMMA" COOROINATES

The first task we must face is the expression of the ele-
ments of string field theory, namely, the fields and in-
teractions between them, in terms of matrices and opera-
tions such as trace and multiplication (3). To this end
one has to introduce the degrees of freedom referring to
the left and right halves of the string. Following our pre-
vious work [5],we define the functions

a„
x(o, r) =xo+pr+i g e '"'cosn(r,

n~O "
one arrives at the relation

~(r)( ) y ~(r) e imr—
m@6

where the y'„' are time-independent coefficients given in
terms of string oscillator modes by

)n+m 1

2m +2n —1

1 2
2m —(2n —1) 2n —1

l %2m

2m

(r)
2m —i=O ~

for n Wm, —m and

)r+1

V'2 2n —1

( )" ia (2„1)
v'2 2n —1

The inverse relations are obtained by integration over one
period:

(„) 2V2 r2
g'„"'(r)= f d o y'")(o, r) cos(2n —1)o

7T 0

where r =1,2 . (6)

Our purpose now is to find the relation between the
"comma" modes and the conventional string ones. This
wi11 allow us to represent the physical states in terms of
the "comma" degrees of freedom.

From definitions (4) and (6}, using the standard open
string mode expansion,



2968 J. BORDES, A. ABDURRAHMAN, AND F. ANTON 49

+(r) ( 1 )r+ ix
r

+ g
' 1/2

[(Mi )m „+(M2) „]x2

r =1,2, (9)

Since we will mainly deal with string fields, namely,
string wave functionals, we are only interested in the rela-
tions at fixed r Fixing v=0 in (8), we end up with a rela-
tion between the "comma" and the string oscillator
modes, the latter defined according to

lx = (a —a ),
2m

to give

Thus, using (9) and applying the chain rule, one can find
the relation with the conventional string momenta (p ).
In summary, they are given by

~r) =
2p2n

' 1/2

[(Mi ) „+(M2) „]p~
2n —1

2m
+lX

m~1

Po ~

2n —1

define the quantized momentum conjugate to g'„' and
x(m. /2) in the usual way:

r) 8 = 8
axe~/2)

(M, )„
2 2n

2m —1

2 2n
(M2)„

77 2m 1

1/2
)n+m

2n +2m —1

where the matrices M1 and M2 are
1/2

)n+m

2n —(2m —1)

(10)

2n
p2. = X

m+1
[(Mi )„+(M2)„]

=Po

Also, the inverse relations read

p2n —i ~n ~n
1/2 (12)

2m —1x~„=—,
' g

m&1 n
[(Mi ) „—(M2) „]

X(q")+y(„')) .

In the decomposition of the string into left and right
halves (s(), we have singled out the midpoint coordinate.
Therefore to complete the picture we need its expression
in string coordinates, which, at r=0, reads

7T
x —=xo+&2 g (

—)"x2„,.
n~1

conversely, the center of mass in the "comma" represen-
tation is (again we take r=0)

X =X0
(
—)" (,)

I X.".

n~1

These two relations together with the oscillator mode
relations (9) and (11) complete the equivalence between
the string oscillator modes [x„]„"0 and the position de-
grees of freedom describing the "comma" representation,
which, in the transformation we have defined, are
equivalent to the midpoint and the "comma" oscillator
modes, i.e., [y'„"',x(n /2) ], where r = 1,2 and
n 1 s ~ ~ ~ ) + ~

A. Conjugate momentum

For our purpose, we merely need the relations between
the "comma" and string conjugate momenta; we can

It has been shown that the transformation (9) is non-
singular [5]; the inverse relation can be obtained from (6)
to give

(1) (2)X2n —i Y(+n +n
' 1/2

x (P "+P' ')+ &2( —)"8 .

Upon quantization, the commutation relations for the
"comma" coordinates and momenta are the usual ones
corresponding to a discrete set of conjugate variables:
namely,

[+(r) p(s)] lfirsfi

[x(~/2), P]=i,
as can be explicitly checked from the previous relations.

From the one-to-one correspondence between the
"comma" and string degrees of freedom as we have estab-
lished in (9)—(13), we see that the identification

%—&M)3)&)(8)&2

is needed, where % stands for the string space, &„are
two copies of the half-string spaces, and &M describes
the midpoint. The overbar in the former expression
stands for the completion of spaces; we need to take this
completion in order to ensure a Hilbert space structure in
both terms.

III. OPERATOR APPROACH
TQ THK COMMA REPRESENTATION

For practical purposes it is convenient to develop a for-
mulation based on creation and annihilation operators
and express the elements of the theory in terms of the
tensor product of two copies of the Fock space represent-
ing the states of each half-string. This will allow us to
overcome the ambiguities in the definition of the func-
tional integral appearing in the product (1) and integra-
tion (2), since one ends up with a representation in which
the states are just infinite matrices and the above-
mentioned operations become products and traces of ma-
trices, respectively.
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In order to construct the Fock space of the comma"
states, let us define the creation and annihilation opera-
tors for the "comma" modes in the usual way:

' 1/2

b(r) i 2li —1 (r)+ 2 P(r)
v'2 2 " 2n —1

b(r)t
v'2

' 1/2
2n —1 () . 2 p )

n—

+ g [(Mi) „az —(Mz) „az ]
m=1

(13)

and the corresponding relation for b„"t by changing
a ~~.n- —n'

Again, the inverse relations are given by

—g. ( —)
~2n —1 bn

(14)

az„= P+ g [(M, )„b'+'—(Mz)„b'+'t] .
2n

We have defined the combinations b'+'=(1 jV2)(b'"
+b ); the ones corresponding to the creation operators(2) .
b'"' are defined in an analogous fashion. Finally, the re-
lation for a„ is accordingly obtained.

With relations (13) and (14) in hand, we are able to ob-
tain the string states in terms of the tensor product of
"comma" Fock space states; in particular, we find that
they belong to the completion of the space % defined
above.

(n ~1) .

The degrees of freedom relative to the midpoint, name-

ly, x(m /2) and 8, only appear in the Fock space states in

the form of a plane wave. We can use directly those vari-
ables to generate the midpoint Hilbert space.

The meaning of the operators b„'"' is clear: Acting on
the "comma" vacuum state l0)„creates a "comma" os-
cillator mode of half integral frequency (n —

—,
' ); these va-

cua satisfy the relation b„'"'l0)„=0,n =1, . . . , oo.

Repeated action of b„"~ on the vacuum gives the Fock
space states corresponding to each half-string (%„).
Hence the complete space on which the "comma" states
reside is given by the tensor product %=%&8Hz%~
after folding in the piece corresponding to the midpoint
motion (JVsr ).

Following similar steps as in the preceding section, we
can find the relation between the "comma" creation and
annihilation operators and the conventional ones. Using
Eqs. (9) and (12), we find

bn ig2 pa+ i 2n —1
(2n —1) &2

to write them in the comma" representation.
First of all, we shall start with the string vacuum,

which, in the string representation, is defined through the
relations a„lO) =OVn .Then in view of relations (14) we

can express the vacuum state as an exponential of a quad-
ratic form in creation operators b„"t acting on the tensor
product l0)il0)2. Note that a„,z&l0) =b„' 'l0) =0,
and so only the combination b„'+' appears in the ex-

ponential. Under these conditions the vacuum takes on a
generic form similar to the BCS vacuum involving only
the b„'+'~ operators: namely,

ll0) =exp( 'b—'+—' P b'+' )l0), l0)2,

and the matrix P is determined by acting with a„
One finds

(15)

P=Mi 'Mi .

Using the properties of the coefficients given in the Ap-
pendix and noting that in the particular case p =2 they
are related to the combinatorial numbers („'~ ), one ar-
rives at the following expression for the elements of the
matrix P:

=(2n —1)' (2m —1)' 1

2(n +m —1)
1

22

X
n —1 m —1

The tachyon state is immediately obtained just by in-
serting the plane wave of momentum p corresponding to
the center-of-mass motion. Since the center-of-mass
operator is expressible in terms of creation and annihila-
tion operators as

x =x —=i (b„'+' b„'+'t)—,
.v2 (

—)"
~ „)i(2n —1) ~

one gets the tachyon in the "comma" representation

llT) =e'~' 'exp[ ,'p k (I+/)k——pk (I+/)b'+—'
]

Xexp( 'b'+ "0b"")—IO—& Io& (17)

The vector k is given by

( —)"
~ (2n —1)

and the operators b„' ', b„'+' are given above as a com-
bination of the comma" annihilation operators. As we
can see, the momentum insertion unfolds into two pieces:
the first one giving the midpoint motion, the second relat-
ing the two halves of the string.

A. String states in the "comma" representation

It was already mentioned that string states, as gauge-
invariant states and eigenstates of the string Hamiltonian
[7], are defined from the conventional string creation and
annihilation operators. In the following we use this
definition and the relation with the "comma" modes (14)

B. String states

In the usual string picture, higher states are obtained
by the action on (17) of the creation operators a„(since
[a„,xo]=0, there is no ambiguity in this construction).

To get the general setting, it is useful to work out the
coherent state bases of the string states defined by
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[/)!,, A, ',p) =e '[[k,k')

exp g (g' a&„+g„g&„ i ) ~~0)
n=1

(18)

a"2'2i —1

i)A, , A. ') .
=!Qn;! aX"" ' aX'."'

I !!

(19)

in the "comma" representation. By taking the appropri-
ate derivatives of these states, one can obtain string states
with any occupation numbers. In general, for the string
state with occupation numbers I n; ] ~ one has

i —I

These states are written in the "comma" representation
making the appropriate substitution of the string oscilla-
tor creation operators in terms of the "comma" ones (14).
Moving the annihilation operators to the right, one is left
with the following expression for the coherent string
state:

',p)=. C(p, k') 'e*e' 'exp(A, b +p b'+' — b'+—' pb'+' )~0),~0)z, (20)

where

C(p, k, ')=exp[ —
—,'p k (I+/)k+ —,'A, ' (M, ) 'MP, '+pl, ' (Mi ) 'k],

p(p, A. )= p(I+/—)k+(M, ) 'I, .

(1) oo „!2)
[2 k'] '„'='= — '=' ' ([ '"j;tn' 'J)[A, , A,

' (21)

where
~
In;" [; tn '] ) is the tensor product of two "com-

The matrix notation we mentioned in the Introduction
can be now put forward. We can consider the string state
as an operator acting on one copy of the Hilbert space
corresponding to the half-string; its explicit form can be
extracted from the states (20). Alternatively, we can
define the matrix elements tak ng the scalar product with
a generic string state with definite "comma" occupation
numbers. The associated matrix is then defined as

ma" states: namely,

cc j (y)

~

In(r)] ~ ) P (b(r)t) i ~0)
1 n()T

(22)

„(&!
The factor (

—
)

'=' ' appears in the definition of (21) to
conform with the standard convention in string field

theory that the parametrization of the second half of the
string is reversed.

By using standard techniques, the creation and annihi-
lation operators can be dealt with to work out the explicit
form of the matrix elements in (21). The final answer is

[k k'] ' '='=e'e"' ~ 'C(p A, ')g 1

n~ tni

1—D;

~(1) ~(2)
n,. l n,. T~ &2g

v'2
(23)

The only new quantities are D —containing derivatives
with respect to the auxiliary parameter z. They are
defined by

D;+ = pk, (I +/—), +)!,,'—(M, ), ,
'

Zl

This expression gives the matrix form of the coherent
state basis of the string representation of the physical
string states. It can be used in equations such as (3) to ex-
press the star product as a product of matrices and in-
tegration as a trace. This will be described in detail in the
next section.

Before going on, two comments are in order. First,
note that the matrix elements defined in Eqs. (21) and (23)
can be viewed as the ones corresponding to the change of
basis between the representations given by the string
states (19) and the "comma" states (22). If the Hilbert

space were finite dimensional, the transformation would
be automatically complete since, by construction, it re-
lates two orthogonal bases of it. In our case, the string
Hilbert space being of infinite dimension, one should ac-
tually prove this property explicitly by working out
Parseval's identity both ways. This proof was carried out
in [5], showing the equivalence between the two represen-
tations.

Second, in order to establish the validity of the "com-
ma" representation to describe string field theory, we
should be able to generate the physical state spectrum
and the scattering amplitudes among the string states. To
that end we have constructed in [5] the Virasoro algebra
in the half-string representation, taking care of the possi-
ble ambiguities coming from normal ordering in both
representations. It was shown that gauge and on-shell
conditions are kept in the comma" representation.
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IV. N-STRING IIVTRRAt. 1'ION VERTEX

This section is devoted to the calculation of the generic
¹tring vertex. Once the matrix representation of the
string states has been put forward, we can interpret the e
and integral (1),(2) in terms of these matrices. In fact,
since the + product involves the identification between
left and right parts of contiguous strings, we immediately

I

see that this translates into our picture as the product of
matrices representing two contiguous strings. On the
other hand, the integral, which in some sense closes the
cycle, is just the trace of the product of these matrices.

Therefore, defining the string states through the
coherent states ~A, ', A, "'}given in (18), the ¹tring in-
teraction vertex, according to (3) and the comments in

the paragraph above, reads

r

V =fdx —exp gp{')x — Tr([A, ",A. "] [A, ), A7 ']),
i=1

where the matrices [A, "',A, "']were defined in (23). The midpoint coordinate has been explicitly separated. Integration
over this coordinate can be performed in a straightforward way, giving a 5 function of conservation of momentum. This
proves that the midpoint plays the role of the translational mode of the string as one would guess from the definition of
the "comma" coordinates. Thus the part in the vertex involving the trace of the product of matrices contains all the
relevant information. It is given explicitly by

T ([jul) gl)r] . . [g(N) gN)r]}

+(&) ~(2)~C( (i),gi)r) ~ ~ ( 1D+{1)D—{N))"i ( )D+(2)D —(1))"i
(1)) . . (N)1 2 I I 2

(p) Ii =1 Pli ~ Pl.

n."'
X. . . ( ,'D;+' 'D—; —' ") ' exp( ——'zc)z)~ Z=O '

where the upper index in D "' refers to the rth string state, z =(z"', . . . , z' '), and 4=())iIN, IN being the identity ma-
trix in the N-dimensional space spanned by the N strings.

The sum over n,
{")can be readily performed, giving a more manageable expression:

N N

V 5 y p(r) g C(p(1),pl) ) C(p(N)g(N)r)

Xexp( ——'[D "'D+' '+D ' 'D+"'+. . . +D ' 'D ' "])ex ( ——'z4z)i-
2 z=o '

The derivatives in the auxiliary variable z can be carried out by using standard techniques on quadratic forms, and
after a tedious, although straightforward, calculation, one ends up with the expression for the vertex. Up to a global
normalization factor, we have

VN=5 gp(") exp bgp{") exp(A B,A+A' 8',A')exp(A Bop+A 'Bz'Bop+A BA') . (24)

In (24), boldface characters refer to vectors and matrices
in the N-space spanned bg the N strings, namely,
p=(p'"k p' 'k) A=(A, ", . . . , A, '), and
A'=(A, ",. . . , A, '};on the other hand, 8, 8, , and 8,'
are (NXN)-dimensional matrices whose elements are
again infinite-dimensional matrices.

These quantities have the following explicit expressions
in terms of the matrices of change of representation M,
and M2..

I

[the only quantities not yet defined are the matrices
(S+); =

—,'(5;+, i+5;, i), where the lower indices are
defined modN].

We first diagonalize the matrix S+. It is worthwhile
going into solne detail. The characteristic equation for
S+ (det[S+ —AIN ]=0) can be written as

det(S+ —
A,IN }= —

A, detMN, —2 detMN 2
—2( —} =0,

b = —
—,'PP(M)+M2)(1+8+}(M, —S+M2) 'k,

8,=—,
' [S+—S (M, —S+M2 ) 'M2$ ],

8', =—'(M, —$+M2 ) '(M —8+M, ),

82=8 (M, —S+M2) '(M2+M, )k,
82= —(Ml —S+M2) '(1+S+)k,
8= —S (M, —S+M2 )

(25)

where MN is the X-dimensional matrix with elements

(MN); . = ,'(5;i+,+5;,—,) .

The determinant detMN, and in turn the above equation,
can be calculated in a recursive form in terms of the di-
mension N. We can write this in matrix form

r r

(26)
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with the subsidiary conditions detM1= —
A, and

detM0=1. After diagonalization one gets the solution
for detMN ..

R;
2

' 1/2

cos (2j —3)
N

for 1 k
2N+1 N —1

P+ P—

P+ P—

where p+ = —
A, +[A, —1]' . Hence the solutions of the

characteristic equation satisfy

1RN/2, j
1/2

2R

1/2

7Tl
sin (2j —3)

(27)

[ g+(g2 1)1/2]N ( )N
for

N+1
&k &N,

2

Solving this equation, we get the values of
A, =cos(2k~/N) with k = 1, . . . , N, which are the eigen-
values of the matrix S+.

Now the matrix that performs the diagonalization of
S+ [we use the notation S+ =R DR, with

D; =5; 1 cos(2k'/N)] is given by

RN

' 1/2
1

N

Substituting in (25) and using the symmetry properties
of the trigonometric functions, one ends up with the fol-

lowing expressions for the terms appearing in the ex-

ponent of the vertex:

b= —— g cos co k (M +M ) M —c M
k=1

k,

BP=—,'(5;J,+5;, , )I
2' ~'—;„z2k' 2k~() —J) MT MT 2k'

M T

—1

+ 2 (' " ) 2k'(i —j) r 2k'.
B~" =—[( —)'+ —1]I+— g cos M &~

—cos M2T
N N ' N

2k'. T
M2 —cos M,

(28)

B~'j 2 . 2k~ 2k~(' —J M —cos 2k~M (M +M)k,
[(N —1)/2]

k=1

2
(M +M )k+ 4

k=1

1 ' " ) . 2k' . 2k'(i —j) MT 2k' Mrsin sin M1 cos M2
k=1

This gives the final form of the vertex obtained in this
approach. The important thing to note at this point is
that this result is given in terms of the change of repre-
sentation matrices M, and M2 (10) that appear in

the combination [M, —cos(2k ~/N )M z ]
' with

k =1, . . . , X. Once the inverse of this matrix is ob-
tained, we can directly identify the elements of the ex-
ponent of Eq. (24) with the Fourier components of the
Neumann function corresponding to the X-string contact
interaction. We postpone the calculation of this matrix
and the identification of the Neumann functions until the
next section.

Before concluding this section, let us make some com-
ments on the symmetries of the coefticients appearing in
(28). First note that regarding the diagonal terms (i =j),
they are independent of the position. This corresponds to
the fact that they describe the self-interaction of the

strings and, in the general form worked here, they are
equivalent. The second property to note is that, if A is
any of the matrices in (28), they satisfy A'J= A '+'J+' as
it corresponds to the fact that they describe the interac-
tion of the string in position i (i +1) with the one at posi-
tion j (j +I). Finally, the diagonal terms in the matrices
B' vanish; this corresponds to the lack of connection be-
tween odd and euen modes in the same string.

V. NEUMANN COEFFICIENTS
FOR THE N-STRING VERTEX

In this section we finish the calculation of the vertex
and proceed to the identification of the coe%cients ap-
pearing in the exponent of the vertex in Eqs. (24) and
(28), with the ones obtained via the conventional ap-
proach based on the path integral formulation of string
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amplitudes. We want to stress the fact that in this ap-
proach the Neumann coefficients are obtained in a com-
pact form once the way to invert the matrix
[M, —cos(2k' /N)M2 ]

' is known.
Before going on let us outline briefly the calculation of

the vertex based on the path integral formalism of the
string cr model.

The ¹tring amplitude for a closed region by the path
integral

DXz exp — z Xz1

4a

N
+ g f dz, X(z„)p"(z„)

r ——1

where a general state is represented by the momentum
distribution p (z, ). The vertex is given by

N

VN =exp ——g f dz„f dz, p "(z„)N(z„,z, )p "(z, )
2 rs=1

1/p
1+x
1 —x

1 —1/p
1+x
1 x

respectively. On the other hand, a' and P' as well as p are
free parameters to be determined.

Imposing the condition that our ansatz is the required
inverse, we end up with the following equations that re-
strict the values of the free parameters a', P' and 1/p:

aa' —PP' cos—=0,
p

aP —Pa' cos—=0,
p

}n+m
(2m) ' (2n) ' =Pa' .

2 sin(n. /p)

for the inverse. The coefficients u„" p' and U„" ' are the
coefficients of the Taylor expansion of the rational func-
tions

where the Neumann function is defined as the solution of
the differential equation

From these equations we fix the free parameters. The re-
lations read

(a', +a'. }N(z,z') =2m'5 (z —z'),

a„N(z, z') =f(z),
where n is a vector normal to the boundary. The former
equation can be cast in terms of the Fourier components
of the Neumann function as

I 1 1

4 sin(1r/p)P
'

1 cos(m/p)
4 sin(m/p)P

'

277 Q
cos

p 2

(30)

N

VN=exp —g g p„"N„p"
r, s =1n, m =1

(29) In the particular case of interest to us, the values of the
free parameters are

Now we can compare the vertices of Eqs. (24) and (29)
and identify the quantities in (28) with the Fourier com-
ponents of the Neumann functions.

To get an explicit expression, we proceed to invert the
matrix:

2k'. 2 2k~a=cos, P= 1, and cos —=cos
N p 1V

From them we obtain

2k'' zM1 —cos M2T

Consider the generic combination

aM2r —pM r

We propose the ansatz

U(1/p)Q(1/p) +U(1/p) u(1/P)
~

U2m Q2n 1 V2n 1Q2
D

2m —2n +1

or

for k=1, . . . ,

N .f k
N+1p=

2(N —k) 2
if k=

N —1

2

, . . . , (N —1)

u (1/P) V(1/P) U(1/P) u {1/P)
2n —1U 2m U 2n —1 2m

2m +2n —l

(the cases k =N, N/2 are trivially solved}. These results
complete the form of the inverse matrix. For instance, if
k & [(N —1)/2], the result reads

2kn-
M1 —cos M2

m, n

U(2k/N)~(2k/N) ~ (2klN)g(2k/N)
n+m 1/2 1/2

2 sin( 2k n /N) V2m Q 2n —1 V2n —1 2m

+Q (2k/N)U(2k/N)
U

(2 /N) (2k/N)
2n —1 U2m V2n 1 Q2m
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Once the inverse matrix is obtained, it is a straightforward matter to calculate the matrices appearing in (28) and the
further identification with the Neumann functions. To illustrate the sort of calculation involved, let us consider the case
of the quadratic momentum term. We want to compute the quantity

k(M +M ) M —cos M

which can be written as

8 1 1 1 1 (2k /N) u

~z sin(2k'/N) (2n —1) 2m+2n —1 2m 2—n+1

Then, using the properties of the sum given in the Appendix [(A3), (A5), and (A7) in particular] we end up with the re-
sult

2 y U

n' sin( 2k m /N )

which leads to the value of the Neumann coeScient N0 0. Proceeding in a similar fashion, we can obtain the remaining
Neumann coefficients described in (28) and (29). The final result is

1 ('+ " 2k'(i —j) k k
Nojo =— g cos g 1 ——+f ——2$(l)+41n2

N N

Ij —
1 lj +1 2 ' ~ 2k1r(i —j) ( ) (/2 )n

2 2k=]
(2k /N) (2k /N) + (2k /N) (2k /N)
n m Vn m

n+m

~ (2k /N)
V

(2k /N! ~ (2k /N)
V

(2k /N)

+ n m m n

n —m

j 2 ((1v —1)/2] 2k (
~ ~

) ( )n+m

N N 2k=1

for n+m even,

2 t(N —1)/21
N'j

0, 2n
k=1

(2k/N)V (2k/N)+ (2k/N) (2k/N)"n Vm Vn "m

n —m

2k~(i —J) (
—)" (zklN)cos

N 1/2 V2n
(2n)

(2k /N) (2k N) (2 /N)
V

(2k /N)
n Vm ~m Vn

n+m
for n +m odd,

2 [(N —1)/2]

No,'z. -)=
N k=1

j) ( )" (zk j)v)sin 1/2 V2n —1

(2n —1)

(31)

which is only valid for N ~ 2 (when N =2, there are no
sums). These equations do not include the case N =1, al-

though it can be treated trivially in the half-string formu-
lation; see, for example, [6]. This completes the calcula-
tion of the N-string interaction vertex (24) and represents
our main result. The interaction between string Pock
space states is readily obtained by taking derivatives with
respect to the parameters A, , j(,', as was indicated in (20).

We insist again on the fact that the Neumann functions
are generated in an explicit way from the representation
changing matrices M, and M2. Therefore in this picture
they appear as derived quantities. This assertion is true
for every N-string contact interaction, thus providing a
relation among the Neumann functions associated with
the ¹tring vertices.

To illustrate these results, we can consider the case
N = 3, for which the sums in (31) only have the term cor-

responding to k =1. The result one obtains from (31)
agrees with previous calculations of the cubic interaction
vertex performed earlier [8,9].

VI. CONCLUSIONS

In this work we have calculated the vertex correspond-
ing to the contact interaction of N strings. We have used
the "comma" representation of string field theory in
which the prominent role that the joining of the half-
strings plays is apparent. This feature also appeared in
the pioneering work of Witten [1].

This approach has the advantage of furnishing a corn-
pact treatment of the vertex, giving a result of general va-

lidity, independent of the number of strings. The final
answer is always given in terms of a matrix which in-
volves particular combinations between the matrices that
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change from the string representation (in which string
physical states take on a simple form) to the "comma"
representation in which interaction takes a trivial form.

The relevant matrix has been calculated and in general
is given in terms of the Taylor coefficients of particular
rational functions. Those coefficients, their sum rules,
and most of their properties which are relevant to our
work have been worked out in the Appendix. With this
result one can readily identify the Fourier coefficients of
the Neumann function for the ¹tring geometry. Final-

ly, we checked our results against the simple case of the
cubic interaction in agreement with the known results.

The task to face now is twofold. On the one hand,
work is under way to implement this result to the case of
closed strings. The required modifications are trivial and
will be reported in the near future. On the other hand,
the extension to the description of the restricted polyhe-
dra describing the terms in the nonpolynomial action of
closed strings will require the study of these vertices un-
der reparametrizations. Work in this direction is under
way. In particular, it is not difficult to prove [10] that the
modular parameters appearing in the CSFT, namely, the
length of the string overlaps, are related in a straightfor-
ward way to the reparametrization parameters of [3].
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APPENDIX

In this appendix we give the properties of the
coefficients of the Taylor expansion of the functions

1+x
1 —x

1+x
1 —x

' 1/p

= ~ u'"p'xn
n

n=1
1 —1/p

= ~ v'"p'xn~ vn
n=1

We need them for the construction of the Fourier
coefficients of the Neumann functions carried out in Sec.
V.

Most of the results derived here are a generalization of
the calculations performed in Refs. [8,9] where the case
p =3 was analyzed in detail.

With the above definition of the coefficients u„" ' and
v„" ', we can express them in an integral form

2—u„" i'=(n +1}u„"i,' —(n —1}u„"i,',
p

2 1 ——v„" ~'=(n+1)v„",' (n——1)v„",' .
1

p
(A 1)

Also, making use of the same integral representation,
one can relate both coefficients:

—v„" i'=( —)"[(n+1)u„"~' —2nu„" ~'1 n

+(n —1)u„" i,'],
2 1 ——u„" i'=( —)"[(n +1)v„" i,' 2n—v„" i'1

(A2)

u (1/p)

X„"=
n+m odd +

It can be written in an integral form allowing its evalua-
tion. For instance, for odd indices, we have

(1/p)
"2m —1

o 2n +2m —1

1 1

sin(m/p) 8i

dX

p X2n+1
1+x
1 x

1/p
1+x
1 x

—1/p

the last integral being proportional to the coefficient
u2'„'. As a result, we find

gu— +,dd n +m 2 sin(~/p)
(A3)

From this relation, it is then straightforward to deduce
a recursion relation for these sums similar to the one
found previously for the coefficients u„"~~' and v„"~~' (Al):

—X„"=(n+ 1)X„"+, (n —1)X„"—2
(A4)

+(n —1}v„"~ii'].

It is also possible to find a closed expression for the
coefficients, although it will not be necessary for our pur-
poses.

In the text and, in particular, in Sec. V, one needs the
evaluation of several infinite sums involving these
coefficients. The simplest of these sums is

(1/p) 1 dx 1+x
2~i o x"+' 1 —x

1/p We can extrapolate this result to And the sum for nega-
tive values of the index: namely,

The v„" p's are expressed in an analogous fashion with
the substitution of 1/p by 1 —1/p. This expression is use-
ful to find the recursion relation obeyed by the
coefficients. Integration by parts of the derivative of the
integrated function gives

= ——cot—uu 7T 7T (1/ )
n

p
n (A5)

To find this result, we need a boundary condition that
can be given by the sum Xo. We can proceed by direct in-
tegration:
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gu 1 f dx
2 1 x

1/px+1
x 1

1 1 p 1 p—+—
2 2 2 2 2

1/p
x —1

x+1

vr=—tan
2 2p

This can be solved in terms of the original coefficients.
We will skip the details; instead, we evaluate several com-
binations of these sums which are relevant in Sec. V.

Let us calculate the combination given by

(1/p) ~v ~ (1/p) ~u~ 2n —1~ 2n —
1

' 0 2n —1~ 2n —1

The change of variable one needs to perform the in-
tegration, namely, y = [cosh( —,

' lnx)], was already sug-

gested in [8].
Note that, in the sums X„evaluated above, one is sum-

ming over the index m with parity opposed to n. The
sums for indices with the same parity are more involved,
and we will only discuss the properties which are more
relevant to our work.

First, we discuss the sums involving quadratic denomi-
nators: namely,

~ (1/p)

dd (n +m)

One can show, solely making use of the recursion rela-
tions given in Eq. (Al), the recursion relation

(n +1)X„"+)=—X„"+(n —l)X„" 1+2„"+)—X„"p"
which can be extended to negative values of the index n

and by direct evaluation of the combination

We start from the quantity

&(1/p)U(1/p)+9 1 p U
p)

n+m

which, using the relations (Al) and (A2), can be shown to
satisfy

(m +1)T +, „—(m —1)T

+(n+1)T „+1 (n ——1)T „,=0,

for n +m odd. Now, taking m ~2m —1, n~2n, and
summing over the index m, one finds the recursion rela-
tion

(2n +1)[u 2'„+',S2„+,+v 2'„+',S2„+,]

=(2n —1)[u 2'„',S2„,+v2'„',S2„,],

which we use as a boundary condition, we find the rela-
tion between the sums for positive and negative indices:

u u 7T 7T . 7T u uX „—X„cos—=—sin —XOS„" .
p 2 p

The sum

(1/p)

S
n+m even

which involves summing with indices of the same parity,
appears here. It can directly be shown that they satisfy
the same recursion relation as before (A4):

—S„"=(n+ l)S„"+, (n —1)S„"—2

which has a solution

(1/p) u (1/p) u
S,

2n —
1 2n —

1 2n —1 2n —
1 2n —1

To determine the value of S1, we proceed directly writing
it in its integral form to find S1=2, a result that is in-

dependent of the value of 1/p.
Following the same steps, one can easily evaluate the

combinations

(1/p)S U + (1/p)S u =2
2n 2n 2n 2n

(1/p) ~U ~ (1/p) ~u
Q2n 1~2n 1+U2n 1w2n 1

Note at this point that a recursion relation of this kind
has two different solutions, one proportional to the
coefficients u„"/p', which is the one given in (A3), and the
other one, corresponding to the sums S„which behaves
as 1/n when n ~0. The general form of the latter can be
obtained by using the generating function

S(x)= g S„x"
n=1

and converting the recursion relation into a differential
equation whose solution is given by

(1/p) 0 (1/p) u 1
[u 2n —1 —(2n —1) 2n —1 —(2n —1) ]

2n —1

which also appear in the calculation of the interaction
vertex.

To take care of the indetermination appearing in the
functions N„'J in the limit when n~m, we can show
that

g (1/p)U (1/p)
U

(1/p)g (1/p)~n "m "n +m
hm

n~m 2(n —m)
'~ 1/p

S( )
1+x y~d 1+y
1 —x o 1 —y

'"u'"p) +S~0 y 1

y
2 s)n

~
[u ()/p)yU v()/p)y& ]m m m m

p
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This result is obtained just by writing the left-hand side in
an integral form.

Finally, in the evaluation of the Neumann coefficient

Noo, one needs the sum

Xc= —lim — f x
1 d &dx

k~02 dk 0 x
1+x
1 —x

' 1/p 1/p
1 —x
1+x

1 cos(m. /2p) 1 1 + 1 1

4 sin(n /2p) 2 2p 2 2p

(1/p)
~2n —1yQ

i (2n —1)
—2$(1)+4 ln2 (A7)

which can be performed using its integral representation:

To end this appendix, note that the discussion we have
undertaken for the coefficients u„" p' can be translated
into v„"~~' with the only change of 1/p —1 —1/p.
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