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Global symmetries of open strings in an electromagnetic background
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The global symmetries of open bosonic strings in an electromagnetic background are investigated.
The Poincare subalgebra and the mass of the open charged string are derived. These results are useful
for computing the background electric field dependence of the one-loop free energy and Hagedorn tem-

perature of a neutral string gas.

PACS number(s): 11.25.Hf

I. INTRODUCTION

In spite of the innumerable difficulties found during the
development of string theories, they still remain as the
only promising candidate for a "theory of everything. "
Such a desirable trait and the internal beauty of their
theoretical scheme serve as motivation for many physi-
cists not give up without reaching a complete under-
standing and eventually a solution of the challenging
problems of the theory.

Within the above-mentioned difficulties, the deterrnina-
tion of a unique vacuum, a basic string theory problem
has encouraged many investigations. An approach to
this question has been implemented through the study of
strings propagating in background fields [1—10]. In par-
ticular, the effective action for an Abelian gauge field
coupled to open bosonic strings has been found in [2] and
also in [7] by using two independent techniques: a Po-
lyakov path integral and the P function, respectively.
The general aim of these investigations is to gain deeper
knowledge of the nonperturbative properties of the sys-
tern. In principle, an effective action for an infinite num-
ber of fields, corresponding to excitation modes of a
string, can serve as a generating functional for all possible
amplitudes on an arbitrary background. By extremizing
it with respect to the background fields, the true vacuum
of the theory could be established.

If (super)string theories really permit us to unify all the
fundamental interactions, they must describe the physics
at the Planck energy region. This scale of energies corre-
sponds to the early Universe scales. As temperatures and
densities were both very high in the early Universe, it is
crucial to investigate the behavior of strings under such
extreme conditions.

The thermodynamics of strings has been studied by
many authors [11—15]. Strings at finite densities have
also been considered (see, for example, Ref. 16). More re-
cently, the interest in understanding the quantum
behavior of strings under the condition of the early
Universe, as well as the role of the many fields that form
the string spectrum, has motivated different investiga-
tions where the presence of a background field is con-
si.dered simultaneously with the finite temperature
[17,18].

In the investigation of strings at finite temperature, the

string mass operator plays a key role in the calculation of
the free energy of the string gas. If a background field is
present, the string mass operator may be very different
from that obtained in the free-string case. Such a
modification of the mass may give rise to very nontrivial
physical consequences. In fact, as has been shown in a
previous paper [18],the background dependence that ap-
pears in the Hagedorn temperature of an open neutral
string gas in an electromagnetic background is produced
by the change in the string mass due to the background
field. Therefore, the correct determination of the string
mass in problems that involve strings propagating in
background fields is important in itself, for a complete
description of the fundamental characteristics of such
systems, as well as for the investigation of their thermo-
dynamical properties.

In the present paper we investigate the global sym-
metries of an open charged bosonic string in a constant
and homogeneous electromagnetic background. We
derive the Poincare subalgebra that characterizes the
theory and obtain the string mass as one of the invariants
of this group of symmetries. An amazing result is that
the above algebra coincides with the one associated with
the global symmetries of a charged relativistic particle in
a constant and homogeneous electromagnetic back-
ground. One might think that this is the natural exten-
sion of the known analogy between the space-time sym-
metries of a free noncharged string and a free relativistic
particle. However, as we show in this paper, such an
analogy is not complete: in the neutral string case
(q, = —q2%0), the global symmetries are described by a
subalgebra of Poincare because some space-time syrn-
metries are still broken, while in the neutral particle case
the whole Poincare group is recovered.

The paper is organized as follows. In Sec. II, we deter-
mine the subset of Poincare transformations that leave in-
variant the action of an open charged string in a constant
and homogeneous electromagnetic background. Then,
we derive the subalgebra of Poincare corresponding to
such global symmetries. We also discuss the arguments
that permit us to obtain the correct charged string mass.
In Sec. III, the square mass operator for the neutral case
is obtained in terms of the transversal string modes. Fi-
nally, in Sec. IV we discuss the possible implications of
our results and give the concluding remarks.
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II. OPEN BOSONIC STRING
IN ELECTROMAGNETIC BACKGROUND

(XgX') =0 . (2.7)

A. General features

S=—— ~ 0 g g', X~ bX"T

2

+ zq, f dx„A".

(2.1)

The interaction of an open bosonic string with an elec-
tromagnetic background A„can be implemented by at-
taching charges q, and q2 at the string's ends. The
reparametrization-invariant action of the string in this
background can be written as

A = 'F——+".
P 2 P (2.8)

For such a field, the boundary conditions (2.6) take the
form

TX„'+q,F„+"=0, o =0,
TX„' —qzF„+"=0, o =m .

(2.9a)

(2.9b)

It is always possible to transform the antisymmetric ten-
sor F„„in order to put it in a block diagonal form:

Henceforth we will consider an electromagnetic back-
ground of constant strength I'„:

The world sheet M traced out by the string propagation
and its boundaries BM; can be simplified without loss of
generality to those defined by the strip

T] T Tpp 0 CT fT ~0(
pv

P

0 —E
—E 0

—H; 0

In Eq. (2.1) the boundary term describes the coupling
with the background. The usual notation in which T is
the string tension and g' is the bi-dimensional metric
with g=detg' has been used. We assume that the di-
mension D of the embedding space-time is an even num-
ber and that the metric of this D-diinensional Minkowski
space is fiat with signature (1, —1).

It is easy to see that the action (2.1) has the same local
symmetries as the free-string action; thus, it gives rise to
the same constraints. Considering the conformal gauge

i =1,2, . . . , (D —2)/2 . (2.10)

This tensor is characterized by the Lorentz invariant,
which for D =4 can be written in terms of F„„and its
dual F&„..

p pv p4pY
~

For any arbitrary dimension D, the tensor F„„is charac-
terized by its eigenvalues. The eigenvalues are the roots
of the equation

gob=r1o e~'~'~) &ob diag (2.2) Det(F„„—A,q„„)=0 . (2.1 1)

and defining ~ as the boundary parameter, the action
takes the form (see [9]) B. Global symmetries

S=— v 0. X X"—X'X'"
2 0

+2 + 0' 4~X~ q~ + +q2

where

and we have used

(2.3)

It is well known that the free-string action remains in-
variant under the set of global D-dimensional space-time
transformations: the D-dimensional Poincare group.
When the background field (2.8) is present, the D-
dimensional isotropy is broken. One may expect that in
this case the Poincare symmetry is somehow reduced. In
this section we will see that this is indeed the case.

f f(x)5(x —y)dx= if y =a or y=b .
b (y)

a 2
(2.4)

X"—X =0
P

and boundary conditions

aA"-TX'"—q&B A "+q& X =0,
P

(2.5)

(2.6a)

Any arbitrary transformation X„~X„+5X„leaves the
action stationary if the equations of motion

1. Conserved quantities

To determine the group of global symmetries that
characterize the theory (2.3) we must find out the con-
served quantities associated to the D-dimensional space-
time transformations. With this aim, we start by writing
the action (2.3) in a more convenient way:

r

S=fd~dcr —(X X" X'X'")—
P P

BA" .
TX'"+q,B,A"—q, X„=O, cr =~

P
(2;6b)

F„X"X[q,5(o )+—q~5(a ~)]

(2.12)
are satisfied.

In the conformal gauge the constraints of the action
(2.3) take the usual form

a. Translations. I.et us make the following transfor-
mation in the string coordinates:
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X„~X„+e„, e„=const, (2.13)

which corresponds to an infinitesimal translation. It is
easy to see that under the transformation (2.13) the action
{2.12) changes as

5S=fdrdo e"qF„,X", (2.14)

The canonical momentum P„ is not conserved now and,
of course, its quantum counterpart will not generate
translations anymore.

b. Lorentz transformations .Similarly to the transla-
tion case, we have that, under an infinitesimal Lorentz
transformation,

where

q =q(cr ) =qi 5(cr )+qz5(o' n') —.

X„+X—„+A,„+", A,„„=—
A,„„,

the action (2.12) varies as

(2.24)

By using the boundary conditions (2.9), the integral
(2.14) can be written as the integral of a divergence. This
means, according to the Noether theorem, that a con-
served quantity, associated to translations, must exist. In
order to find this conserved magnitude, let us transform
(2.12) with (2.13) again, but now we integrate by parts be-
fore using e„as a constant,

5S= fdr do [e"[ B,(TX—„)+5 (TX„')+2'„„X")

+a,[{TX„qF„,X"—)e~]+a.( TX„'e~—) }.
(2.16)

Equating (2.14) to (2.16) we obtain

f drdcr [e"[—B,(TX„)+d (TX„')+qF„„X']

+8,[(TX„qF„„X")—ei" ]

5&= fdrdo qF„,A,"(X~X" X"X—~) . (2.25)

0

0 A, ,

0

This term cannot be written as a divergence. It must
vanish in order that the theory remains invariant under
such transformation.

Therefore, the invariance of the theory (2.12) under the
Lorentz transformations takes place only for those A,„„
such that the product F„„A, is diagonal. This condition
implies that from the whole set of D(D —1)/2 Lorentz
transformations only D/2 of them leave the action (2.12)
invariant. In the system where F„„is block diagonal,
these D/2 transformations must be also block diagonal.
Thus,

+8 (
—TX„'e")]=0. (2.17)

i =1,2, . . . , (D —2)/2 . (2.26)
Using now the equations of motion and taking into ac-
count that

Bg F„„X"e"=qF„„X"e",

It is not dificult to find, using the Noether theorem, the
conserved magnitudes associated with the Lorentz trans-
fortnations (2.26):

we obtain

, TX„eI' + —TX„'eI' =0 . (2.18)

M2n 2n + 1 + ~X2n 9~2n 2n + 1X X2n + 1

—(Txz„] qFz„, z„X—")Xz„] .

Therefore, we arrive at the conserved current equation (2.27)

B,(TX„)+8 (
—TX„')=0 . (2.19) They satisfy

Integrating (2.19) in cr,

5,fdo TX„TX„'(~)+TX—„'(O)=O .

Using the boundary conditions (2.9), we find

d,f d o ( TX„2qF„„X") =0 . — (2.20)

D
c)pz z +& =0 (2.28)

(2.29a)

In terms of the canonical momentum density p„, the con-
served momentum and angular momentum take the form

m„= fdo(p„qF„,X'), —

It implies that the momentum

m „=fd cr ( TX„2qF„„X)— (2.21)
Mzn zn+1 fdo{pznxzn+ 1 pzn+ Ixzn ) (2.29b)

pv fdipl {2.22)

p = . =TX —qF „XI ~XP I Pv (2.23)

is conserved. The quantum magnitude correspanding to
m.„in the quantized theory of the string in an electromag-
netic background will be the generator of translations.
Nate that the conserved momentum m„does not coincide
with the canonical momentum:

2. Poincare subalgebra and string mass

We have already found the subset of Lorentz transfor-
mations that leave invariant the theory of the string in an
electromagnetic background. This reduction of the
Lorentz symmetries must also be reflected in the Poin-
care algebra of the conserved quantities. In order ta find
this algebra we have to consider the Poisson brackets of
the theory. As usual, they must be defined by using the
conjugate magnitudes X„and p„. Thus, the equal time
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Poisson brackets are

Ip„( r, o),X„(r,o')I =ri„„5(o o—'),
[p„,(r, cr ),p„(r,o')] =0,
IX&( r, o),X„(r,o')I =0 .

(2.30a)

(2.30b)

Using (2.30) one can show that the algebra of the con-
served quantities is given by the relations

I m„, m, I
=QF„„,

p&M2n 2n+1 l A@2 +n1~2n )221&n i2m+1&

I M2n 2n+1 &M2m 2m+1 ]

(2.31a)

(2.31b)

(2.3 lc)

where Q =q 1+q2 is the total charge of the string.
It is timely to comment on the algebra (2.31). First,

this algebra is essentially the same one obtained in the
case of a charged relativistic particle in a constant and
homogeneous electromagnetic background [19]. Second,
it is a central extension of the Lie algebra of the Poincare
subgroup that leaves invariant the electromagnetic field
under consideration.

As we mentioned in Sec. II, this is an expected result.
The background field F„„breaks the isotropy of the D-
dimensional space; therefore, only a subgroup of the orig-
inal symmetry group must remain. The fact that the
algebra (2.31) coincides with the one obtained for the
charged relativistic particle seems to reflect here also the
analogy already found between a free string and a free
relativistic particle in relation to their properties under
D-dimensional space-time transformations.

Nevertheless, one should be very careful to avoid mak-
ing naive conclusions. Although for the interacting
charged string and the charged particle this analogy
seems to work, their correspondent neutral cases have
algebras (or symmetries) completely difFerent. This can
be realized if one evaluates Q =0 (neutral string) in Eq.
(2.31). In this case one still has a subalgebra of the Poin-
care algebra. In the neutral particle case, however, the
global symmetries of the theory are described by the
whole Poincare group, i.e., the Poincare algebra.

From a physical point of view this difference can be
easily understood. A neutral particle is incapable of in-
teracting with an electromagnetic background. Since it is
eff'ectively a free particle, it has the symmetries of a free
particle: the whole Poincare group. In the string case,
even if it is neutral, it has charges attached at its ends.
These charges feel the electromagnetic background, in-
teracting with it. Obviously, such an interaction reduces
the global symmetries of the theory. The correct analogy
for the neutral particle would be a noncharged string
(q, =q2=0).

Let us find the mass of the string in the electromagnet-
ic background. It would be a mistake to use for the in-
teracting string mass the same expression as in the free
string case:

M =ir +2Q QM2„2„+1F" "+' . (2.33)

It is easy to prove that M is an invariant of the group
{2.33):

[M, irqI =
I M, M2„2„+1}=0 .

Moreover, if q, = —
q2 =q (Q =0), it reduces to

M2 —2

(2.34)

(2.35)

where the conserved momentum m„can be written in this
case as

n„=Jdrr(TX„+qF„„X'") . (2.36)

Expressions {2.35) and (2.36) coincide with the results in
papers [8,10,18]. Note also that, in particular, if q=0,
then M2 becomes the free-string square mass.

III. NEUTRAL STRING

For the sake of understanding, we will review in this
section the steps that yield an exphcit expression for the
mass of an open neutral string. This mass has been used
in paper [18] to obtain the free energy of a neutral string
gas in electromagnetic background.

The neutrality condition q&
= —qz=q can be used in

(2.21) in order to write it in the convenient way [10]

S=—Id r d o (X„X" X„'X'" 2f—„„X'"X"—), (3.1)

where we have introduced the rescaled field strength

literature about this point [10].
We can find a meaningful definition of the string mass

if we take into account that the eigenvalues of the string
mass operator in the quantized theory represent the
masses of the particles that form the string spectrum.
Each one of these charged relativistic particles is in-
teracting with a constant and homogeneous electromag-
netic background field. The mass of such a kind of parti-
cle is a conserved quantity and an invariant of the sub-
group of Poincare transformations that characterize the
space-time symmetries of the problem. Therefore, in or-
der to obtain the correct expression for the string mass
we must find a conserved quantity which is invariant un-
der the group of transformations (2.31). These two cri-
teria, however, are not sufficient to determine M. In ad-
dition, the mass must coincide in the pointlike limit of
the string theory (2.12) with the correspondent particle
mass, and also it must be reduced to the neutral string
mass when q, = —

q2 =q and to the free-string mass when

q, =q2=0.
Taking into account the above arguments we arrive at

the square mass definition

M =P (2.32) (3.2)

Since P„ is nonconserved, such a definition would have
no physical sense. There exists some confusion in the

The solution of the boundary problem originating from
(3.1) is
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X"=a"+b4r f—""b„o Note that the total canonical momentum obtained from
(3.1),

+
&nT „

anv
e '"'cosn o

P4= f do p4= f do T(X„+f„„X'"), (3.5)
an

+if"" -e '"'sinn o.
n

(3.3)

Substituting this solution in the density of the canonical
momentum, p = T(X„+f„,X'"), we obtain

4 f4 f ' 4)
' 1/2

T 00

+ — g' (ri4,a'„f„„f—'4a„)e '"'cosn cr .
n = —00

P„=fp„do =mT(b„f„„f—"4b4) . (3.6)

is just the same as the neutral string conserved total
momentum m„, defined in Eq. (2.36); hence, P„ is a con-
served quantity in the neutral case.

Using (3.3)—(3.5) it can be shown that

(3.4) In terms of P„,Eqs. (3.3) and (3.4) take the form

X4(cr, r) =a"+ [(1 f ) ']—",P' — f"'[(1 f '} ']—g
00 anv —in a„+ g' ri4' e '"'cosncr +if"' e '"'sinn ov'~T „n n

1/2

p„(o,r)= " + — g' (ri„„a„' f„„f'4a„—)e '"'cosno .
7T 7r

(3.7)

(3.8)

A short computation involving (3.7), (3.8}, and the Pois-
son brackets (2.32) shows that the zero and Fourier
modes satisfy

2(1 —e ) g a„+ a

[a4,P'] = ri4', —

[a",a„"]=im5 +„ri44[(1—f2) '] „. (3.9)

00 (D /2) —
1

(I+h2}( 2i 2i+ 2i+1 a2i+1} 0

(3.13)
Our aim is to find an expression for the string mass in
which we have already eliminated the contribution of the
spurious degrees of freedom. To this purpose it is con-
venient to introduce the variables

Let us consider the light-cone gauge [10]

X' =eX, X =eX' +~, P
7TT

(3.14)

X +X'
V'2

p0+p1

0+ 1
an —an

an

and the notation
2l

p + 2l p2l + 1
2l +1

V'mT (1 e) —&n T (1+6; )

(3.10a)

(3.10b)

(3.10c)

It gives rise to the condition

a =0 for m%0 . (3.15)

P+P = (1—e )
2

(D /2) —1 00

( I+$ 2} g (a2i a2i +a2i+ la2i +1)

Then, evaluating (3.15) in (3.13), one obtains, for the
n =0 constraint,

where

i =1, . . . , ——1, (3.11)
D

'
2

(3.16)

As we already observed, the square mass of the neural
string is

D
e=fo1 " = f2 2. +1 2

(3.12)

In terms of (3.10) and (3.11) the constraints (2.7) take the
form

(3.17)

Then we can use (3.16) to obtain an expression for the
mass that depends on the transversal degrees of freedom
only:
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Df2 i-
M2 y '

[ (p2i)2 +(p2i +1)2]
1+h;

2l

g $2i+1
&n

1+h
1/2

a2i+1 )0
n

(3.19b)

D!2—1 oo

T(1 e2) y y (
't2ig2i+ut2i+ 1 2i+1)

m=1

(3.18)

(3.19a)

In the above expression the following notation for the
normalized oscillators,

1+h'
' 1/2

&2i+1 ' 2i+1 0a„ a„

[&
2i

& t2J] [&
2i + i

& t2J+1] (3.20)

The square mass operator corresponding to the classi-
cal expression (3.18) contains an additional c-number
term, due to order problems, that produces a tachyonic
contribution. Thus, the square mass operator is given by

was used. Upon canonical quantization, their nonzero
commutators are

D/2 1 ez+—h z

~2 y [( P2i)2 +(P2i +1)2] +2 T(1 e )
1+h;

D/2 —1
~ . D —2

m( f2' 2i+u t2i+1u2i+ i )m N1 Nl Itl 24i=1 m=1
(3.21)

There has existed some misunderstanding in the litera-
ture in relation to result (3.18). For example, in Refs.
[20,21], the authors attempted to redefine the square mass
of the neutral string with the aim of removing the ta-
chyonic contribution in the transverse direction [first
term in (3.18)]. Later on, in Ref. [10], the expression
(3.18) was again accepted, but no physical reason was
given to justify this decision. Throughout the present pa-
per we have seen that a deep physical reason does exist to
justify the correctness of Eq. (3.18) and, in general, of Eq.
(2.33).

IV. CONCLUDING REMARKS

In this paper, we have studied the global symmetries of
open strings in electromagnetic background. We derived
the algebra of the conserved quantities corresponding to
the global symmetries of an open bosonic string coupled
to a constant and homogeneous electromagnetic field. It
resulted in a subalgebra of the Poincare algebra, because
the background breaks some of the symmetries normally
present in the free string case. A remarkable feature is
that this subalgebra coincides with the one obtained for a
relativistic charged particle. This property helped identi-

fy the correct expression for the string mass, since each
string single mode is associated with a relativistic
charged particle interacting with the background field.

Therefore, the string mass must be just one of the group
invariants and it must be reduced to the usual string mass
in the zero field limit. We hope this result helps to solve
some of the misunderstandings that exist in the literature
with respect to the correct definition of the string mass
for open, neutral, and charged strings.

In the neutral string case, the above results were used
in the study of the thermodynamical properties of the
system and in the computation of the Hagedorn tempera-
ture of the neutral string gas in electromagnetic back-
ground [18]. This Hagedorn temperature is different
from the one of the free-string case because it contains a
factor depending on the background electric field. The
modification of the Hagedorn temperature due to the
background is a nonperturbative effect. The interaction
with the background is an effective, nonperturbative way
to represent interactions among strings. In contrast with
this, perturbative string interactions cannot modify the
critical temperature as it has been recently shown by
Bytsenko et al. [11],by calculating the genus-g free ener-

gy of the open string gas.
Although there are still many formal questions in the

thermodynamics of strings that should be better under-
stood, it is undoubtedly an amazing research field. We ex-
pect in the near future to go a step forward and use our
present results to explore possible effects of finite densi-
ties in strings coupled to background fields.

[1]C. Lovelace, Phys. Lett. 135B,75 (1984).
[2] E. S. Fradkin and A. A. Tseytlin, Nucl. Phys. B158, 316

(1985); B261, 1 (1985); Phys. Lett. 160B, 69 (1985); 163B,
123 (1985).

[3] P. Candelas, G. T. Horowitz, A. Strominger, and E. Wit-
ten, Nucl. Phys. B258, 46 (1985).

[4] C. G. Callan, D. Friedman, E. J. Martinec, and M. J. Per-
ry, Nucl. Phys. B262, 593 (1985).

[5]A. Sen, Phys. Rev. Lett. 55, 1846 {1985).
[6] C. G. Callan, I. Klebanov, and M. J. Perry, Nucl. Phys.

B278, 78 (1986).
[7] A. Abouelsaood, C. G. Callan, C. R. Nappi, and S. A.

Yost, Nucl. Phys. B280, 599 (1987).
[8] C. P. Burgess, Nucl. Phys. B294, 427 (1987).
[9]P. C. Argyres and C. R. Nappi, Nucl. Phys. B330, 151

(1989).
[10]V. V. Nesterenko, Int. J. Mod. Phys. A 4, 2627 (1989).
[11]K. Huang and S. Weinberg, Phys. Rev. Lett. 25, 895

(1970); C. E. Vayonakis, Phys. Lett. 116B, 223 (1982); B.
Sundborg, Nucl. Phys. B254, 583 (1985);E. Alvarez, Phys.
Rev. D 31, 418 (1985); Nucl. Phys. B269, 596 (1987); E.
Alvarez and M. Osorio, Phys. Rev. D 36, 1175 (1987); M.
J. Bowick and L. C. Wijewardhana, Phys. Rev. Lett. 54,
2485 (1985); P. Salomonson and B. S. Skagerstam, Nucl.



2932 EFRAIN J. FERRER AND VIVIAN DE LA INCERA 49

Phys. B268, 349 (1986); P. Olesen, ibid. B267, 539 (1986);
D. Mitchell and N. Turok, Phys. Rev. Lett. 58, 1557

(1987); A. A. Bytsenko, E. Elizalde, S. D. Odintsov, and S.
Zerbini, Phys. Lett. B 311,87 (1993).

[12]J. Polchinski, Commun. Math. Phys. 104, 37 (1986).
[13]B. McClain and B. D. B. Roth, Report No. UTTG-30-86,

1986 (unpublished).

[14] K. H. O' Brien and C-I. Tan, Phys. Rev. D 36, 1184 (1987).

[15]E. Alvarez and M. A. R. Osorio, Phys. Lett. B 220, 121

(1989).
[16] K. Shiraishi, Nuovo Cimento A 100, 683 (1988).

[17]A. Nakamura and K. Shiraishi, Report No. TMUP-HEL-
8806, 1988 (unpublished).

[18]E. J. Ferrer, E. S. Fradkin, and V. de la Incera, Phys. Lett.
B 248, 281 (1990).

[19]H. Bacry, Ph. Combe, and J. L. Richard, Nuovo Cimento
A 67, 267 (1970).

[20] B. M. Barbashov, A. L. Koshkarov, and V. V. Nesterenko,
Teor. Mat. Fiz. 32, 176 (1977).

[21] B. M. Barbashov, V. V. Nesterenko, and A. M.
Chervjakov, Teor. Mat. Fiz. 32, 336 (1977).


