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Pair creation of dilaton black holes
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We consider dilaton gravity theories in four spacetime dimensions parametrized by a constant a,
which controls the dilaton coupling, and construct new exact solutions. We first generalize the C metric
of Einstein-Maxwell theory (a =0) to solutions corresponding to oppositely charged dilaton black holes
undergoing uniform acceleration for general a. We next develop a solution-generating technique which
allows us to embed" the dilaton C metrics in magnetic dilaton Melvin backgrounds, thus generalizing
the Ernst metric of Einstein-Maxwell theory. By adjusting the parameters appropriately, it is possible to
eliminate the nodal singularities of the dilaton C metrics. For a & 1 (but not for a 1), it is possible to
further restrict the parameters so that the dilaton Ernst solutions have a smooth Euclidean section with

topology S~XS~—[pt], corresponding to instantons describing the pair production of dilaton black
holes in a magnetic field. A different restriction on the parameters leads to smooth instantons for all
values of a with topology S XI .

PACS number(s): 04.70.Dy, 04.50.+h, 04.60.Gw

I. INTRODUCTION

The idea that the topology of space might change in a
quantum theory of gravity is an old one [1]. The "canon-
ical" approach to quantum gravity, however, rules out
the possibility from the start by taking the configuration
space to be the space of three-geometries on a axed
three-manifold and the "covariant" approach assumes a
fixed background spacetime. Thus, the most natural
framework for quantum gravity in which to investigate
topology-changing processes seems to be the sum over
histories. In the sum-over-histories formulation a
topology-changing transition amplitude is given by a
functional integral over four-metrics on four-manifolds
(cobordisms) with boundaries which agree with the initial
and final states. What conditions to place on the metrics
summed over is a matter for some debate. One approach
is to sum only over Euclidean metrics [2]. Another pro-
posal is to sum over almost everywhere Lorentzian
metrics, restricting the metrics to be causality preserving
(i.e., no closed timelike curves), in which case the issue of
the necessary singularities must be broached [3]. Al-
though such functional integrals are ill defined as yet, one
can still do calculations by assuming that they can be well
approximated by saddle point methods. An instanton, a
Euclidean solution that interpolates between the initial
and final states of a classically forbidden transition, is a
saddle point for both the "Euclidean" and "Lorentzian"
functional integrals. We take the existence of an instan-
ton as an indication that the transition has a finite rate
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and must be taken into consideration.
One such instanton in Einstein-Maxwell theory is the

Euclideanized Ernst metric [4] which is interpreted as
describing the pair production of two magnetically
charged Reissner-Nordstrom black holes in a Melvin
magnetic universe [5,6]. This is the gravitational analog
of the Schwinger pair production of charged particles in a
uniform electromagnetic field. In this process the topolo-
gy of space changes from R to S XS'—[pt] corre-
sponding to the formation of two oppositely charged
black holes whose throats are connected by a handle.
The calculation of the rate of this process leads to the ob-
servation that it is enhanced over the production rate of
monopoles by a factor e " where S~H is the Hawking-
Bekenstein entropy of the black holes [7]. This supports
the notion that the entropy counts the number of "inter-
nal" states of the black hole.

Are similar processes described by instantons in other
theories containing gravity. It is known, for example,
that both the low energy limit of string theory [8,9] and
five-dimensional Kaluza-Klein theory [10—12] admit a
family of charged black hole solutions. One may ask if
instantons exist which describe their pair production. An
action that includes all the above-mentioned theories de-
scribes the interaction between a dilaton, a U(1) gauge
field and gravity and is given by

S= d4/ —g g —2 q —p &P

For a =0 this is just standard Einstein-Maxwell theory.
For a =1 it is a part of the action describing the low-
energy dynamics of string theory, while for a =v 3 it
arises from five-dimensional Kaluza-Klein theory. For
each value of a, there exists a two-parameter family of
black hole solutions (which we shall briefiy review in Sec.
II) labeled by the mass m and the magnetic (or electric)
charge q. That topology-changing instantons for (1.1) ex-
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ist, at least for a & 1, describing the pair creation of such
black holes, wi11 be one of the results of this paper.

It is important to note that we have used the "Ein-
stein" metric to describe these theories. Metrics rescaled
by a dilaton-dependent factor are also of physical interest
and may have different causal structures. For example,
in string theory (a =1) the "0-model" metric g =e ~g is

the metric that couples to the string degrees of freedom.
If we consider the magnetically charged black holes in
this theory, then for m )~2q both the Einstein metric
and the sigma model metric have a singularity cloaked by
an event horizon. However, in the extremal limit,
m =&2q, the Einstein metric has a naked singularity,
whereas in the sigma model metric the singularity disap-
pears from the spacetime, down an infinitely long tube.
In this limit the sigma model metric is geodesically com-
plete and moreover the upper bound on the curvature can
be made as small as one likes by choosing q large enough.

These properties of the sigma model metric are part of
the motivation for using the a =1 theory to further un-
derstand the issue of information loss in the scattering of
matter with extremal black holes. The low-energy
scattering of particles with such an extremal black hole,
including the effects of back reaction on the metric, has
been studied in [13—15]. One truncates to the s-wave sec-
tor of the theory and considers an effective two-
dimensional theory defined in the throat region. Using
semiclassical techniques, it has been argued that there
may exist an infinite number of near degenerate states
corresponding to massless modes propagating down the
throat. It was conjectured in [13-15] that these rem-
nants or "cornucopions" are the end points of Hawking
evaporation. The infinite length of the throat allows for
an arbitrarily large number of remnants, which can then
store an arbitrarily large amount of information.

One objection to this scenario is that if an infinite num-
ber of such remnants exist, then we may expect them to
each have a finite probability of being pair created. The
infinite number of species would then lead to divergences
in ordinary quantum field theory processes. A way
around this objection was proposed in [16], where the
rate of production of these remnants in a magnetic field
was estimated using instanton methods. It was argued
that the rate of pair production is not infinite, because the
instanton would produce a pair of throats connected by a
finite length handle. The finite length of the throat would
then imply that only a finite number of remnants could be
excited and that the total production rate would be finite.
A shortcoming of the arguments in [16], however, was
that no exact instanton solutions were constructed.
Looking for such exact solutions was one of the motiva-
tions for the present work.

The plan of the rest of the paper is as follows. In Sec.
II we present the dilaton generalizations of the C metric
for arbitrary dilaton coupling a. These describe two op-
positely charged dilaton black holes accelerating away
from each other. We show that, just as in the Einstein-
Maxwell C metric, there exist nodal singularities in the
metric which cannot be removed by any choice of period
for the azimuthal coordinate. These can be thought of as
providing the forces necessary to accelerate the black

holes. In Einstein-Maxwell theory, string theory, and
Kaluza-Klein theory there are known transformations
which generate new solutions starting from a known stat-
ic, axisymmetric solution. In Sec. III, we show that such
generating transformations exist for all a, and take flat
space into dilaton magnetic Melvin universes. When ap-
plied to the C metrics, these same transformations give
dilaton generalizations of the Ernst solution; choosing the
parameters appropriately, the magnetic field can provide
exactly the right amount of acceleration to remove the
nodal singularities. In Sec. IV, we discuss the Euclidean
section of the dilaton Ernst solutions. To obtain a regu-
lar geometry, it is necessary that the Hawking tempera-
tures of the black hole and acceleration horizons be
equal. For a (1, we find that it is possible to do this at
nonzero temperature, and one obtains natural generaliza-
tions of the q =m instantons discussed in [5,6] with to-
pology S XS —[pt J. These instantons describe the for-
mation of a Wheeler wormhole on a spatial slice of a
magnetic dilaton Melvin universe. For all values of a, it
is possible to obtain a smooth Euclidean section in the
limit where the two horizons have zero temperature.
These instantons have topology S XR . The physical in-
terpretation of these instantons, however, is unclear. Sec-
tion V is a summary and discussion of our results.

V P+ —e '&F =0,
2

(2.1)

R&„=2V&/V „P+2e '~F„FI„'— g„„e—'~F
PP v 2 Pv

These equations are invariant with respect to an electric-
magnetic duality transformation, under which the metric
is unchanged and the new field strength F and dilaton P
are given by

1F„„=—e '&e„, FI', (2.2)

We will only consider the magnetically charged solutions
below, but because of this duality our results also apply
to the electric case.

For given a the equations of motion (2.1) admit a two
parameter family of magnetically charged black hole
solutions given by' [8,9]

To obtain solutions where the dilaton asymptotically ap-
proaches an arbitrary constant $0, one can use the fact that the

'&oaction is invariant under /~/+$0, F~e E and the metric
left unchanged. We will suppress Po in the following.

II. DILATON C METRICS

A. Charged black holes in dilaton gravity

The equations of motion coming from the action (1.1)
are given by

(e 2agFPv) 0—
P
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ds = j—gdt2+g dr +R (dg + sin edge~)

2a /(1+a )
T—2ag A =q cos8,

r+1—
(1—a )/(1+a )r

(2.3)

R =r 1—2 2

2a /(1+a )

Assuming r+ )r, then r+ is the location of a black
hole horizon. For a =0, r is the location of the inner
Cauchy horizon; however, for a &0 the surface r =r is
singular. The parameters r+ and r are related to the
Arnowitt-Deser-Misner (ADM) mass m and total charge
qby

g —1t
Ay

(2.7)

The metric (2.6) can be shown to give various known
metrics in the appropriate limits. Setting r =0 gives the
uncharged C metric (a vacuum solution and independent
of a). Setting a =0 gives the charged C metric of
Einstein-Maxwell theory, but in a slightly nonstandard
form: the function G is a quartic with a linear term. To
compare with the form of the C metric given in [17],one
needs to change coordinates to obtain a quartic with no
linear term. The appropriate transformations are dis-
cussed in [17].

In the limit of zero acceleration, the metric (2.6)
reduces to the metric (2.3) for a single charged dilaton
black hole. To see this, it is useful to use new coordinates
given by

"+ 1 —am= + q=
2 1+a2 2

f+f
1+a

' 1/2

(2.4)
In these coordinates the metric (2.6) becomes

ds
1

z [F(x)[ H(r)dT—+H '(r)dr j(1+Arx )

The extremal limit occurs when r+ =r
Following [8] we introduce the "total metric" dsz~

defined via a conformal rescaling of the "Einstein"
metric:

+R (r)[6 '(x)dx

+6 (x)dye j ],
(1—~ )/(1+0 )

T

(2.8)

ds2 =e20~ads2
T g 5)

H(r)= 1

For certain values of a this metric naturally appears in
Kaluza-Klein theories [8]. For a = 1 this is just the sigma
model metric that couples to the string degrees of free-
dotn. For a & 1, in the extremal limit, the total metric is
geodesically complete and the spatial sections have the
form of two asymptotic regions joined by a wormhole,
one region being fiat, the other having a deficit solid an-
gle. For a =1 the geometry is that of an infinitely long
throat.

B. Dilaton C metric

In Einstein-Maxwell theory the C metric can be inter-
preted as the spacetime corresponding to two Reissner-
Nordstrom black holes of opposite charge undergoing
uniform acceleration [17]. The generalization of this
spacetime to dilaton gravity is given by

ds
1 [F(x)[6(y)dt —6 '(y)dy j

A (x —y)

+F(y){G '(x)dx +G(x)dy j],
e-"&= y, ~ =qx,F( )

F(x) '

F(g)=(1+r Ag) '
G(g ) =6(g)(1 r+A/)"
G(g)=[1—g'(1+r+ Ag)] .

(2.6)

Note that the form of G as a product of two terms is
quite similar to the form of A, in (2.3) and further, 6 is the
cubic which appears in the uncharged C metric in [17].
The parameters q, r, and r+ are related as in (2.4).

where the function R (r) is the same as that appearing in
(2.3). Setting A =0 and x = cos8, we return to the
metric (2.3}of the dilaton black holes.

The metric (2.6) has two Killing vectors: dljt and
BIBq&. For the range of parameters r+ A & 2/(3&3), the
function G(g} has three real roots Deno. te these in as-
cending order by gz, g3, and g4 and define

g, —= —1I(r A). One can show g3 & g4 and we further re-
strict the parameters so that g, & gz. The surface y =g, is
singular for a &0, as can be seen from the square of the
field strength. This surface is analogous to the singular
surface (the "would be" inner horizon) of the dilaton
black holes. The surface y =gz is the black hole horizon
and the surface y =(3 is the acceleration horizon; they
are both Killing horizons for dldt.

The coordinates (x,y) in (2.6) are angular coordinates.
To keep the signature of the metric fixed, the coordinate
x is restricted to the range $3&x &

g4 in which G(x) is
positive. The norm of the Killing vector BIBp vanishes
at x =$3 and x =$4, which correspond to the poles of
spheres surrounding the black holes. The axis x =$3
points along the symmetry axis towards spatial infinity.
The axis x =$4 points towards the other black hole.
Spatial infinity is reached by fixing t and letting both y
and x approach g3. Letting y ~x for x+$3 gives null or
timelike infinity [18]. Since y ~x is infinity, the range of
the coordinate y is —~ &y &x for a =0, g& &y &x for
a)0.

2The coordinates we are using only cover the region of spaee-
time where one of the black holes is.
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C. Nodal singularities

As is the case with the ordinary C metric, it is not gen-
erally possible to choose the range of y such that the
metric (2.6} is regular at both x =(3 and x =g&. In order
to see this, in a neighborhood of each root define a new
coordinate 8 according to

x dx
& v'G(x') (2.9)

The angular part of the metric near one the poles x =g;,
i =3,4, then has the form

dg2+ $2eid~2
+2(( )2 4

(2.10}

where X, = ~
G'(g; ) ~

and one can show that A, i & k4. Let
the range of y be 0 & y & a; then the deficit angles at the
two poles 53, 54 are given by

1 1
5 =2m ——aA, 5 =2m —aA, —

3 2 3~ 4 2 4 (2.11)

We can remove the nodal singularity at x =(& by choos-
ing a=4m/A, 4, but then there is a positive deficit angle
running along the gi direction. This corresponds to the
black holes being pulled by "cosmic strings" of positive
mass per unit length p= 1 —

A,&/A. 4. Alternatively, we can
choose a=4m/A, i to remove the nodal singularity at g&.

This means there is a negative deficit angle along the (4
direction, which can be interpreted as the black holes be-
ing pushed apart by a "rod" of mass per unit length

p = 1 —A,4/A, 3 (which is negative). For a general choice of
a, there will be nodal singularities on both sides. The
mass per unit length of the outer singularity will always
be greater than that on the inside.

There is a degenerate case when the metric is free from
nodal singularities. Letting r+ 2 =2/(3&3) the roots gi
and g& of the cubic G become coincident. In this limit the
range of x becomes g3 & x &

g4 since the proper distance
between g3 and g~ diverges. The point x =$3 disappears
from the (x, q&) section which is no longer compact but
becomes topologically R, the sphere gaining an infinitely
long tail. One can eliminate the nodal singularity at
x =$4 by choosing a =4m/A4 It mig. ht , s.eem that the ac-
celeration and black hole horizons become coincident in
this limit. This is not the case, however. The proper dis-
tance between the horizons (at fixed x and t) tends to a
constant as r+ 2 ~2/(3V3). This case will be discussed
further in Sec. IV.

III. GENERATING DILATON ERNST SOLUTIONS

A. Generating new solutions

In the case of vanishing dilaton coupling (a =0), Ernst
[4] has shown that the nodal singularities can be removed
by including a magnetic field of the proper strength run-
ning along the symmetry axis. The magnetic field pro-
vides the force necessary to accelerate the black holes.
The magnetic field can be added to the C metric via an
Ehlers-Harrison type transformation [19],which takes an

axisymmetric solution of the Einstein-Maxwell equations
into another such solution. The same transformation ap-
plied to flat spacetime produces Melvin's magnetic
universe [20], which is the closest one can get to a con-
stant magnetic field in general relativity. To follow the
same path as Ernst, we first need to generalize the solu-
tion generating technique that he employed to dilaton
gravity.

In the case of Kaluza-Klein theory (a =v'3), this turns
out to be quite simple. It is known that the charged
black holes in Kaluza-Klein theory can be generated
from the uncharged ones (i.e., Schwarzschild with an ex-
tra compact spatial dimension) by applying a coordinate
transformation mixing the time and internal coordinates,
a "boost," and then reidentifying the new internal coordi-
nate [12]. Similarly, we can add a magnetic field along
the symmetry axis of an axisymmetric solution to
Kaluza-Klein theory by doing a transformation mixing
the internal and azimuthal coordinates, a "rotation. "
Applied to flat space, this transformation re roduces the
dilaton Melvin solution given in [8] for a = 3. Together
with the known form of the transformation without the
dilaton field, the Kaluza-Klein case provides sufficient
clues to guess the correct transformation for general dila-
ton coupling. In the string theory case (a =1) this turns
out to be one of the O(1,2) transformations that is known
to act on the space of axisymmetric solutions [21].

Let (g„„,A„,P) be an axisymmetric solution of (2.1}.
That is, all the fields are independent of the azimuthal
coordinate y. Let the other three coordinates be denoted
by Cx']. Suppose also that A, =g, =0. Then a new

solution of (2.1) is given by

p2/(1+ g 2) t p —2/(1+a 2)
EJ 'J'

e
—2ag' e

—2agp2a /(1+a )

(3.1)
2 1+ 1+~

BA
(1+a )BA

2

1+a 1+a g 2 e2ag
4 gPP

The proof is presented in Appendix A. This transforma-
tion generalizes the "rotation"-type transformation of
Kaluza-Klein theory to all a. Although we will not write
the explicit transformations, it is possible to generalize
the "boost"-type of transformation to all a, also.

B. Dilaton Melvin solutions

Applying these transformations to flat space in cylin-
drical coordinates we obtain the dilaton Melvin solutions
given by Gibbons and Maeda [8]

To obtain the full O(1,2) group one needs to include the an-

tisymmetric tensor field in the action (1.1).
4We can relax this condition and construct new solutions only

assuming axisymmetry. However, the transformations are
somewhat more involved and will not be needed for our pur-

poses.
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2

(1+a )BA

—2ag p2a /(]+a )

2

1+ 1+& B2 2
P

ds2 —A2/(1+a )[ dr2+d 2+dz2]+p —2/(1+a ) 2d 2

(3.2}

The parameter B gives the strength of the magnetic field
on the axis via B = ,'F—„,F""~

C. Dilaton Ernst solutions

Applying the transformation (3.1) to the dilaton C
metric finally yields the dilaton Ernst solution:

ds2=(x —y) 2A A /"+' )[F(x)[G(y)dt G'—(y)dy }+F(y)G '(x)dx ]

+(xy)2A —2p —2/(1+a)F(y)G(x)dq)2

2 '/(1+ ') F(y} 2 1+&'
F(x) ' @ (1+a2)BA 2

2
1+a (1+(22)B2A= 1+ Bqx + (1 x r+ —Ax }—(1+r Ax) .

2 4A (x —y)

(3.3)

mA =Bq, (3.4)

where m and q are identified in terms of r+ and r ac-
cording to (2.4).

Note that we can read ofF the dilaton Melvin metric in
"accelerated" coordinates from (3.3) by setting
r+ =r =0. The metric functions then reduce to

Defining Q(y, x)=A /"+' 'G(x) the nodal singularities
of the C metric will be removed if the period of P is
chosen to be 4m/~()„Q~& and we impose

~ B„Q(~
= ~()„Q~~

.
In the limit r + A « 1, this constraint yields Newton s law

IG'(g, )I=IG'(g }I, (4.1)

setting r=it, we find that, just as in the a =0 case, anoth-
er condition must be imposed on the parameters in order
to obtain a regular solution. The condition arises in or-
der to eliminate conical singularities at both the black
hole and acceleration horizons with a single choice of the
period of r. This is equivalent to demanding that the
Hawking temperatures of the two horizons be equal.

In terms of the metric function G (y) appearing in (3.3),
the period of r is taken to be 41r/~G'($2)~ and the con-
straint is

F =1, G(x)=1—x

A= 1+ "+"B',(1-x') .
4A (x —y)2

(3.5)
yielding

(1—a )/(1+a )

(r4 C2}(k3 k2}
3 1

This form of the dilaton Melvin solution is useful for
studying in what sense the dilaton Ernst solution ap-
proaches dilaton Melvin. This is discussed in detail in
Appendix B. Here we note that, if the value of the physi-
cal magnetic field parameter B is defined to be

,'F„,F""on the a—xisas y ~$3,

„6
B =— B, . (3.6)

IV. DILATON INSTANTONS

The above solutions describe two dilaton black holes
accelerating away from each other along the axis of a di-
laton Melvin magnetic universe. Euclideanizing (3.3) by

where B, is the parameter that appears in (3.3). This
value of B is also the amount of fiux per unit area across
a small area transverse to the axis in the limit y ~$3 as
shown in Appendix B. In the limit r+ A «1 this reduces
to B =B,. Further, as discussed in Appendix B, we find
coordinates in which the dilaton Ernst metric (3.3) ap-
proaches the dilaton Melvin metric (3.2) near the outer
axis for r = 1/(x —y) ~ oo.

=(4—4}(4—4} (4 2}

Recall that we have restricted our parameters so that
g4 )g3 —g2 )g1 For all values of (2, (4.2) can be solved by
demanding that the horizons have zero temperature, i.e.,

g3 We will refer to these as type I instantons. For
(2 &1, the first factor on the left-hand side of (4.2) is
smaller than one, and there is also a second solution,
which we will call type II instantons. For (2 & 1, the first
factor on the left is greater than one, corresponding to
the temperature of the black hole horizon always being
greater than the temperature of the acceleration horizon,
and there are no other solutions.

We first consider the type II solutions with a &1.
These generalize the regular Euclidean metrics con-
sidered in the a =0 case [5—7]; the condition (4.2) is the
analog of the q =m condition on the parameters dis-
cussed in those papers. In the limit r+ A «1, for a & 1

one can show that the condition (4.2) leads to r+ =r
Since we have chosen the parameters so that there are no
nodal singularities on the t,y and x,g spheres, it is clear
that the topology of these spacetimes is S XS —[pt]
where the removed point is x =y =$3.

This instanton is readily interpreted as a bounce: the
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surface defined by ~=0 and ~=m has topology
5 XS' —jpt], which is that of a wormhole attached to a
spatial slice of Melvin and is the zero momentum initial
data for the Lorentzian Ernst solution. In addition the
solution tends to the Melvin solution at Euclidean infinity
(see Appendix B). The bounce describes the pair creation
of a pair of oppositely charged dilaton black holes in a
magnetic field which subsequently uniformly accelerate
away from each other. From the metric we deduce that
there is a horizon sitting inside the wormhole throat, lo-
cated at a finite proper distance from the mouth.

Turning to the type I instantons, we note that this is
again the case of two coincident roots, which has been
discussed above in Sec. IIC for B =0. There it was
pointed out that there are no nodal singularities even in
the absence of a magnetic field, and that consequently
there is no restriction on the value of B. The apparent
coincidence of the two horizons is an artifact of a poor
choice of coordinates and it can be shown that the proper

4, 3 yo++3e ~

1+—e
2 6

(4.3)

Writing the dilaton C metric (2.6) in the coordinates

1y= arccos (y —yo), P=&3et,
3E

(4.4)

and taking the limit t ~0, then gives

distance between the horizons remains finite as the roots
become coincident. Below, we exhibit a coordinate
change, originally used by Ginsparg and Perry to study
Schwarzschild —de Sitter instantons [22], which makes
this explicit for the C metrics.

In (2.6) let r+ A =2/(3/3) —e Iv'3, so that the limit
of coincident roots is e —+0. Specifically, introducing
yo = —+3(1+—', e ) the roots to order e are

d&2 —A
—

2(x ++3)—2 F(x) F( +3)(I—a )/2~ s'm gdP +F( —g3)'~ " ~ dg

+F(—&3)[G '(x)dx +G(x)dy ], A =qx, (4.5)

—2a4 F( —&3) 2
G (x)= —- —(x +&3) (x —&3/2)(1+ r Ax)" 2 2

F(x) ' 3v'3

We may then apply the solution generating transfor-
mations (3.1) with arbitrary parameter 8, though we will
not do this explicitly here. Euclideanizing (4.5) by setting

4=i/, we see that it is possible to eliminate the conical
singularities at the north and south poles of the (%,y)
section by making %' periodic with period
2m(l &3r A)' —" ' ' '. Indeed, the (%,g) section is
a round sphere and the topology of this solution is
S XR, in contrast to the type II instantons. It is not
clear what, if any, the physical significance of these in-
stantons may be.

V. DISCUSSION

The instantons presented in Sec. IV suggest that topol-
ogy changing processes can occur in dilaton gravity for
a &1. Specifically, the type II instantons describe the
pair creation in a uniform magnetic field of an oppositely
charged pair of a &1 dilaton black holes. The rate of
production of these black holes can be estimated in the
semiclassical approximation by calculating the action
[23].

It is interesting that the type II instantons exist only
for a (1. The interpretation of the type I instantons
which exist for all a is unclear, especially since they exist
for any value of the magnetic field. It therefore appears
to be difficult to estimate the production rate of charged
black holes in theories with a ~1 using semiclassical
:echniques.

Including additional matter fields may yield one way of

modifying the type II solutions to obtain instantons for
a ~ l. In particular, in [24] it was argued that in the
Einstein-Maxwell-Higgs theory which admits cosmic
strings, Euclidean solutions exist which correspond to a
string world sheet wrapped around the horizon of a black
hole. The effect of the string is to cut out a "wedge"
from the (r, r) section of Euclidean Schwarzschild, an
e6ect which could be approximated in a vacuum theory
by allowing a conical singularity at the horizon with a
specified deficit. Similarly, for a =1 say, cosmic strings
could be added to the model (1.1), in which case the type
II instanton with a certain conical singularity in the (t,y)
section could describe the (cosmic string induced) pair
creation of a = 1 black holes.

Another interesting possibility is that the physics of
black hole pair production for a ~ 1 is not so simply relat-
ed to regular Euclidean instantons. In Ref. [25] it was
shown that the thermodynamic behavior of charged
black holes with a ) 1 differs from that given by the naive
interpretation of their Euclidean sections. For 0 a (1
the temperature of the extremal black holes goes to zero
and Hawking radiation is extinguished, as one would ex-
pect. For a ) 1, however, the temperature of a black
hole, given by the periodicity of its Euclidean section,
diverges as extremality is approached, a result that was
regarded as puzzling [9]. This puzzle was partially
resolved in [25], where it was shown that, for a ) 1, the
Hawking radiation is in fact shut ofF'by infinite grey body
factors. For a =1 the temperature of the extremal black
hole approaches a constant and the results of the analysis
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in [25] are inconclusive. In our case, demanding regulari-
ty of the Euclidean section of the dilaton Ernst metric is
equivalent to requiring that the black hole be in thermal
equilibrium with the acceleration radiation. It is tempt-
ing to suspect that the inability to achieve this (for
nonzero temperature) for a ~ 1 is somehow related to the
physics uncovered in [25]. The study of black hole pair
production with a & 1 would then require more subtle
methods.

In the introduction, we summarized the cornucopion
scenario for resolving the paradoxes associated with in-
formation loss in the scattering of particles from extremal
a =1 dilaton black holes. In this scenario it is important
that the extremal black hole is nonsingular, with an
infinitely long throat leading to a second null infinity.
Since the extremal black hole geometries [using the total
metric (2.5)] for 0 (a ( 1 also have this property, it is nat-
ural to conjecture that these models all admit
cornucopion-type scenarios. Moreover, the instantons
we have constructed above indicate that for 0&a &1
there may not be a problematic infinite pair production of
cornucopions in a magnetic field. First, we expect the ac-
tion of the instanton to be finite. Furthermore, since the
created wormholes have finite length it would appear that
if one included matter fields and calculated the one-loop
determinants, one would not be including the infinite
number of states living far down the static wormholes.
In conclusion, one expects the pair production rate of
cornucopions to be finite since a cornucopion is not an
elementary particle but is deeply interconnected with the
geometry of spacetirne. As we have noted, we cannot say
anything definite about the case a = l. It would be in-
teresting to understand the implications of our exact re-
sults for the approximate instantons presented in [16].

Note added. We note that the dilaton Ernst solution
(3.3) does not asymptotically approach the dilaton Melvin
solution (3.2) although the metrics do match. A compar-
ison of the gauge field and dilaton for (3.3) and (3.2)
shows that the solutions are related by a constant shift in
the dilaton and a rescaling of the gauge field as in foot-
note 1. The details of this are given in [23].
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APPENDIX A: THE GENERATING TRANSFORMATIONS

Suppose that we have a solution to (2.1) that is axisym-
metric, i.e., independent of the azimuthal coordinate (((),

and further satisfies A, =g; =0, where x' are the other
three coordinates We . prove that the transformations
(3.1) generate a new solution by showing that the trans-
formations leave the action (1.1) invariant. We first
rewrite the action in terms of the rescaled total metric
(2.5) to obtain

6—24/ g e
—2$«g + 2 e2$[& —a i«F2

a 2 (Al)

where indices are raised with the inverse of the total metric.
Introducing the definitions

3
glJ g TlJ & g Tyq

(A2)

(() =P——ln V,
4

we can recast the action into the form

6—2a — .— a —1S=aJd xi/ ge ( ' R+ — d;Qd'P V'() $()'—V
a a

1+a
V

—
2g Vg(V 2 2$(1—a )/aV —(i+a )/2g g pig

8 I (A3)

where we have carried out the integration over y assum-
ing its range is 0 ~ y ~ a. The virtue of these definitions is
that the transformations (3.1) now take the simple form

I

3g 3g

yi g —4/(1+a ) y
(A4)

5We note however, that this logic has been questioned in Ref.
[26].

22'=—
(1+a )BA

1+aI+ BA
2
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To complete the proof a straightforward calculation
sho~s that the Lagrangian is invariant under these trans-
formations.

APPENDIX B: MATCHING THE METRICS

1. Determination of the magnetic Aux

Here we will determine the value of the physical mag-
netic field parameter B . The magnetic fiux through a
small area around the axis is given by

Mux= Jda B»= Jdq&dx t)„A

2. Matching the metric near the axis

We now show that the dilaton Ernst metric approaches
the dilaton Melvin metric near the outer axis as r~~.
Note that for the Euclidean section the outer axis,
x,y —+(3, is the only place where r~oo. We start with
the dilaton Melvin metric expressed in accelerated coor-
dinates, as discussed in Sec. III. There is then an ac-
celeration parameter A at our disposal in the matching.
Near the axis G(x)=A3(x —g3), where A,,=t)„G~,

3

Make the following coordinate transformation in the di-
laton Ernst metric (3.3):

aA,
b, tabb, x .

x =$3
(Bl) t= —A3t, y= ——,3'

4 '

The flux per unit area in the limit y ~(3 in dilaton Ernst
is then given by

)2/(1+a )
(B3)

Eflu 1 x

p3/2 (B2) 2(g3 —x)

and in the limit r+ A «1 reduces to Bz =B,. It is the
same relation one gets from just matching I'„F"'on the
axis. Near the axis the dilaton Ernst metric then has the form

2g F(g )A—(g )2/(]+a )

A,3(1+y )A g3

d-2dy +P2d~2+dp2
2(1+y )

(B4)

We can make a similar coordinate transformation on the accelerated form of the dilaton Melvin metric near the axis to
get

dsM„„;„- 2(y+1)dt
A (1+y)

+—2d —2+d —2

2(1+y )

(B&)

)2/(I+a )

A A+3
(B6)

Since the choice of A is just a choice of coordinates, this
shows that the two metrics are the same near the axis.

These two are the same if we identify the acceleration of
the Melvin coordinate system A according to

We note that in the preceding calculation, we took the
limit x,y ~(3 in the manner

x —(3~0, y
—g3- (x —g, ) t, q & —,',

which lets r G(x)~0 on the axis. Choosing q ) —,
' gives

an artificially singular slicing of the spacetime. Taking
the limit for q

=
—,
' shifts the constant A((3).
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