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String backgrounds associated with gauged G/H WZNW models generically depend on a' or 1/k.
The exact expressions for the corresponding metric 6„„,antisymmetric tensor B„„,and dilaton P can be
obtained by eliminating the two-dimensional gauge field from the local part of the effective action of the
gauged %'ZN% model. %e show that there exists a manifestly gauge-invariant prescription for the
derivation of the antisymmetric tensor coupling and discuss some subtleties involved. When the sub-
group H is one dimensional and G is simple the antisymmetric tensor is given by the semiclassical (a-
independent) expression. We consider in detail the simplest nontrivial example with B„„AO,the D =3 cr
model corresponding to the [SL(2,R}XR]/R gauged WZNW theory ("charged black string"), and show
that the exact expressions for 6„„,B„„,and P solve the Weyl invariance conditions in the two-loop ap-
proximation. A similar conclusion is reached for the closely related SL(2,R)/I chiral gauged WZNW
model. We find that there exists a scheme in which the semiclassical background is also a solution of the
two-loop conformal invariance equations (but the tachyon equation takes a noncanonical form). We dis-
cuss in detail the role of field redefinitions (scheme dependence) in establishing a correspondence be-
tween the a model and conformal field theory results.

PACS number(s): 11.25.Hf, 02.40.Dr

I. INTRODUCTION

Gauged Wess-Zumino-Novikov-Witten (WZNW}
theories provided first examples of string solutions which
depend nontrivially on a'. This fact should have impor-
tant implications in the context of establishing closer re-
lations between field theoretic (or o model) and confor-
mal field theory approaches. The derivation of the exact
metric G, and dilation P corresponding to thepv
SL(2,E)/E WZNW model was originally given [1] in the
operator approach which is based on interpreting the
Hamiltonian Lo+Lo of the coset conformal field theory
as a Klein-Gordon-type operator in a background. This
approach was systematized for establishing the exact
form of G„„and P in general G/H coset models in [2—5].

As the group space backgrounds of %ZN% models,
the geometries associated with gauged %ZN% theories
in general have a nontrivial antisymmetric tensor field

B„,(which is crucial for conformal invariance of the cor-
responding tr models). This was found in simple D =3
and D =4 examples in the leading order ("semiclassical" )
approximation [6—10].' To be able to study the exact
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There are of course examples of gauged WZNW models
(based on non-Abelian groups) with vanishing antisymmetric
tensor in the leading order approximation [11—14].

properties of these geometries one needs to know the ex-
pression for B„„to all orders in 1/k.

The problem of establishing the exact form of the an-
tisymmetric tensor background turns out to be quite non-
trivial. The operator approach is not well suited for
derivation of the expression for B„„since the antisym-
metric tensor does not appear in the zero mode part of
the Lo operator. In principle, one is to consider the Lo
acting on states P of the first excited level and to try to
deduce the value of H&=3 t„)(B& b}y identifying Log
with the "anomalous dimension operator, " i.e., the
derivative (BP'/Bg) of the o-model Weyl anomaly
coefficients parametrized by the values of G&„B&„,P at
the conformal point [5]. This procedure looks rather in-
direct and complicated. Moreover, it may not work at all
beyond the leading order in a' since the general function-
al expressions for the Weyl anomaly P functions are not
known explicitly and so one is unable to deduce the exact
expression for B„„(a')from the comparison of Lo with
(BP'/Bg} + unless some extra considerations (e.g., imply-

ing that for some reason there should exist a scheme in
which B„„does not receive a' corrections at all) are in-
voked.

An alternative is provided by the effective action ap-
proach [15,16,5] which, in principle, offers a direct
derivation of the whole t7-model action (i.e., B„„along
with G„) at the field-theoretic level. The key point is to
replace the classical gauged WZNW action I (g, A ) by the
quantum effective one I (g, A ), solve for the two-
dimensional (2d) gauge field and identify the local
second-derivative part of the result with the o.-model ac-
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tion. It was proved in [15,16,5] that the operator and
efFective action approaches give identical expressions for
the metric and dilaton. As for the antisymmetric tensor,
there is a subtlety in its derivation from the effective ac-
tion. It turns out that the procedure of omitting the non-
local terms in I (g, A) on the way to a cr-model action a
priori is not completely unambiguous in what concerns
the resulting expression for 8„.Below we shall consider
two natural prescriptions for the derivation of 8„ that
preserve the gauge invariance [present in the full nonlocal
functional 1 (g, A)] at the level of the local part of the
effective action. The gauge invariance is necessary in or-
der to be able to reduce (gauge fix) the o model from the
group manifold of G to G!H as a configuration space.
According to the first prescription, 8„„in general de-
pends on a', while 8„, computed using the second
prescription remains semiclassical.

We shall see that in certain cases (when the group G is
simple and the H part of the matrix C~z defining the ad-
joint representation of 6 is symmetric, or, equivalently,
when diniH =1) the exact expression for 8„,found using
the first prescription reduces to the semiclassical one
(even though the metric and dilaton still depend on a').
For generic simple G and H the quantum corrections to
8„, start with the "two-loop" O(1/k ) terms. We shall
present the derivation of the o.-model action using the
most general expression for the effective action I'(g, A)
which includes as particular cases the effective actions for
the gauged WZNW model as well as for the bosonic [17]
and heterotic [18] (bosonic part of (1,0) supersymmetric)
"chiral gauged" [19]WZNW models.

As was shown explicitly in the three-loop [20] and
four-loop [21] approximations in the cr-model perturba-
tion theory, the exact D =2 "black hole" metric-dilaton
background of [1] is, in fact, a solution of the o-model
Weyl invariance conditions or the string efFective equa-
tions. Below we shall conduct a similar check in the sim-
plest possible case with a nontrivial 8„: the three-
dimensional [SL(2,E)XE]/E ("charged black string")
model [6]. The exact metric and dilaton of this model
were found in [3]. As for the antisymmetric tensor, its
derivation turns out to be complicated by the fact that G
is not simple here so that one needs to fix the total deriva-
tive ambiguity in the effective action in a specific way.

The Weyl anomaly coefficients (P functions) or the cor-
responding string effective action are not unambiguous,
i.e., are scheme (field redefinition) dependent [22—24].
The "two-loop" 0 (a') term in the string efFective action
depends on a number of free parameters which change
under field redefinitions. We shall show that there exists
such a scheme (i.e., a choice of the parameters) in which
the exact "black string" background is indeed a solution
of the string equations in the two-loop approximation.
%'e shall consider in detail several limits of the D =3
geometry, in particular, the SL(2,E) group space and the
direct product of SL(2,E)/E model and E ("neutral
black string"). We shall discuss the role of the coupling
constant redefinitions or scheme dependence in establish-
ing a correspondence between the conformal field theory
and o.-model results.

A particular limit of the [SL(2,E)XE]/E gauged

WZNW model was shown [18] to be equivalent to the
SL(2,E)/E chiral gauged WZNW model [25,17,18].
Our derivation of the exact form of the o-model cou-
plings in the two models gives equivalent results not only
for the metric and dilaton but also for the antisymmetric
tensor. We shall thus check explicitly that the D =3 o.

model associated with the SL(2,R)/E chiral gauged
model is also conformally invariant at the two-loop level.

In Sec. II we shall find the general expressions for the
exact backgrounds starting from the efFective action for
the gauged WZNW model. We shall consider two natu-
ral ("corrected" and "semiclassical" ) prescriptions for ex-
tracting the o-model couplings which give different ex-
pressions for the antisymmetric tensor coupling. In Sec.
III we shall repeat the derivation using a more general
form of the effective action which includes as particular
cases the efFective actions of the gauged WZNW and
chiral gauged WZNW models. The explicit formulas for
the o-model couplings in Secs. II and III will be given in
the case when the group G is simple and a gauged sub-

group H is a vector one.
In Sec. IV we shall describe the D =3 o. model origi-

nating from the [SL(2,E)XE]/E gauged WZNW model
and show (in the a' approximation) that the correspond-
ing exact background solves the conformal invariance
equations P'=0 in a proper scheme. Moreover, we shall
find (in Sec. V) that there exists a scheme in which the
semiclassical limit of this background is also a solution of
the two-loop P'=0 equations and will discuss implica-
tions of this fact.

In Appendix A we shall prove that for a general model
of Sec. III the "measure factor" exp( —2$)&detG does
not receive nontrivial quantum corrections. In Appendix
B we shall discuss the derivation of the exact couplings in
a theory with a nonsimple group G —the [SL(2,E
XE]/E model. We shall show how to resolve the ambi-

guity in the resulting expression for the antisymmetric
tensor coupling in a way that turns out to be consistent
with conformal invariance of the o. model. In Appendix
C we shall give the expressions for some geometrical
quantities used in the computations of Sec. IV.

II. EXACT u MODEL CORRESPONDING
TO GAUGED WZNW MODEL

Let us start by recalling the basic steps one is to follow
in order to derive the exact e-model action correspond-
ing to a gauged WZNW or coset model. If one solves the
classical equations for the 2d gauge field 3, substitutes
the solution back into the classical WZNW action
S(g, A ) [26] and fixes the gauge symmetry, one obtains a
"semiclassical" a model with the configuration space
G/H which (with the dilaton coupling included [27]) is
conforrnally invariant in the one-loop approximation. To
obtain a o. model which is conforma11y invariant to a11 or-

2It can be shown in general [18] that for any Abelian subgroup
H of a group G the G/H chiral gauged %'ZN% model is

equivalent to a I G XH)/H gauged %'ZNW model in the axial

gauging and special embedding of H into G XH.
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ders in the loop expansion one needs (in a "standard"
scheme, see Sec. V) to modify the o-model couplings by
a'-dependent terms. By definition of the model, the
gauge field A is to be treated as an auxiliary field (for
which one does not introduce a source term in the path
integral) but it is not obvious how to integrate it out com-
pletely (while keeping the group variable g classical} in a
way that preserves conformal invariance to all orders.
An approach that preserves conformal invariance is
based on first determining the quantum effective action
I'(g, A) for both g and A (i.e., treating g and A on an
equal footing in the path integral) and then solving for A

and eliminating it from the effective action. The resulting
gauge invariant functional I"(g) (restricted to 6/H) is to
be identified with the quantum effective action of the cor-
responding o model. That means that the local part of
I"(g) should be equal (after gauge fixing to G/H) to the
classical action S(x) of the exact o model one is looking
for. It is clear that in deriving S(x) from I'(g, A) one is
free to ignore various nonlocal terms but at the same time
one must be careful to preserve in the process the gauge
invariance that makes possible to finally restrict (by the
usual procedure of gauge fixing} the configuration space
of the o model to 6/H.

The classical action of a gauged WZNW model

I(g, A)=I(g)

I'(g A)=(k+g )I(h 'gh} —(k+g )I(h 'h)

=(k +go)[I(g, A) b—Q( A)] (2.5)

=~( A)+to( A )+—fd z Tr( A A ), (2.6)

where the nonlocal functionals co(A) and co(A) are
defined as

c0( A)—:I(h ')

F 1 1
d z Tr —A —A+ —A —A, —A

17 2 8 3 (} 8

m(A )=—I(h)

+O(A )

(2.7)

1 —a — 1 — 1 —a-
d zTr —A —A ——A —A, —A

7T 2 F 3 a '5

where gG, g~ are the dual Coxeter numbers for the group
6 and the subgroup H, respectively, and b —= —(go—gH)/(k+go). Q(A) is the nonlocal gauge invariant
functional of A, A,

Q(A}:—I(h 'h )

2z Tr g gg
1 gg 1

g +O(A )

+g 'AgA —AA ),

I:— zTr g 'g1

2m

+ ' 'zTrg 'g',
12$.

(2.1)
Before solving the equations for A and A, which follow
from (2.5), let us first drop the nonlocal cubic and higher
order in A, A terms in (2.7). As explained above, the
nonlocal terms should not contribute to the o-model ac-
tion which is our final goal. The truncated action has the
form

is invariant under the standard vector H-gauge transfor-
mations (A, A take values in the algebra of H)

I „(g,A) =(k +go)[I(g, A) —bQ„( A )],
where

(2.8)

g~u 'gu, A ~u '( A —B)u,

A u '(A —B)u, u =u(z, z)CH .
(2.2) (l„(A)—: J d z Tr(A —A)(A —A ), (2.9)

In this section we shall assume that the group 6 and the
subgroup H are simple. Parametrizing A and 2 in terms
of subgroup elements h, h EH which transform as
h~u 'h, h ~u 'h,

or

Q„(A)= fTrr, S„F,=aA —aA .1 1

2' (Q

A =Bhh ', A =Bhh
The fields A, A in (2.8) are defined by

(2.3)

one can use the Polyakov-Wiegman identity [28] to
represent the action (2.1) in terms of the two WZNW ac-
tions corresponding to the group 6 and to the subgroup
H,

8 8—A:——A =Bhh +, A:—:A=Bhh +

(2.10)

I(g, A)=I(g) —I(h ),
g=h 'gh, h=h 'h .

(2.4)

The corresponding quantum effective action [15,16] has a
simple form in terms of g, h (we ignore extra nonlocalities
introduced by Seld renormalizations because they give
rise to nonlocal terms in the o model, see [5])

and transform under the gauge transformations as

A u '(A —K)u+

u-'(A= —a)u+ . .
(2.11)

Here (and in similar equations below) ellipses stand for
contributions of higher order nonlocal terms. Note that
in (2.6) the Polyakov-Wiegmann formula was used, which
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presumes an integration by parts . In (2.8) we have un-

done this integration by parts, thus restoring the mani-
festly gauge invariant form of the quantum term under
the transformation of the gauge fields (2.2) and (2.11).
One may question whether the truncation of (2.5) to (2.8)
is legitimate since O(A", A ) terms with n, m 3 in (2.5)
are necessary for gauge invariance. In fact, (2.9) is invari-
ant only under the "Abelian" part of the gauge transfor-
mations. The point, however, is that since the non-

Abelian gauge invariance is violated only by nonlocal
terms (or, equivalently, is preserved up to nonlocal terms)
it should be present in a consistently extracted local part
of (2.8).

To proceed, let us first establish our notation.
T„=(T„T,} are the generators of 6; T, are the genera-
tors of H; 3 =1, . . . , DG, a =1, . . . , DH; i =1, . . . , D,
D =DG&~, gAB is negative definite in the compact case,
and

A = A'T„C„~—:Tr(T„gag '}, Tr(T„Tq)=rl„s,

J„=Tr( T„g 'dg ) =E„~(x)Bx, J„=—Tr( T„Kgg ') =E„sr(x)dx

Jz =Tr(T&g 'Bg)=E&M(x)Bx, Jz = —Tr(T„egg ')=Ez~(x)dxM (2.12)

E„sr — C„qE~—, C Cqa —5s) C q r) CD—s,B AD A A AD

C,b
CAB

aj

C;b

EaM = —
Cab EM Ca&'E

IJ

In the following we shall also use I „(g,A}=(k+go)[I(g)+bI(g, A)],
(2.14)

A =(A'), J=(J,),
~ab Cab Gab

Nab ™ab—b gab

Then the truncated action (2.8) takes the form

(2.13)

EI(g, A)—= —fd2z[ —AJ —AJ+ AMA

,'b(A —A—)(—A—A )] .

Eliminating A, A from this action one finds a nonlocal
expression which is bilinear in J,J

gI(g)= — f d2z[J(QNTQ 'N b2I) '(QNrQ— 'J bQJ)+J—(Q 'NQN b I) '(Q —'NQJ bQ 'J)], —
2~

(2.14')

One is now to take a local part of the functional
I(g}+BI(g}and identify it with the o-model action. To
determine the metric term in the resulting o-model ac-
tion it is sufficient just to set Q =1 or to take the d =1
limit of the action [16,5]. As for the parity-odd (antisym-
metric tensor) part in the cr-model action its derivation is
more subtle. It is not clear a priori how to extract the
relevant local part of (2.14'). One natural suggestion

30ur present notation difFer from the notation of Ref. [5)
where A, A, J, and E have the opposite signs. The correspon-
dence with the notation of Ref. [16] is the following: A ~ A,
~+ ~ «~ ~m~ «w~E~~.

[16,5] is to replace QN Q
' and Q 'NQ by N and N

and QJ and Q 'J by J and J. The resulting local action
does not, however, have gauge invariance in its parity-
odd part. As we shall show be1ow, there exist a pro-
cedure of extracting a local part from (2.14') that not only
preserves the Abelian gauge invariance of (2.14) and
(2.14') but also restores the full non-Abelian invariance
which was present in the original action (2.5). The basic
idea is to omit the nonlocal terms already at the level of
the solution of the equations for A, A that follow from
(2.14) and only then substitute the resulting local expres-

sions for A, A and A, A into (2.14).
The equations for A ', A

' we obtain from (2.14) are

J+NA+bA =0, —J+N A +bA =0 . (2.15—)
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Let us note that (2.15) take the form of the exact equa-
tions that follow from the full untruncated effective ac-
tion (2.5) if one sets there [cf. Eq. (2.10)] A =Bhh
A = dhh '. Equations (2.15) imply

—J+NA+bA +.. . =0

A, =V '(NJ —bJ), A, =V '(N J —bJ),
A, =V '(NJ b—J), A, =V (N J b—J),

where we have defined the matrices
y=NN —b I, V=N N —b I,

y &N~=NTy —
&

(2.17}

(2.18)

—J+N A+bA+ . =0
(2.16)

Up to nonlocal terms the solution of (2.15) and (2.16) is
(we shall use the star to denote the local part of the solu-
tion)

The local expressions in (2.17) have the correct Lorentz
structure. Moreover, A„A, and A„A, transform
properly (as gauge fields) under the non Abe-lian gauge
transformation of g. In fact, the gauge transformation
g~u 'gu induces the following transformations on the
H components of the currents and tensors:

J'= UJ —M' P, J'= UJ —~'t.' J'= UJ —~' — J'= UJ —~'z

C'—:C(g')=UC(g}U ', M'=UMU ', V'=UVU ', V'=UVU (2.19}

U i ——C i(" ')=Cb(gg}, U =U ', g 'T, u =C b(u}T'" e ——Tr(T ii
—

iQii) e —Tr(Z u
—lfii)

Using (2.19) one can show that the fields in (2.17) trans-
form as

A» =UA» —e,

A» =UA» —p,

A» =UA» —p,

A'»= UA» —e,
(2.20)

i.e., as the gauge fields in (2.2) and (2.11). Note also that

(A, —A» )'= U(A, —A, ),
(A» —A»)'=U(A, —A»),

[(A» —A, )'(A, —A, ), ]'=(A» —A, )'(A» —A»), .

Therefore, substituting (2.17) into (2.14) we can eliminate
the gauge fields in a way that preserves gauge invariance.

A natural question is whether the described procedure
(which we shall call "corrected" prescription) based on
(2.17) is a unique one preserving gauge invariance. In
fact, it is not —there exists another similar prescription
(which will be described at the end of this section and will
be called "semiclassical"} in which the local part of the
quantum correction (2.14') does not contain a parity-odd
part and thus the expression for 8„„is not modified. To
see that the prescription using (2.17) is not unambiguous
note that we have dropped nonlocal terms in the process
of solving (2.15}[the last two relations in (2.17) imply also
that we assume a specific prescription of separating out
local terms in (2.14'}]. Eliminating A, A from the actions
(2.5) and (2.14) one has to be careful about doing integra-
tions by parts: total derivative terms of nonlocal struc-
ture may, in fact, contribute to the local part of the result
(disregarding total derivative terms in the action does not
commute with dropping out nonlocal terms after the in-
sertion of the "truncated" classical solution into the ac-
tion). For example, let us consider the effect of adding a
total derivative term

—
—,'pb(AA —AA )

to the action (2.15}(p, is an arbitrary parameter). Such a
term will not change the equations of motion (2.15) but
will produce a nontrivial contribution to the antisym-
metric tensor coupling after the solution (2.17) is substi-
tuted back into the action (the expression for the metric
will not change). It should be possible to modify the
above term by other g-dependent total derivative terms
[which should compensate for the use of the Polyakov-
Wiegmann relation in the process of representing the
manifestly gauge invariant action (2.5) in the standard
"AJ" form (2.14)] in order to preserve the gauge invari-
ance of the result. It turns out to be necessary to account
for this ambiguity in the case of a nonsimple group G (see
Appendix B). For simple G adding such terms seems un-

natural since they change the coefficient of the A A term
in the local part of (2.14).

Starting with (2.14) we find the following local action
for g

I „(g,A)=(k +g )[I(g)+~(g, A, )+ ' ' ' ]

(2.21)

where

»In the treatment of the general model in [16,5] gauge iuvari-
ance was maintained only in the zero mode sector. As a result,
the expression for the antisymmetric tensor we find below {2.25)
is difFerent from the one given in [16,5]. The form of the trun-
cated effective action used in [16,5] was different from (2.8) by
the total derivative term {with @=1)and as a result a gauge-
variant expression for the B~N term was obtained after separa-
tion of the local part of the action.
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r„(g)=(k+gG) I(g)+ J d z[ —A, J—JA„+b(A, A, —A, A, )],
2m

=(k+gG) I(g)+ f d z[J[ 2V— 'N +bV '(N N b —I)V ']J
2'

bJ—V '(NN b I—) V 'J+ bJ[ V '+b V (N N—)V ]J

+bJ[v )+bV '(N —N ) V ']J] (2.22)

As follows from the above discussion, this action is invariant under the transformation g ~u gu. Parametrizing g in
terms of group coordinates x [see (2.12)] we can represent (2.22) as the following cr model with the group space G as a
configuration space:

S(x)=r...(g) =—,d'z a „(x)axMax", ~ =
k+gG

where the metric is

(2.23)

GM)v —Q(M)v)
=GpMN+2( V N )~bE(ME~) b ( V )~sEME~ b ( V )~bEME~

and the antisymmetric tensor is

BMQ = Q(MQ] Boy+ 2[V N bV (N—N b i)V —],bE(ME~}

[V )(M M )V )] E~ E —b [V '(M M)V —
] Eo Eb

GpM)v and BOM)v are the original WZNW (group space) couplings,

(2.24)

(2.25)

GpM)v ='ggsEME~, 3a[)rBoM)v} =Et EMExf gJ)c . (2.26)

The expression for the dilaton coupling follows from the (local part oA determinant of the (A, A ) quadratic form in
(2.14)

P =$0
—

—,
' ln det V . (2.27)

It is useful to rewrite expressions (2.24) and (2.25) separating quantum corrections from the semiclassical expressions

GM~ —GOM~+2Mab E(MEN)~ BMQ —BQMPj+2M, b EtME~)

Namely,

GM)v
= GM'~+2b ( V 'M M '),bE(MF~) b( V '),bEME—~ b( V )gsE—ME~

and

BM~=BM'~+2b [V M M '(M M) V —'],bE(ME~}

—b'[V '(M —M')V '],E;„E' b'[V '(M —M')V-'].,—E', E„",-.

(2.28)

(2.29)

(2.30)

Thus the first quantum correction to the metric GMN is
one-loop [O(u')] and to BMz a two-loop [(O—(a' )]
one. Let us note that the above expressions were derived
in the case of the vector gauging of a simple group G.

The o-model action (2.23) is gauge invariant as a
consequence of the invariance of (2.22) [note that the
semiclassical and quantum correction terms in (2.22) and
(2.23) are separately gauge invariant]. The general o.

model (2.23) is invariant under the local transformation
5x =Z, (x)e'(z, z) (e.g., induced by the gauge transfor-

We assume that the coordinates x are rescaled by the
overall "radius" of the space so that a' is dimensionless.

mation g'=u 'gu with generators Z, =E, +E, ) if the
metric and the antisymmetric tensor satisfy the con-
straints

Z. a G +G a„Z. +G a Z. =0,
GM~Z, =0, HM~~Z, =0,

(2.31)

Since we are deriving the constraints for the couplings 6, B
(which transform only as functions of x) the variation of the ac-
tion should vanish for arbitrary x and e. In the metric part of
the variation one should equate to zero separately the 0 (e) and
O(Be) terms [integration by parts in O(Be} terms induces BBx
terms].



ANTISYMMETRIC TENSOR COUPLING AND CONFORMAL. . .

so that Z, should be the Killing vectors as well as the
null vectors of the metric and the antisymmetric tensor
field strength should have a zero projection on Z (cf.
[29]). These conditions are thus satisfied for the metric
(2.24) (see [5]) and the antisymmetric tensor (2.25). The
dilaton term is also invariant [P(g')=P(g) or
Z, B~P=0] as it is clear from (2.27) and (2.19).

One can now fix a gauge, e.g., by restricting the coordi-
nates xl on G to coordinates x" on G/H. This can be
done by solving a gauge condition R'(x )=0
[s =1, . . . , dimH, det(Zi, BsrR')%0], i.e., xM=x~(x")
[1M=1, . . . , dim(G/H)] and B~R'8 x =0. In particu-
lar, it is possible to choose such x" that are invariant un-
der the transformations of x, i.e., Z, BMx"=0. If H,.
is a basis in the tangent space of G/H orthogonal (with
respect to Gast) to the gauge symmetry generators Z,
then, in particular, we can choose d„x =H„=—L„'H; so
that the couplings of the resulting o model on G/H are
given by

GM~ =G~~ —b [M (M —2b) ],~'(Esr E—M }(EN E—~ ),
(2.37)

(s)
&My —&W .

It is possible to prove that the matrix C,b is symmetric

only when the subgroup H is Abelian with dimH =1.
Expanding the group element g =exp(X "T„}around the

identity one can compute the expansion of C,& in (2.12) to
X order. Demanding that the O(X) term is symmetric

we obtain the condition f,&,
X'=0. For this to be true

for all X' the structure constants f,&' of the subgroup H
should vanish so that H should be Abelian. Assuming

that H is Abelian we find an additional condition from
the O(X ) term: X'f„JTr[T T&(XcT ) ] (a~—b)=0.
This condition can be satisfied for all X's only if
dimH =1. One can also see this explicitly using the gen-

eral form of the expansion of CA& in normal coordinates
X near the unit element of the group (see, e.g. [31])

E"=
A

e~—1

g; =2); bV,b'C—', Cs
(2.32)

b(J =bo(i b[ V —'(M M)V—'I,i, C', C~. , (2.33)

H„„i =h; kH„'Hj~i .

Here H p =HMapx, with HM being a particular basis or-
thogonal to Z, [5]

HM —EM —M,b'C EM,

and bo,, is the projection of 80~~. Using that

C„(u)=0,
u T'u ' = T~C '( u ),
C,"(u)C „(u)=21,",

(2.34)

(2.35)

one can show that under g~u 'gu the one-form
H'=H d~xand the tensors g;J, h;Jk transform as

H" =H'C, '(u), g, =C";(u)gkiC', (u),

h I,
=h „C~;(u)C~ (u)C "k(u) .

(2.36)

7Since the action (2.23) has gauge invariance it really depends
on the dim(G/H) invariants x" (global coordinates) that one
can build out of dimG group parameters x [30]. Such choice
has certain advantages over a generic procedure of gauge fixing.

Fixing a gauge one usually restricts consideration to one patch
of the entire space only, whereas choosing the 6/H coordinates
x" as group invariants one may determine their range of va1ues

by using group theoretic methods [30].

As it is clear from (2.29) and (2.30},in the case when C,&

(and hence M,s and N, I, } is symmetric the metric still re-
ceives 1/k corrections while the antisymmetric tensor
remains semiclassical:

fAs
=fAscX-

CA (e f)A (I—f + &f2 &f3+. . . )A
2 6

(2.38)

(2.39)

Imposing the symmetry condition on the O(X} and
0 (X ) terms in C,& one concludes that dimH = 1.

In the case of a simple group G considered in this sec-
tion the condition that C,& should be symmetric or that
dimH=1 is a sufficient one in order for the quantum
corrections in (2.30) to be absent. The matrix C,&

is not
symmetric in a generic case of Abelian or non-Abelian H

The situation is different when G is not simple. The
general expressions for the efFective action (2.5) and (2.22)
and hence for the cr-model couplings in (2.23) become
more complicated but can be worked out by taking into
account that the renormalizations of the levels k may be
different for different simple factors in G. It turns out
also to be necessary to fix the "total derivative" ambigui-
ty in the derivation of the expression for the antisym-
metric tensor in a particular way, consistent with confor-
mal invariance of the resulting o model. One of the
consequences is that the antisymmetric tensor [computed
according to our first prescription based on (2.17)] may
contain quantum corrections even when dimH=1. An
example of such model will be discussed in Sec. IV and
Appendix B. Another example is provided by the
SO(2,2)/SO(2, 1) model (with nonsymmetric C,& [16] and
vanishing semiclassical 8„„[11,12,14]}for which we have
numerically checked (in a certain gauge) that the quan-
tum correction to the antisymmetric tensor is also vanish-
ing [the O(EE ) term in (2.30)] vanishes by itself while the
contributions of the O(EE) and O(EE) terms cancel
each other). The matrix C,& is nonsymmetric also in the
case of the D =4 model [SL(2,R) XSU(2}/RXU(1)] con-
sidered in [7,10,4] but here it appears that the antisym-
metric tensor receives nontrivial corrections to all orders
in 1/k.

Let us now describe another natural prescription of
separating a local gauge-invariant part of the quantum
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term in the effective action (2.14') under which B„,does
not receive a' corrections. Suppose that one has managed
to truncate (2.14') in such a way that the resulting local
part (quantum contributions to it) is 2d parity-even (in-
variant under z~z, z —+z), i.e., does not contain any a'
corrections to the antisymmetric tensor part. That would
mean that the resulting metric is still given by (2.24) but
B„remains semiclassical as in (2.28) [however, with
overall coefficient (k +gG )]. The corresponding 0 model
is obviously gauge invariant since the semiclassical part
of (2.14) is gauge invariant by itself and the parity-even
and parity-odd parts of (2.14) should be gauge invariant
separately [the gauge transformations (2.19},(2.20) do not
mix parity-odd and parity-even sectors].

An indication that such a result may be considered as a
natural one comes from the structure of the quantum
term in the truncated efFective action (2.8). This term is
manifestly parity-even, suggesting that there should be no
correction to the parity-odd part of the 0. model that is
obtained after solving for A, A. The fact that the quan-

A =A, +A, A=A, +A

A, =M 'J, A, =M 'J .
(2.40)

Then (2.14) takes the following form [cf. (2.22)]

turn term [truncated to O(A ) part] in the effective ac-
tion (2.8) is parity-even may be considered as a basic
"principle" behind this prescription. This may be in turn
related to the fact that from the point of view of the
operator conformal field theory approach it is the Hamil-
tonian but not the current algebra (which is sensitive to a
definition of currents and thus to the form of B„„)that
receives 1/k corrections.

It is easy indeed to give a simple prescription for solv-
ing for A, A (up to nonlocal terms) in (2.8) that does not
generate parity-odd quantum terms in the O.-model action
and thus corroborates this suggestion. It is useful to
separate the classical term A, in the solution for A

from the quantum one A =0 (b) [see (2.14)]

I „(g, A )=(k+g ) I,(g)+ —Jd z[A MA —,'b[A —A—+M '(J —J)][A —A +M '(J —J)]j, (241)

where I, is the semiclassical term

(2.42)

III. EXACT cr MODELS CORRESPONDING
TO BOSONIC AND HETEROTIC CHIRAL GAUGED

WZNW MODELS

In (2.41) we have already dropped some nonlocal terms

by using the rule [siinilar to that used in (2.17)]: in substi-

tuting the classical fields A„A, into the quantum term in

(2.14) we replaced A, = ( f/B )(M ' J) by M 'J and

A, =(B/B)(M 'J) by M 'J [see (2. 10), (2.12)]. The
second part of our prescription is to maintain the parity-
even structure of the quantum part of (2.41) by sym-

metrizing the A MA term,

A MA ~—,'(A MA +A MA ). (2.43)

This is equivalent to dropping the term

—,'( A~MA& —AqMA~) which is a total derivative up to
nonlocal terms depending on derivatives of M [cf. a dis-
cussion above Eq. (2.21)]. The resulting expression for
the quantum term I „(g, A )

—(k+gG)I, (g) is parity-
even (and gauge-invariant). After one solves for A, A

one finds, therefore, a a. model with no quantum correc-
tion to the antisymmetric tensor term, i.e., with the
metric and dilaton given by (2.24) and (2.27) and the
semiclassical antisymmetric tensor (2.28). It should be
kept in mind of course that it is still the shifted level

k+g& that appears in front of the semiclassical 8„ in

the o.-model action.
As we shall check below on the example of a D =3

gauged WZNW model (see Secs. IV, V, and Appendix B)
both backgrounds derived according to the two ("correct-
ed" and "semiclassical" ) prescriptions for B„„described
in this section are solutions of the o.-model conformal in-
variance conditions in the two-loop approximation.

—Ag 'Bg+g 'AgA ) . (3.1)

This action is no longer invariant under the true gauge
transformations (2.2} but is still invariant under the
"chiral" gauge transformations g ~u (z)gu (z ) with
holomorphic and antiholomorphic parameters. Since the
"chiral" gauge transformations do not actually eliminate

Using the equivalence of the (1,1) supersymmetric
gauged WZNW models with the N =1 superconformal
coset models it was shown in [2,21] that the expressions
for the bosonic background fields remain semiclassical.
The (local part of} the effective action of the (1,1) super-
symmetric gauged WZNW model is also given just by the
classical gauged WZNW action itself [5]. The (1,0) su-
persymmetric gauged WZNW model [obtained by trun-
cation of the (1,1) supersymmetric one] is anomalous [32],
i.e., is not well defined at the quantum level.

In addition to the bosonic gauged WZNW model there
exist also two other similar nontrivial models with corre-
sponding o. models containing nonzero quantum correc-
tion terms (but with configuration space G instead of
G/H one). They are based on the "chiral gauged"
WZNW model [19],i.e., are bosonic [25,17] and heterotic
[(1,0) supersymmetric] [18] chiral gauged WZNW
theories. The classical action of the chir al gauged
WZNW model is obtained by dropping out the A A term
in the action of the gauged WZNW model (2.1}. It reads
[9,19]

I,„=I(g)+—Jd z Tr(ABgg
1
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I,„(g,A) =I(h -'gh )
—I(h -')—I(h ) . (3.2)

The corresponding quantum effective action is then [17]
[cf. (2.5)]

dynamical degrees of freedom (it is more appropriate to
consider them as an infinite set of global transformations
as in the standard WZNW model case [33]) the
configuration space of the o. model one obtains upon el-
imination of the vector gauge Geld from the action is the
group space G and not G/H. Though the gauged and
chiral gauged WZNW models are closely related before
one integrates out the vector fields, the associated cr mod-
els are, in general, different [17] (with the exception of the
case when H is Abelian, when the chiral gauged WZNW
model is actually equivalent to a specific class of axially
gauged G XH/H WZNW models [18]}.

Like the classical action, the effective action of the
chiral gauged WZNW model can be obtained from the
efFective action of the gauged WZNW model (2.5) by om-
itting the local counterterm A A [17]. This is easy to un-
derstand by noting that in the parametrization (2.3) the
action (3.1) reduces to a combination of WZNW actions
[cf. (2.4)]

I',„(g,A)=(k+g )I(h 'gh)
—(k +gH )[I(h ')+I(h ) ]

=(k+gg)(I,„(g,A)
—b [co(A)+co(A )]), (3.3)

where b —= —
(gG —glc)/(k+gG) and co( A) and co(A ) are

the same nonlocal functionals of A, A defined in (2.7).
The classical action of the (1,0) supersymmetric chiral

gauged model is obtained by replacing the fields in (3.1)
or (3.2} by (1,0} superfields [18].The bosonic part of the
action is still given by (3.1) but the fermionic contribution
changes the structure of the effective action: as in the
(1,1) supersymmetric case [5] there is no quantum shift of
the level k and also there is no A-dependent term in the
quantum part of the efFective action [18]. The bosonic
part of the resulting effective action is thus given by [18]
[cf. (3.3)]

I",& '(g, A)=k[I,&(g, A} bco(A)—], (3.4)

where b—= —(1/k)(gG —gH). To find the corresponding
cr models one needs to eliminate A, A from (3.3) and
(3.4). It is instructive to do this by starting with the most
general ansatz for the effective action which formally in-
cludes all the cases of the gauged and chiral gauged
WZNW models mentioned above [cf. (2.5), (3.3), (3.4)]:

f'(g, A)=a. I(g)+ —Jd z Tr[ABgg ' —Ag 'Bg+g 'AgA+(a —1)AA] bco(A) —bco(A)— (3.5)

where the values of the constants a, a, b, b are

1
Gauged WZNW: a.=k+gG, a = b, b =b—= ——(gG

—
gH },

K

(1,1) supersymmetric (SUSY) gauged WZNW: a=k, a =b =b=0,
1

Chiral gauged WZNW: s'=k+gG, a =1, b =b = ——
(gG

—g&),
K

(3.6)

(1, 1) SUSY chiral gauged WZNW: ic=k, a =1, b =b =0,

(1,0} SUSY chiral gauged WZNW: ic=k, a =1, b = ——
(gG

—g~), b =0 .1

K

In this section we shall use the same notation as in (2.12), (2.13), and (2.18) with the exception that the inatrices N, V,
and Vare now defined as

N, i,
=M, i, +arl, i,

=—C,i, +(a —l)ri,i„V:NN bbI, V—=NN —bbI . — —

Truncating the functionals co( A ),co( A ) in (3.5) to quadratic terms as in (2.8) we obtain [cf. (2.14}]|„(g,A)=le[I(g)+EI(g, A)], b,I(g, A)= —Jd z( —AJ —AJ+ ANA+ ,'bAA+ ,'bA—A ), —

(3.7)

(3.8)

where A and A were defined in (2.10). Eliminating A, A we get again the nonlocal expression similar to (2.14 ),

bI(g)= — fd z[J(N Q 'N bbQ ') '(N Q 'J bJ)—+J(NQN —bbQ) '(NQJ ——b J)] . (3.8')

Note that in the case of the gauged WZNW model with
the values of the parameters given by the first line in (3.6)
the action (3.8) differs from (2.14) by a total derivative
term. Since in the case of an arbitrary a we do not have,
in general, an extra symmetry analogous to the gauge in-

I

variance, we are lacking the principle we used in the pre-
vious section in the process of extracting the local part of
the efFective action. One possibility is that the resulting
ambiguity in the expression for the BMz term should be
fixed in each particular case. For example, one may ex-
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—J+/A+bA =0, —J+X A +bA =0, (3.9)

imply also

—J+XA+bA+ =0,
—J+X A+bA+ =0 .

(3.10)

The local parts of the corresponding solutions are

A„=V '(XJ bJ), —A, =V (N J bJ), —
(3.11)

A, =V '(EJ bJ), A, —=V '(X J bJ) . —

pect that there should be no extra total derivative term in
(3.8) in the chiral gauged WZNW model case where the
form of the eff'ective action (3.3) is fixed by the condition
of conformal invariance (the action is expressed in terms
of WZNW actions}.

On the other hand one can try again to interpret the
parity-even nature of the quantum term in (3.8) as imply-
ing that the antisymmetric tensor should retain its semi-
classical form, i.e., to adopt the "semiclassical" prescrip-
tion described at the end of the previous section. In what
follows we shall first consider the "corrected" prescrip-
tion.

The equations for the gauge fields A', A
' that follow

from (3.8}

~MN ~[MN] ~OMN+2( V + )abE[MEN]

The dilaton is given by (2.27), but now with the definition
(3.7} for the matrix V. In general, there is no residual
gauge invariance so that this model has the group space
G as a configuration space. In the case of the gauged
WZNW model the above expressions were given in

[16,5]. Notice that the corresponding expression for the
antisymmetric tensor (3.15) is diff'erent from the result
(2.25), (2.30) we have found in the previous section [in
particular, the quantum term in (3.15} is O(1/k), not
O(1/k ) as in (2.30)]. In Sec. II we have extracted the
local part of the effective action in a way that preserved
gauge invariance [which is present in the original nonlo-
cal effective action (3.5) in the special case of the gauged
WZNW model]. This gauge invariance is missing in the
local part of the effective action (3.12) and (3.13) as we
obtained it above, but is present in (2.22) and (2.23).

The expressions for the e-model couplings in the case
of the bosonic chiral gauged WZNW model [third line in
(3.6)] were already found in [17] [they are given by (3.14},
(3.15}and (2.27) with N =C and b =b, see (3.6}]. In Sec.
IV we shall check (in the two-loop approximation} the
conformal invariance of the o model corresponding to
the chiral gauged SL(2,R)/R WZNW model.

The heterotic case [fifth line in (3.6)] was treated in [18]
with the result

If we substitute these solutions into the action (3.8) and
again ignore the nonlocal terms we obtain the following
expression for the local part of the effective action:

f'io, (g)=a. I(g)+ J d'z( —A„J—A, J)2'

GMN GMN b —[(C C) ],bEMEN )

GMN
—

GPMN +2C~b E{M EN]

~MN ~MN ~OMN+ 2Cab E [MEN]

p =p"=
po

—
—,
' ln det C .

(3.16)

=a I(g)+ Jd z( —2JV X J
277

+b JV 'J

+bJV 'J (3.12)

It is quite remarkable that in this case the antisymmetric
tensor and the dilaton retain their semiclassical values
while the metric receives just one 1/k correction.

For all the models defined in (3.6) one can prove the
following theorem (see Appendix A)

e 'bgdetGMN =KgdetGoMN

Z MNX X X

(3.13)

has a metric which is very similar to the one in (2.24),

~MN =—[MN]

=GPMN+2( V N }~bE(MEN] b ( V }~bEMEN

b( V )obEMEN— (3.14)

while the antisymmetric tensor is given by [cf. (2.25),
(2.30)]

This is the expression one finds by dropping out the non-

local terms in the expression (3.8') in the most straight-
forward way.

The resulting 0. model

S(x)= f'&„(g)

=K (Haar measure factor for G),

(3.17}

where K is a constant k-dependent factor given in (A4)
[in the degenerate case of the gauged WZNW model one
should fix a gauge and include the Faddeev-Popov ghost
determinant making the right-hand side of (3.17) equal to
the invariant measure factor on G/H]. In view of the re-
lation of the expression for the dilaton (2.27) to the deter-
minant of the matrix in the 0( A ) term in the effective
action one can also interpret (3.17) in the following way:

sThis relation was conjectured in [34] for the Abelian

SL(2,R)/R coset case and in [12] where it was formulated in a

general form for any gauged WZW model. Subsequently, its va-

lidity was explicitly checked for many Abelian and non-Abelian

cases [13,2,3,4) and proved in general for any gauged WZNW
model [5] and for any chiral gauged WZNW model [17].
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the quadratically divergent part of the determinant
[35,36] resulting from integration over the gauge fields
combines with the Haar measure for the group G to give
the correct measure QdetG~~ for the o model (3.13}
[15,5] (the finite part of this determinant produces the di-
laton term [27]}.

In the case of the Abelian subgroup H we have shown

[18] that the G/H chiral gauged WZNW model is
equivalent to the axially gauged (GXH)/H WZNW
model (with a special embedding of the subgroup H into
the group GXH}. Given that chiral gauged WZNW
model must obviously be conformally invariant, one
should fix the ambiguity in the procedure of extracting of
a local part of the effective action of the corresponding
axially gauged (G XH)/H WZNW model in such a way
that to make it identical to that in the case of the chiral
gauged model. This will be discussed in the example of
the SL(2,R) XR/E model in Appendix B. The confor-
mal invariance of the resulting o model will be demon-
strated in Sec. IV.

If one uses the "semiclassical" prescription for extract-
ing the o-model coupling from (3.5) one finds the same
exact metric (3.14) but the semiclassical antisymmetric
tensor. For example, for the chiral gauged WZNW mod-
el the corresponding semiclassical BMN is given by (3.16).
This result is in agreement with the above-mentioned re-
lation between chiral gauged and gauged WZNW models
(assuining that the same "semiclassical" prescription is
used for both classes of models).

ds = — dt'+ dxz+b z

+
4(z —

q
—1)(z —q)

(4.1)

P=Po —
—,
' ln[z(z+b)], (4.2)

[q(q+1+b)]' q+1 q+b
1+b z z+b (4.3)

where

q=—qo(1+b), a'= —,~=k —2,1

K

1 2b=+ —(g —g )=—=2a',
fC /C

(4.4)

[q(q+1+b)]'~z
(1+b)[(1+b)z bq]— (4.3')

and qo is a free parameter related to the coefficient which
determines the embedding of the subgroup R into
SL(2,R) XE. We discuss the derivation of (4.1)—(4.3) in
Appendix B. Equation (4.3) is found if one uses the
"corrected" prescription of Sec. II and fixes an ambiguity
in the expression for 8,„ in a particular way. In case one
adopts the "semiclassical" prescription [see (2.41),(2.43)]
instead of (4.3) one finds the following expression [see
(B17')]:

IV. D =3 cr MODEL CORRESPONDING
TO [SL(2,R) XR]/R GAUGED WZNW MODEL:
CONFORMAL INVARIANCE AT TWO LOOPS

The aim of this section is to provide a nontrivial check
that the exact o models of the type discussed in the previ-
ous sections are actually conformally invariant beyond
the semiclassical (one-loop) approximation, i.e., that the
exact expressions for the background fields G„„,B„„,P
solve the string effective equations beyond the leading a'
approximation. Such a check was already done [20,21]
for the simplest exact D =2 0 model corresponding to
the gauged SL(2,E)/E WZNW model [1]. However, this
D=2 model has trivial antisymmetric tensor back-
ground. In view of the subtleties associated with the
derivation of the exact expression for B&„(see Appendix
B) it is important to confirm that the exact backgrounds
with B„,AO do actually solve the cr-model conformal in-
variance conditions.

1 k
q

=q'"'= ——'(1+b)=——
2 k —2

(4.5)

In (B15) we explain the relation of the coordinates z,x, t
to the "classical" group space coordinates. Because of
the coordinates (and the definition of q) used the "s™
classical" expression (4.3') still contains 0(b) corrections.
It is easy to see that the two alternative expressions (4.3)
and (4.3') coincide to the order 0(b ) and thus cannot be
distinguished at the two-loop order, i.e., if the back-
ground (4.1)—(4.3) is conformally invariant, the back-
ground (4.1),(4.2),(4.3') is conformally invariant as well.

As was shown in [18], the axial gauged [SL(2,E)
XE]/R WZNW model with the embedding parameter
qo= —

—,
' is equivalent to the SL(2,R)/E chiral gauged

WZNW model. According to (3.14) and (2.27) the 0
model corresponding to the latter theory has the same
metric and dilaton as in (4.1) and (4.2) [17] with q now
fixed to be

(ch)

A. Description of the model

i.e.,

The simplest model with a nontrivial antisymmetric
tensor coupling is the D =3 "charged black string" cr-
model associated with the [SL(2,R)XE]/E gauged
WZNW model [6]. The exact expression for its metric,
dilaton [3] and the nonvanishing component of the an-
tisymmetric tensor (B17)can be represented in the form

In the notation of this section the metric (and the antisym-
metric tensor) or a' are rescaled by a factor of 2 as compared to
the previous Secs. II and III [cf. (2.23}). Note also that the rela-
tion of our present notation to the notation used in [3,16,17] is
b =A, =2/k', z =(A, +1)r —

A,,qo=p, k'=sc.
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(ds 2)(ch) z —(1—b)/2 2 z+(1+b)/2 dz
dt + dx +z+b z 4[z —(1—b)/2)[z+(1+b)/2] (4.6)

The antisymmetric tensor [given by (3.15)] [17]'

(h) i(1 b) —1 1

4 z z+b (4.7)

that the large z asymptotics of the background (4.1)—(4.3)
[or of (4.12)] is described by the fiat space and linear dila-
ton

is equal to (4.3) with q =q""',

(
(ch)) B(ch) (4.8)

ds = dt —+dx +dy

P=Po —y, B„=O, z =e ~ .

(4.13)

In addition to the special case of q
=q'"', the

[SL(2,E) &E]/E model has two other obvious limits:
SL(2,E) group space and the direct product
[SL(2,E)/E]XE (or "neutral black string"). The two
limiting o. models are already known to be conformally
invariant so it is useful to keep them in mind while
analyzing conformal invariance of the general back-
ground (4.1)—(4.3). The first limit corresponds to
qo=q = ao and the second —to qo=q =0 (see also Ap-
pendix B). Introducing the new coordinates t', x', z' ac-
cording to

B. Two-loop string e8'ective action and field redeSnitions

f&+& q'z+ ' ' ' (4.14)

The general strategy of a proof that a background
y'=(G„„,B&„,P) solves (in the two-loop or a' approxi-
mation) the o-model conformal invariance conditions
P'=0 is the following. One should expand the back-
ground fields in a',

t =+q t, x =+q x, z =z'+q+1, (4 9) and first check that the equations

and taking the limit q —+ ce (z/q ~1)one finds

r2

ds = z'dt' +(z—'+1)dx' + 4z'(z'+ 1)

B,., =z', H, „,=1, /=const,

(4.10)

(4.11)

where in 8„, we have dropped out an infinite constant
[this would be unnecessary if we have kept a constant
term in the derivation of (B9) from (B6)]. This back-
ground corresponds to the SL(2,E) WZNW model. An
equivalent model is found using the following generaliza-
tion of the transformation (4.9) (the case of n =

—,
' was dis-

cussed in [3]): t =q" "'~ t', x =q" "'~~x', z=q "z'+q
+1. Then assuming that 0&n &1 and taking the limit

q ~ ac we get instead of (4. 10)
ds = z'(dt' dx' )+—dz' /4z—' . The q~0 (qo~0)
limit of (4.1)—(4.3) has the form

l

(q 1) (p2+~2(%1) (4.15)

are satisfied to the leading order in a', i.e., in the one-loop
approximation, P', (y, )=0. Then one needs to find the
most general form of the two-loop P', e.g. , by starting
with the P' functions computed in a particular scheme
and making the most general local redefinition of cou-
plings. The resulting P' will be parametrized by a number
of free parameters d„. The problem is then to show that
there exists such a "scheme, " i.e., a choice of the parame-
ters d„, that the equations P'=0 are satisfied at the next
order, i.e.,

z —1 2 2 dz 2

s = — dt +dxz+b 4z(z —1)

P=Po —
—,
' 1n[z(z+b)], B„,=O,

(4.12)

If 4'"(tp) is a basis in the set of all possible covariant
terms with the tensor structure of y' constructed out of
two derivatives of y' then the general coupling
redefinition

that represents the direct product of the exact "black
hole" background [1] and the x line. Let us note also

y' ~y'+a'd„4"+. . .

induces the following change in the two-loop term in P':

t The imaginary unit i in (4.7} can be absorbed into a rescaling
of x or t which will change the corresponding sign in the metric,
i.e., will change the signature from ( —++) to ( ——+) or
(+++ ). i.e., Eq. (4.15) changes to
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(g 1} [6+d,@'"((pl)]+p2((pl) =0 ~ (4.16)

Therefore, we can ignore such field redefinitions that van-

ish on the solution of the leading order equations.

Equivalent approach is to start with the effective action

that generates p' functions, make the general field

redefinition there and then take the variational deriva-

tives. " There exists a simple scheme in which the order
a' effective action has the form [24]'

g= JdDxV G e-'&P

=f d x~6 e ~[ '(D ——C) ——'a'[R +4D P —4(B (I))
——'Hz ]

——'a' [R 'Rl'—""—H +, + 'H„„~—H ~ ~"H " '(H——H~~)2]+0(~'i) j (4.17)

where H„„i„=38(&B„&}and C is the total central charge
(we shall ignore the trivial part Cc =26 of C). The corre-
sponding leading-order equations are linear combinations
of

PVA, PVA, ~

H ~„=6H

(4.25)

P„„=R„„'H„f)—H,—~+2D„D /=0,

P =—,
' (D —C)+a'[ ,' D P+—( B—P) ,', H i„„]——

(4.18)

(4.19)

where e„„& is the totally antisymmetric tensor and the
metric is assumed to have Euclidean signature. We have
also

R =4R R R PVKAH ~H =2RH
PVAK PV PV KA.P

=0. (4.20}

They are corrected by a' terms which contain a number
of free parameters corresponding to the most general lo-
cal field redefinition [24]'

G„',=G„„+~'S„„, S„„=T„,+G„„X;

T„„=d, R„„+d B„pd„p+d H„ f)H„
X=d R+d H „„+dD P+d (dQ)

9„'„=B„„+a'Kp„,

g„,=dsD)H „„+d98iPH „„;
(()' =P+a' 1',
F =dicR +1iiHi +d i2D p+d )i(8$)

(4.21}

(4.22)

(4.23)

(4.24)

In view of the observation that we can use the leading-
order equations (4.18)—(4.20) to simplify the field
redefinition terms, the number of free parameters reduces
to ten. Moreover, in the case of our interest the target
space dimension is D =3 so that

If the effective action is known (e.g., is determined from the

string S matrix) then one can by-pass the problem of computing

independently the "diffeomorphism" vector 8'„ that appears in

the Weyl anomaly coefficients [37]. Let us use this occasion to
correct a confusion in [24] concerning the two-loop value of
W„. Since the standard P function is computed only modulo

the diffeomorphism terms, Eq. (5.35) of [24] should depend on

the scheme parameters p „p2,f& only through the two combina-

tions: p', =p, —
4f„pz [the derivative p, term in (5.35) should

have coefficient p, —
4f, ]. Then the correct expression for W„

in the scheme p', = ——', p2 =0 (see the discussion after Eq. (6.7)

in [24]) should be W„=4D (Hi„)—24D„H .

H "~P~)HP~ =6H (H H~ii )2 = 12H4
PVA, P cr & paP v

As a result, the relevant field redefinitions are given by
(4.21)—(4.23) with

r„,=c,R„„+c,a„ya,y,
X =c3H +c4R+c~,

(4.26)

Kpv 6&pvgD H, F=c7H +c8R +c9 (4.27)

12More general actions related to (4.17) by Beld redefinitions
are discussed in [38—40].

i3We ignore the term D„D„p since it can be eliminated by s
coordinate transformation, 5x"=doa'D"P, 8G„=2&0&'D„D 0
(the equations we shall study are covariant so that one combina-
tion of the parameters will not be present in the variation).

The constant terms in X and Y appear as a consequence
of the elimination of the (BP) terms using (4.20). We can
set c, =0 [in view of (4.18)—(4.20) and the previous foot-
note c, can be absorbed into ci,c6,c7,cs,c9] and c9=0
(our equations will depend on P only through its deriva-
tives). We are thus left with seven free parameters

c2) ~ ~ ~ &c8

To simplify the analysis we shall consider only the fol-
lowing three scalar equations (this turns out to be
suScient in order to prove that our background is a solu-
tion): the trace of the metric p equation, the equation for
the antisymmetric tensor (in D =3 it is equivalent to a
scalar equation) and the equation for the dilaton. These
equations have the following form in the scheme in which
the effective action is given by (4.17) [24] [we make use of
D =3, (4.25) and (4.18)—(4.20)]
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P =R —'H—+2D P+ 'a—'[R„&,—6RH + 'H—+5(D„H) —
—,'D H ]+a'Q=0, (4.28)

P„&e„' = —e ~B„Ie ~[H + —,'a'(2RH +5H. )+a'F]] =0, (4.29)

P =P —
—,'P =

—,'(D —C) —
—,'a'[R +4D P

—4(BQ) 'H——+ ,'a'(—R„„, RH—z
—,'H—)+a'P]=0 . (4.30)

The terms Q, F, and P [that vanish in .he scheme of (4.17)] are included to indicate corrections which will appear once a
general field redefinition (4.21)—(4.24),(4.26),(4.27) is performed in the leading-order terms [we us= again (4.18)—(4.20)]

Q =D„D„S"' DS—+H S 2D—„S"'B},/+8"SB„P+2D Y 3c6H—D H,

I' = ——'SH —2YH+c6D 0, S=S"„=T+3X,

P =D„D,S"'+S"'( 2D„D—„P+4d„pr}„$) 4D„S—""B„P+2B"SB„P+4DY 88"Y—B„P cHD—H .

(4.31)

(4.32)

(4.33)

C. Solution of t~o-loop conformal invariance conditions

Let us now compute various terms in (4.28) —(4.33) in the special case of (4.1)—(4.3), expanding the leading O(a )

terms to the first power in a' or b. The necessary geometrical quantities and their expansions in powers of b are given
in Appendix C. Since q in (4.1)—(4.4) is a free parameter it is not necessary to expand it in b (i.e., we can treat it as being
b independent). For generality we have done the computation of (4.28) —(4.30) for arbitrary values of the constants s „s2
which are used to parametrize B„in (C9.), i.e.,

bU2
1+bu, + +O(b ), u, = —

—,'s, (1+q) ', u2= —,'(s2 —1) . (4.34)

The antisymmetric tensors (4.3) and (4.3 ) coincide to this order and both have

s, =3+4q, s2 = 1+4q .

Introducing the notation

I&=(2q+1)z ', I~ =(2q+1) z, Ii=q(q+1)z

I, =I,I, =q(q+1)(2q+1)z ', I4=I, =q (q+1)iz

and using (C9)—(C15) we get (b =2a')

R ', H +2D P=—b—[ —(4+6q+6qs, )z +(6+6s~)q(q+1)z ]+O(b ),

—,'a'[R„,i„6RH + ,'H +—5(D„H) —,'D H ]= ,'b [—16—z —1—6Iz+80Ii—240I4]+O(b ),

e ~H=2i [1—
—,'bs&(1+q) '+ ,'b(1+sz)z '—]+O(b ),

—,'a'e ~(2RH + 5H3) =2ib (6Iz I, )+0(b'), —

R +4D'y —4(ay)' —,'H'= —4+2b [ —(q +1+qs, )z '+(1+s, )I, ]-z '+ O(b'), -

,'a'(R„„i„RH ——,'H )=2b—[z +—2I~ —2I3]+O(b ) .

(4.34')

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

We have fixed Po so that e [q(q+1)]" =1. Calculating (using the software package Mathematica) similar expan-

sions in powers of 1/z for P, F,Q in (4.31)—(4.33) and combining them with (4.35)—(4.40) we have found that the

leading-order terms in the conformal invariance equations (4.28), (4.29), and (4.30) take the form

P =2a'[e&(1+2q)z '+2e2z +e3q(q+1)z +2e4q (q+1) z ]+O(a' ),

P, =2a'6"&6 e ~B,[t&z '+t2q(q+ 1)z ]+O(a' ),

g'=@&&—
—,
'a' [h2z +2h3q(q+1)z -'+12h„q (q+1) z ]+O(a'3),

(4.41)

(4.42}

(4.43)
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where

e& =c2 —12c4+16c8,

ez = 14c~—16cs+ ( —5 —cz+28c3+ 154c4 —3cs+ 12cs —32c7 —176cs —3s, )q

+( —2 —cz+28c3+ 154c~—3c5+ 12c&—32c7 —176cs )q

e3 =26—c2 —88c3 —376C4 —48C6+ 96cz+ 384c8+6sz

+(40—2cz —176c,—752c4 —96c6+ 192c7+768c, }q,

e4 = —30+C2+ 72C3+ 252C4+ 36c6 —64c7 —224c 8,
t& =6+cz —12c&—16cs —16cs+2sz+(8+2cz —24c& —32cs —

32cs )q,

t2 = —24 —c2+ 12c3+42c4+24c6+ 16c7+56c8,

hz = —cz+ 24c& —32cs+(2—6cz+40c&+236c4 —2cs+ 8c6 —64c7 —352cs —2s
& )q

+ (4—6cz+40cz+236c4 —2cs +8c6 —64c7 —352cs )q

h& = —1+cz—40c& —164c&—8c6+64c7+256cs+sz+( —4+2cz —80c3 —328c& —16c6

+ 128c7+512cs }q,
h4=10c3+35c4+2c6 —16c7—56cs, P~= —,(D —C)+a'+a' ho+0(a' ), ho= —cz —c5,

(4.44)

where c; are the scheme dependence parameters and s„
sz appear in H in (C9).

The conformal invariance conditions

e, =ez=ez=e4=t, =tz=hz=h, = 4=
(the equation ho =0 that determines the value of central
charge will be discussed below) is a system of nine equa-
tions, while the scheme ambiguity is represented only by
seven parameters. That is why the existence of a solution
is nontrivial. For generic q%0, —1 a solution exists only
if sz=l+4q which is the value corresponding to (4.3)
[i.e., for the special value (B5) of the parameter p in (B9),
(B15), (C9), (C10)] and is given by

C2 C4=C8 0, C3 —C6 2' C7 8

(4.45)
1+2q —s

&C5= 2
1+q

where we have finally set s
&

to its value s, =4q +3 in
(4.3). We conclude that there exists a "conformal"
scheme in which the background (4.1)—(4.3) is a solution
of the conformal invariance equations (4.28) and (4.29) in
the two-loop approximation. Equivalently, a background
which is related to (4.1)—(4.3) by the field redefinitions
(4.21)—(4.24), (4.26), (4.27) with parameters given by
(4.45} is a solution of the string equations in the scheme
where the effective action has the form (4.17). The trans-
formation that defines the "conformal" scheme in terms
of that of (4.17) is thus simply (c5 = —2)

Gq =Gq„+—,'a'Hq +csa'Gq +O(a' )

q =0: C2=C4=C8=0, hp=0, (4.47)

q = ~: 4c3+6c4—c5 =4, hp=2 . (4.48)

Equation (4.47) thus reproduces the known result about
the two-loop conformal invariance of the exact black hole
background (which is true in the "standard" or "confor-
mal" scheme) [20]. Equation (4.48) specifies the relation

In (4.46) we have made use of the leading-order equation
(4.20) and replaced H G„„by —,'H„,. For /=0 Eq. (4.46)
is equivalent to the transformation in [24] between the
scheme ("f

&
=1")corresponding to (4.17) and the "con-

formal" scheme ( "f,= —1") in which the parallelizable
space (e.g., a group space) is automatically a solution of
the conformal invariance equations. Note that the solu-
tions of the equations in the different schemes are related
by the inverse transformations, i.e., if 6„ is the solution
in the scheme (4.45) then G„'„ in (4.46) is the solution in
the c; =0 scheme of (4.17).

In particular, the background corresponding to the
chiral gauged SL(2,E)/R WZNW model [which is the
special case of (4.1)—(4.3) for q

= —
—,'(1+b)] is also con-

formally invariant. ' In the two other special cases:
q =0 [direct product of SL(2,E)/R gauged WZNW
model and E] and q ~ ae, z ~ ac [SL(2,E) WZNW mod-
el] we find the solutions for the following values of non-
vanishing c;

=G„+,'a'H„„+a'D PG„—
—2a'(t}P) G„„+O(a' ),

B„'„=B„„+,'a'D "Hx„„+0(a' ),—

P'=P+ ,', a'H„„x+ 3sa'R +O(—a' ) . —

(4.46}

A careful analysis of the system of the conformal invariance
equations (4.43)—(4.45) in the limit q = —

—,
' +0 (b) gives the fol-

lowing solution [which again exist only if s2 = 1+4q= —1+O(b} but is more general than (4.45} with q = —2]:
C2 ~s C3 2 4C4s C6 2s C7 8 2C8s C5= 2$1
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D. Scheme dependence and the value of central charge

The conditions of conformal invariance of the o model

P,=0, P „=0imply [41,42,40] that P~=P =P~ is a con-
stant which is proportional to the central charge. It is
natural to expect that the latter should be consistent with
the conformal field theory expression. It is necessary,
however, to note that the correspondence between the 0.-

model and conformal field theory results may hold only
in a specific "conformal" scheme.

As follows from (4.39) and (4.44) the leading order
form of (4.30) is satisfied if the value of the central charge
1s

C =D+6a'+0(a' ) =3[1+2a'+0(a' )] .

This is consistent with the value of the central charge of
the [SL(2,E)XE]/E conformal field theory

3k 3+ 6+ 12+0 1

k —2 k
=3+ 6

k —2

=3+6a', (4.49)

where we have used the relation a'=1/(k —2) in (4.4).
This suggests that if a'=1/(k —2) all higher order
0(a'") contributions to C should vanish in the "confor-
mal" scheme in which the whole expression for C should
be given just by the "one-loop" 0 (a') contribution (4.49).

According to (4.44) and (4.45) the 0 (a' ) term in (4.48)
has the form

1+2q s i
C =3+6a' —6a'2 +0(a' )

1+q
=3+6a'+ 12a' +0 (a' ), (4.50)

where we have used that the value of s, that corresponds
to our background (4.3),(C10) is s, =3+4q. This expres-
sion would be in perfect agreement with (4.49) if a' were
equal to 1/k as in the semiclassical approximation. The
conformal invariance of the o. model holds of course for
an arbitrary choice of the overall coefBcient a'. Howev-
er, since the a' dependence of the background (4.1)—(4.3)
was established by starting from the gauged WZNW
eft'ective action which led also to the "shifted" value
a'= 1/(k —2) in (4.4) one would expect to reproduce the
conformal field theory value of C (4.49) with such a' (as
indeed was in the D =2 black hole model [1,20]).

This, in fact, is possible by noting that there is an addi-
tional freedom of rescaling B„„(orits field strength) by a
constant factor [1+0(a')] that can be included in the
field redefinition ambiguity [this is the analog of the

between the scheme of (4.17) and the scheme in which the

SL(2,E) group space is a solution of P'=0. Using that
for this group space [cf. (Cll), (C13)] R = —6, H = —4
we can put the corresponding redefinition of the metric
into the form [cf. (4.46)]

G„',=G„,+a'(e&H +c4R+cs)G„,+0(a' )

=G + 'a'H—„„+0(a' ) . (4.46')

transformation G„',=G„,+a'c& G„„+0(a' ) in (4.21)
and (4.26)]

8„',=8„+a'cpB„,+0(a' ) . (4.51)

By the combined rescalings of G„and B„, one can
effectively rescale a'. As it is clear from (C9) and (C10)
the transformation (4.51) shifts the value of s, to
s i:si ep( 1 +q) ol' eg iii (4 45) to es:es +ep and thus
hp in (4.44) to —c2 —cs —cp. To have the zero "two-
loop" term in C we thus need cp = —c, or (since
s, =4q+3) cp=2. This is the expected result since, in
general, it is clear that to change a' = 1/( k —2) into
a' = 1/k one is to rescale 8„, by the factor
k/(k —2)=1+b =1+2a'. The rescaled 8„„ in (4.3)
takes the simpler form

8,'„=—[q (q +1+b)]'
Z

s& = l+2q, c& =0 .
(4.52)

In what follows we shall use the present D =3 example to
clarify further the crucial role of coupling redefinitions or
scheme dependence in understanding a relation between
conformal field theory and O.-model results. If the back-
ground (4.1)—(4.3) solves the conformal invariance condi-
tions, the corresponding central charge or @~=const may
be computed at any point, e.g. , at lnz = ao. In this limit
our background becomes a Hat space with linear dilaton
(4.13). Assuming that higher order a'" contributions to
g are constructed in terms of the curvature R and H
which vanish in this limit, one concludes that the exact
value of C should be determined just by the "one-loop"
dilaton term,

C =6@ =3+6a'(BP) =3+6a' . (4.53)

G„' =G„+a'( c~5„25„~+c,G„),
8„' =8„, p'=/+a'di3,

(4.54)

where we have made use of (4.13). As a result of (4.54)
we get a shift in the overall scale of the metric,
6~2=1+a'(cz+e~) so that the one-loop expression

This, in fact, gives the conformal field theory value for C
(4.49) under the identification a'=1/(k —2) in (4.4).
This argument is true only in a special scheme in which
there are no higher loop contributions to P on the fiat
linear dilaton background. A priori such scheme need not
necessarily be the one in which (4.1)—(4.3) is conformally
invariant. The general redefinition of the metric (4.21)
will induce, e.g., higher order 0((8$) ) terms in@ which
will not vanish on the linear dilaton background and will

thus shift the value of C. For example, the two-loop shift
ho in C (4.44) is expressed in terms of the coefficients

c2, cs of the dilatonic (BP) terms in G„'„. In fact, consid-
er the asymptotic large distance form of the redefinitions
(4.21),(4.24)
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(4.53) now produces a two-loop correction to C

C =6@'=3+6a'G'""a„ya„y

duce the correct expression for C under the identification
of a' with I/x. . '

=3+6a' —6a' (cz+c~)+O(a' ) . (4.55)

C=D —a'R +a' R D +O(a' )=
k+gG

R =Dgo, a'=1/k .
(4.56)

The above redefinition amounts to a constant rescaling of
(the relevant component oI) the metric, or to an effective
redefinition of a'.

We conclude that the fact that the total contribution to
C comes just from the one-loop correction is scheme
dependent, i.e., is true only in a specific scheme. Another
illustration of this point can be given on the example of
the WZNW theory or the group space o. model. This
case is complementary" to the gauged WZNW or
"coset" a model one where the derivatives of G „and

]M V

B„are decreasing with distance while that of the dilaton
is approaching a constant: for the group space the
derivative of the dilaton is zero but R =const, H =const
so that C is expected to receive contributions to all orders
in a'. In fact, identifying a' with 1/k and computing P
in the same scheme in which the two-loop P and P
functions naturally vanish, one correctly reproduces [24]
the (1/k) term in the standard conformal field theory
expression [43,44] for C,

V. SEMICLASSICAL BACKGROUND AS AN EXACT
SOLUTION OF CONFORMAL INVARIANCE

EQUATIONS

ds 2— z —
qo

—1 z —
qo

dt + dx
z z

As is well known, there exists a "standard" scheme
[46,24] in which the "semiclassical" (a'-independent)
group space background of the WZNW model remains
the solution of the conformal invariance equations at
each order in a' expansion (in such a scheme a'=1/k
and the central charge C receives corrections of all orders
in a'). Similar statement is true for the SL(2,E)/E black
hole model [47]: there exists a "nonstandard" scheme in
which the semiclassical background [27] is an exact solu-
tion. This follows from the fact that the exact "black
hole" background [1] (that solves the conformal invari-
ance equations in a "standard" scheme [20,21]) is related
to the leading-order one [27] by a local, covariant and
background-independent field redefinition. Given that
the SL(2,E) group space and the "neutral black string"
are the two particular limits (q = ~ and q =0) of our
general background it is natural to ask if there exists such
a scheme in which the semiclassical limit of the back-
ground (4.1)—(4.3)

This can be also seen directly from (4.28) (with P =0) in
the SL(2,E) group manifold case (D =3, R„,

,'RG„,= ,'H„—„=,'H G—„„).At—thesame time, it is pos-
sible in principle to find such a "nonstandard" scheme in
which the full contribution to C comes just from the
one-loop 0 (a'H ) term in (4.20),

+ z
4(z —

qo
—1}(z—qo)

p =go —
—,
' lnz,

[qo(qo+1) l'"
tx

(5.1)

(5.2}

C=D+6a'[ 'D2$+((jP)2————'H ]

Dgo=D —a'R =D—
k+gG

(4.57)

is an exact solution of the conformal invariance equations
for arbitrary qo. As we shall show below, this in indeed
the case in the two-loop approximation. '

with all higher-order contributions being now "hidden"
in the H2 term. This happens if one rescales both the
metric and the antisymmetric tensor G„'„=(x/k)G„„,
B„'„=(a/k)B„„,i.e., effectively replaces a'= 1/k by 1/x.
If one starts with the efFective action of the WZNW mod-

el [15] where one has v as an overall coeScient, one is to
use such a scheme in order to reproduce the standard ex-
pression for C. ' Since the group space is a particular
limit of our D =3 background (4.1}—(4.3) this explains
also why we need to rescale B„(4.51) in order to repro-

Such a rescaling of B„would be unnecessary if the semiclas-

sical expression for B„„(B9')or (4.3'),(B17') were "truly semi-

classical" being multiplied by k and not by k+gG in the cr-

model action, i.e., contained an extra factor of 1+b.

A scheme in which C receives only the one-loop contribution

may look natural from the conformal field theory point of view

where the renormalization of k originates from normal ordering
and so is effectively "one-loop. " The above observations seem

to resolve the puzzle discussed in [45]. On one hand, the exact
current algebra result for C in the (1,1) supersymmetric WZNW
model contains just one 1/k correction, C=D(k —gG)/(K
—gz )=D (1—gG/k). On the other hand, there is no reason to
expect that four and higher loop contributions to the o-model P
functions and thus to P should vanish in general in this model
(see [45] and references there). The paradox disappears once
one notes that the correspondence between the conformal field

theory and cr-model results should hold only in a particular
scheme; there exists such a scheme in which the whole contribu-
tion to C =6I} comes just from the one-loop term.

~7A different argument suggesting that there should exist a

scheme in which the semiclassical background in a related

D =3 model is exact to all orders was recently given in [48].
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To establish the form of the corresponding two-loop
conformal invariance equations (4.28)—(4.30) one is to
omit the contributions in (4.35}, (4.37), (4.39) which came
from the a' dependence of the background (4.1)—(4.3).

As a result, the constants in (4.41)—(4.43) change by some
c;-independent numbers. Setting (combinations of) these
constants to zero gives the following system of nine equa-
tions (now of course s, =s2 =0)

c2 —12C4+ 16c8=0,
2+ 14c4 —16es+ (

—2 —c2+28c3+ 154c4 —3c~+ 12c6 —32c7 —176cs )qo

+ (
—2—c~+28c3+ 154cq —3c5+ 12cs —32c7 —176cs )q 0 =0,

20 —c2 —88c3 —376C4 —48c6+96c7+384c8 =0,
—30+c2+72C3+252C4+ 36c6 —64c7 —224c8 =0,
4+ c2 —12c4 —16c6—16c8 =0, —24 —C2+ 12C3+42C4+24C6+ 16C7+56C 8 =0,
2 —e2+ 24c4 —32cs+ (4—6c2+40c3+236c~ —2cs+ 8c6 —64c, —352c s )qo

+(4—6c2+40c, +236c4 —2c, +8c6 —64c, —352c, )q0=0,
—2+c2 —40c3 —164C4 —8c6+64c7+256c8 =0, 10c3 w35C4+2C6 —16c7 —56cs =0,

with the general solution [cf. (4.45)]

C2= 2, C3 1s C4 C5 C6 0
(5.3)

G„',=G„„—2a'B„$8„$+—,'a'0„, +0 (a' ),
B„'„=B„„+O(a'),
P'=(t+ —,', a'H„ i + ,'a'R +O(a' )—,

(5.4)

(5.5)

that relates the "nonstandard" scheme (5.3) to the
scheme of (4.17) is similar to the one found in the D =2
black hole case in [47]. In particular, (5.4) contains the
term —2a'B„$8„$ that can be related [47] to a nontrivial
derivative term in the determinant [36] resulting from the
integration over the gauge fields in the gauged WZNW
model.

The existence of the schemes (4.45) and (5.3) in which
both the exact (4.1)—(4.3) and semiclassical (5.1),(5.2)
backgrounds are solutions of the conformal invariance
equations implies that these two backgrounds are related
by a local field redefinition [which is found explicitly by
combining (4.46) with (5.4) and (5.5) and also taking into
account a coordinate transformation involved]. ' It is
thus very likely that the full u' dependence of the exact
background (4.1)—(4.3) can be generated by a local field
redefinition of the semiclassical background (5.1},(5.2).

8
3 —1

We also get the correct two-loop contribution to the cen-
tral charge [ho= —2 in (4.44), cf. (4.49)] with the choice
of a'= I/k appropriate for a semiclassical background.
The redefinition [cf. (4.46)]

This does not, however, imply, that it is the semiclassi-
cal and not the exact background that has a direct physi-
cal interpretation. The reason is that the "conformal" or
"standard" scheme associated with the exact background
is more directly related to the corresponding conformal
field theory. In particular, the equations for the pertur-
bations of the background (e.g. , the tachyonic equation)
have simple forms only in the "conformal" scheme and
become complicated in a "nonstandard" one, i.e., after
the field redefinition that transforms the exact back-
ground into the semiclassical one [47]. The propagation
of a first-quantized string in a given background is de-
scribed by the Klein-Gordon-type equations for the string
modes, i.e., by the equations for the states

(Lo+ Lo )g„=N„p„, (5.6)

of the corresponding conformal field theory. The stress
tensor or the operator Lo of the conformal theory can be
considered as a functional of the background fields
y'= ( G„„B„„,P, . . . ). Its structure is fixed in a given
theory and does not depend on particular identification of
the background fields. Namely, Eqs. (5.6) (and hence
their solutions 1(„)do not change under redefinitions of
qr'. However, the form of their representation in terms of
the background fields y' does depend on a particular
choice of y'. That is why one should be careful to take
into account the scheme dependence in comparing the
conformal field theory and o.-model results. For exam-
ple, (5.6} should correspond to the linearized terms in the
corresponding P-function equations. The latter are
scheme dependent and so the agreement is possible only
in a particular scheme.

Let us illustrate the above remarks on the example of
the tachyon P-function equation [49—51]

' Any background related to (4.1)—(4.3) or (5.1),(5.2) by a local
field redefinition will also represent a solution of the two-loop
conformal invariance equations in a particular scheme.

P = —yT+ W"d„T 2T, —

(5.7)
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y =-'a'Q~ D„a„+
IV„=a'a„y+M„(G,H),
gPv 6@v+a'I RPv+a' 1~H2Pv+O( &2)

(5.8)

(5.9)

Ellipsis in y stand for higher derivative terms which are
absent in the two-loop approximation we shall consider
below. M„and 0" do not depend on P in a "standard"
class of schemes. In the dimensional regularization
and/or minimal subtraction scheme I, =0 [50,51]; !2=

—,
'

in the scheme of (4.17) (this value can be found from the
linear term in the dilaton P function in [24]). In the
"standard" scheme for the group space which is related
to the scheme of (4.17) by (4.46') one thus has [40]
12 =—

—,', i.e., for the SL(2,R) group space with a' =1/k
a'0""=a'[6"" 'a'H——4"+O(a' )]

As demonstrated in [20,21] and in this paper, the back-
ground fields which correspond to the coset conformal
models in the a'~0 limit and which solve the all-order
conformal invariance equations in the "standard" scheme
are nontrivial functions of a'. It still remains to be ex-
plained on general grounds why there should exist a
scheme in which the semiclassical background is also a
solution, i.e., why the a' dependence of the exact back-
ground can be generated from the semiclassical back-
ground by a local covariant field redefinition. An obvious
indication that this may be the case is the quadratic
dependence of the classical gauged WZNW action (2.1)
on the gauge field suggesting that there may exist a
scheme in which the naive Gaussian integral over 3, A

gives the exact answer. ' Such an argument does not,
however, explain why the tachyon and similar higher-
mode equations should have a noncanonical form in this
"semiclassical" scheme.

1 2 11+—+0
k k

6"'= 6"" . (5.10)
1

k —2 ACKNOWLEDGMENTS

This relation is true (in the "standard" scheme) to all or-
ders for a general WZNW model [52]. In the scheme
(4.45),(4.46) that corresponds to the exact background
(4.1)—(4.3) we find

0""=6""—c,a'6""+O(a') . (5.11)

With a'=1/k and c5 = —2 we reproduce the expression
(5.10). If a'= I/~ and one rescales B„„asin (4.52) (i.e.,
c ~

=0) then one finds (as in the case of the central charge)
that the exact result y=(1/2a)D is obtained already in
the one-loop approximation. We conclude that the exact
background corresponds to the scheme in which the ta-
chyon equation has the same simple form as in the coset
conformal field theory.

At the same time, making the redefinition (5.4) which
relates the scheine of (4.17) to the "nonstandard" scheme
where the semiclassical background is the solution, we
find that in the latter scheme

0""=6""+2a'D"PD"P ,'a'H ""+O(—a'—). (5.12)

Being computed on the relevant background (5.1),(5.2)
the resulting tachyon equation (5.7) is of course the same
as the one in the "standard" scheme or (5.6); however, its
form in terms of the semiclassical background fields is
nonstandard.

The lesson that can be drawn from the above discus-
sion (see also [47]) is that in string theory it is not
sufficient just to find the expression for a few nonvanish-
ing background fields that solve the conformal invariance
equations in a particular scheme. One is also to specify
how the equations for the propagation of a first-quantized
string (i.e., the equations for the marginal perturbations
of the background} look like in that scheme. The answer
to the latter question is simplified if it is known which
conformal field theory corresponds to a given solution of
the string effective equations, i.e., to a given conformal o
model. In that case a preferred or a "standard" scheme
is the one in which the equations for perturbations take a
simple canonical form when expressed in terms of back-
ground fields.

Below we shall prove the validity of the relation (3.17)
for arbitrary values of the parameters a, b, and b in (3.5).
We shall essentially follow the procedure used in [17] in
the particular case of the chiral gauged WZNW model.
Let us rewrite the exact metric (2.24} in the following way

K
GMw

=GDMKG

where GoMx was defined in (2.26) and

G ~=5 ~+(V 'N ),b(E' Eq. +E~E }

b(V '), E—' E b(V '), E' E—

5K +C Sa'Ksb'

(A 1)

(A2)

where SM'=(E~, E~) and the 2dimH X2dimH dimen-
sional symmetric matrix ( C, .b ) is defined as

—bV ' V 'N~
(C b)

V 'N —6V
(A3)

In order to compute detGM& we need detG z. We have

The quantum gauged WZNW theory (2.4) on the full

con6guration space g, h, h is obviously conformally invariant be-
ing a combination of the ungauged WZNW models. The corre-
sponding "standard" scheme is the same as in the WZNW mod-
el case. When one integrates out the gauge fields (or h, h)
remaining in this "standard" scheme then to maintain the con-
formal invariance the u-model couplings become a' dependent
(and the dilaton coupling is induced). Preserving the "semiclas-
sical" form of the o.-model couplings corresponds to switching
to a nontrivial semiclassical" scheme.

We are grateful to Yu.N. Obukhov for his crucial help
with the GRG computer algebra system. We would like
to thank I. Bars for comments. K.S. is indebted to the
University of Southern California for its hospitality dur-
ing part of this work. A.A.T. acknowledges the support
of SERC.

APPENDIX A: THEOREM
ON THE MEASURE FACTOR (3.17)
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detG ~=det(5 ~+C, bS' S~)=det(g, b. +C, , S' Sbl)

I —V '(N'C+bI)
V '(N+bC)

V '(N +bCT)

I —V '(NC "+bI)

=det
0

0
det

(a —1)NT b(—b+1)I NT+IiC T.

N+bC (a 1)N—b(t-+1)

=6 ' H(detV ') det
bI Nr —gdimad t y

—]—X —bI (A4)

where h=(a —1) —(b+1}(b+1). The Haar measure
for the group G is given by QdetG&M& where Gp~„ is
the Killing metric in (2.26). Therefore, by using (Al),
(A4), and (2.27) one establishes the validity of the
theorem (3.17) for arbitrary values of the parameters a, b,
and b [including the special ones in (3.6)].

The case of the gauged WZNW model in (3.6) is spe-
cial: the above derivation formally breaks down since the
metric G~z (2.24) is degenerate [has dimH null Killing
vectors, see (2.31)] as a consequence of gauge invariance.
This is also clear from (A4): in this case b, =O and its
power dimH in (A4) is the dimension of the null vector
space of GM&. Defining detGM& by projecting out the
zero modes by a gauge condition one obtains (3.17) with
the measure on G replaced by the group-invariant mea-

sure Qdet(E„'E rl;~) on G/H (see, for instance [5]).

the gauged %ZN% model.
We shall use the following parametrization for the

SL(2,R) group element:

E 1 l

g =exp —8L0& exp —yo& exp —g„
2 2 2

(B1)

8L =8+8, 8„=8—8 .

Taking A, A to be in the axial subgroup generated by
—,'az, the classical gauged WZNW action (2.1} can be

represented in the form

S(g, A) =kI(g, A)

APPENDIX B: EXACT BACKGROUND
CORRESPONDING TO THK [SL(2,R) XR]jR

GAUGED WZNW MODEL

f d z[LO(r, 8L, 8a) —AJ —gJ

—(C+1+2qo}AA ], (B2)

Below we shall derive the exact 0-model couplings for
the "charged black string" model [6,3]. The present case
with nonsimple group 6 =SL(2,R)XR needs a special
treatment in what concerns the antisymmetric tensor
coupling: the general expression (2.25) derived for a sim-

ple 6 does not apply. To get a background that solves
the (two-loop) conformal invariance conditions it turns
out to be necessary to take into account an ambiguity
present in the extraction of the local antisymmetric ten-
sor part of the u-model action from the effective action of

L =
—,'(BrBr —88 88 —88„88„—2CB8L88„),

C =C (r) =coshr, J=88r +CB8ii,

We have added the term

kn f d z(By—+p&)(fy+p~ } Qo=p

The normalization for the trace of the square of the genera-
tors we use below di6'ers by a factor of 2 from that used in Secs.
II and III. As a result, the relation between a' and sc= k —2 we

get here and use in Sec. IV is a'=1/~ and not a'=2/~ as in
(2.23) or (3.13).

with an extra scalar degree of freedom y coupled to A, A

and then gauged it away (p is the free parameter of
embedding of the subgroup). The action in (B2) is thus

written already in a particular gauge (y =0). The

effective action is found in the similar way as in

(2.5)—(2.9) and up to a total derivative is given by
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C(g, d)= J d z Lz —AJ —Ad —(C+1+2q+ b)AA+ b—A A—+ b—A A—
27 2 a 2

1+2q+b =(1+b)(1+2qo), q=qo(1+b), 1+b=—=k k
k —2

(B3)

The coefBcient k of the extra scalar term is not renormalized since the subgroup is Abelian so that in the combined ex-
pression qo is replaced by q =qok/a =qo(1+6). Using the notation (2.10}we can rewrite (B3) in the form

I (g, A)= f d z[LO —AJ —AJ —(C+1+2q)AA ,'b(—A——A )(A —A } ,'p—b—(AA—AA )], (B4)

where we have put the quantum O(b) term in the mani-

festly gauge-invariant form [cf. (2.9)] and also included a
total derivative term with a constant coefBcient p. The
gauge-invariant form of this latter term (before fixing

y =0 as a gauge) is

[(ay+pA)(ay+pA ) —(ay+pA )(ay+pA )] .
2qp

Such term does not change anything at the level of the
full effective action but will in6uence the expression for
the antisymmetric tensor term in the local part of (B6)
derived under a specific prescription (see Sec. II) of how

JM= —2qo= —2q(1+b) (B5)

since in this case the local part of (B4) takes the same
form as the classical action (B2) (with k replaced by ~)

to drop out the nonlocal terms in the process of elimina-
tion of A, A.

One can think that the role of this total derivative term
is to account for the fact that part of the q A A term is to
be taken in the "symmetrized" —,'( A A + A A ) form since
it originates from an "extra" R part of the full gauged
WZNW action. This suggests that the coeScient p
should be proportional to qp. In fact, a natural choice
seems to be

I (g, A)= J d'z[LO AJ AJ—(C—+1+—2qo)AA ,'(1+2q—o)—b(A —A )(A —A } qob(AA—+AA)] . (B6)

This was the property of the effective action in the case of
the simple group G [see (2.14)] and one may try to
preserve it in the semisimple case as well. The choice
(B5) is distinguished also by the fact that for qo= —

—,
' the

effective action (B6) of the [SL(2,R)XR]/R gauged
WZNW model automatically reduces to the effective ac-
tion (3.3),(3.5) of the SL(2,R)/R chiral gauged WZNW
model in agreement with the general statement [18]about
the equivalence of the two models. This equivalence is
proved at the level of the full nonlocal effective actions
and thus it implies the equivalence of the resulting local
o-model actions provided that consistent prescriptions
for their derivation are used. Correspondence with the
chiral gauged WZNW model is an important consistency
check: first, this model must definitely be conformally in-

variant since its action can be expressed as a combination
of the WZNW actions (3.2),(3.3), and, second, its effective
action does not contain the quantum A A term and thus
the determination of B„„is unambiguous. As shown in
Sec. IV, the 0-model background fields that correspond
to (B4) with IM given by (B5) solve the two-loop conformal
invariance equations.

Starting with (B6) and using the "corrected" prescrip-
tion of Sec. II, i.e., solving the equations for A, A as in
(2.15)-(2.17) (note that the total derivative p term does
not influence the equations of motion) and substituting
the solution back into the action (B4) we get the follow-
ing 0 -model action in terms of the coordinates
x"=(r,8,8} [for generality we keep the value of p in (B4)
arbitrary]:

S(r, 8, 8)=—Jd z[G„,ax "ax"+S„(a8a8—a8a8)], (B7}

ds =G„„dx"dx"= dr +(1+q+b—) d8 q—C —i, C+i
dO4 C+ 1+2q +2b C+ 1+2q

(B8)

q(q+1) (q+b}(q+1+b)
C+1+2q C+1+2q+2b

/=$0 —
A2 ln[(C+1+2q)(C+1+2q +2b)] .

(B9)

(B10)
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As expected, the parameter p appears only in the expres-
sion for the antisymmetric tensor (dependence on )M

disappears of course in the classical limit b =0). Note
that in the limit q =0 the model (87)—(810) reduces to
the direct product of the SL(2,E)/E (in a patch) and E as
it should [8 decouples in (88) but this is a gauge artifact
that can be avoided by first rescaling 8 and then taking
the limit] and in the limit q =1 to the direct product of
SL(2,E)/E (in the dual patch) and E (in this case one
should first rescale 8 and then take the limit).

Equation (89) considered formally for arbitrary values
of p has several special cases. When )tt=0 in (84), i.e.,
when the efFective action is taken in the same form as in
(2.14) we get the analogue of (2.25) '

2q(q+1+b)
(1+b)[(1+b)(C+1)+2q]

Introducing the new coordinates z, t, x

2z =C+1+2q,

(89')

it =(1+b +q)'f28 (814)

even quantum term in (86) does not produce a quantum
correction to the antisymmetric tensor, i.e., the latter is
given by

2qo(qo+ 1)8 C+ 1+2qo

2q(q+1)
C+1+2q ' (811) ix = —q'~ 8

where we have dropped the constant term q. Another
special case is )tt= l. In this case (86) is exactly equal to
the "naive" form of the effective action (83) [as in
(3.8)—(3.12)]. The resulting expression for 8„,

q(q+1) (q+b)(q+1+b)
C+1+2q C+1+2q +2b

is the same one that one finds (after gauge fixing) from the
analogue of (3.15) in the axial subgroup case. For
qo

= —
—,', q = —

—,'(1+6) (812) gives 8„„in the SL(2,E)/E
chiral gauged WZNW model.

The expression for the exact antisymmetric tensor cou-

pling of the [SL(2,E) X E]/IR gauged WZNW model that
corresponds to )M in (85) is

2q (q + 1+b)
(1+b)

(812)

q+1
C+ 1+2q

q+b
C+1+2q+2b

2iThis expression found in [16] using a manifestly gauge-
invariant prescription does not represent a conformally invari-
ant background {cf.Sec. IV). Note that since in the present case
the group 6 is not simple, Eq. (B11) does contain quantum
corrections even though the subgroup here is one dimensional

[(Bll) is the same 8„,that follows simply from the classical ac-
tion (82) but with qo replaced by q].

~2That this is not the case for (B11),i.e., for p=O was a puzzle

in [17].

When qo
= —

—,
' (i.e., p, = 1) not only the exact metric (Bg)

and the dilaton (810) but also the exact antisymmetric
tensor (813) of the [SL(2,E)XE]/E gauged WZNW
model coincide with the background fields of the
SL(2, IR)/E chiral gauged WZNW model. The expres-
sion (813) vanishes for q =0 and in the SL(2,E) group
space limit qo~oo reduces to the correct result 8&z
=

—,'C. The background (88),(810),(813) thus consistently
includes (as special cases for qo =0, —

—,', ae ) other known

D =3 exact conformally invariant backgrounds.
If one uses the "semiclassical" prescription for com-

puting the antisymmetric tensor one finds that parity-

we find that the metric (88) and the dilaton (810) take the
forms (4.1) and (4.3) while the antisymmetric tensor B,„
corresponding to (89) becomes

P2

z+b ' (815)

pi = —
—,'(2 —p)(q+1)q'"(q+1+b)

p2 = —
2 p(q +b)q 'i~(q + I +b)'i2,

(816)

or for the value of AM in (85)

[q(q+I+b)]'~ q+1
tx (817)z+b

The semiclassical expression (89'} for the antisymmetric
tensor in the coordinates (814) is given by

[q(q+1+b)]'
(1+b) [(1+b)z bq]— (817'}

APPENDIX C: GEOMETRICAL 08JECTS
FOR THE EXACT "BLACK STRING" D =3

BACKGROUND

%e are grateful to Yu.N. Obukhov for helping us with this

calculation.

Below we present the results of computation of some
geometrical quantities for the background (4.1)—(4.3) and
their expansion in b which were found using GRG com-
puter algebra system [53]. All indices below are with
respect to the local vierbein corresponding to the metric
(4.1) [with the flat metric being ( —1, + 1, +1)].

The exact expressions for the non vanishing com-
ponents of the Ricci tensor and curvature scalar are
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R~ =(1+q +b)(qb +4qz +bz —2z )[z (b +z) ]

R ii = q—(3b+3qb+4z+4qz b—z —2z )[z (b+z)]

R2z=( 3—qb 3—q b 6—qbz 6—q bz+2qb z 6—qz

6q—z bz— b—z +2z +4qz +2hz )[z (b+z) ]

R =2( 3qb— 3q—b 7qb—z 7q—bz+qb z —7qz

7q—z bz— qb—z b—z +2z +4qz +2hz )[z (b+z) ]

The vierbein components of the second covariant derivative of the dilaton are

DoDog= —
—,'(1+q +b)(q z)(—b +2z) [z (b +z) ]

D,D,P= ,'q(1+—q z)(b—+2z)[z (b+z)]

DzD2$= —,
' [(q z)z(—b +z)(b +2z)+(1+q z)[z—(b +z)(b +2z) 4(q ——z)z (b +z)

+2(q z)(b+—2z) ]][z (b+z) ]

so that

D P= —
—,'( 3qb —3q b —8qbz —8q bz—+b z+2qb z 8qz —8q z +—2bz +4qbz +b z

+4z +8qz +4hz )[z (b+z) ]

Also,

(D„P) =[(—1 —q+z)( —q+z)(b+2z) ][4z (b+z)2]

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

Computing the field strength for 8„„in (B15) and (817) we get for the scalar H (we use the metric with Euclidean signa-
ture)

i&z . V'z(z+b) q(q+1) (1+q+b)(b+q)
V' (1+ +b) z (z+b)

(C8)

Its expansion in powers of b can be represented as (since qo is a free parameter we can treat q as being b independent)

H = —4q(q+1)z '[1 bs, (1+q—) '+bs, z ']+O(b'),
s, =1 p(2q+1)q —'=4q +3+0(b), s2=1 2p=4q+1+—O(b) .

The form of the expansions to the first order in b is [for p = —2q +O (b) ]

R =4(2q+1)z ' —14q(q+1)z +b[4z '+( —10—18q)z 2+14q(q+1)z ]+O(b ),
D P= —2(2q+1)z '+4q(q+1)z +b[ —2z '+3(2q+1)z i —4q(q+1)z ]+O(b ),
H = —4q(q+1)z +b [4q(4q+3)z —4q(q+1)(1+4q)z ]+O(b ),
(DP) =1—(2q+1)z '+q(q+1)z +b[ —z '+(2q+1)z —q(q+1)z ]+O(b ) .

To the leading order He ~=const and

R2„&„=4R~„—R =16z +32q(q+1)z 48q(q+1)(2q+—1)z +76q (q+1) z +O(b).

(C9)

(C 10)

(Cl 1)

(C12)

(C13)

(C14)

(C15)

It is possible to show that for any number p [note that P=Po —
—,'inz+O(b)]

D zi'=z~[4p 4p(p —1)(2q + 1)—z ' +4p (p —2)q (q +1)z ]+0(b),
where D =(1/'t/G )8„(G""&Gt)„).

(C16)
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