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A general dilaton gravity theory in 1+1 spacetime dimensions, with a cosmological constant A

and a new dimensionless parameter cu, contains as special cases the constant curvature theory of
Teitelboim and Jackiw, the theory equivalent to vacuum planar general relativity, the first-order

string theory, and a two-dimensional purely geometrical theory. The equations of this general two-

dimensional theory admit several different black holes with various types of singularities. The singu-

larities can be spacelike, timelike, or null, and there are even cases without singularities. Evaluation

of the ADM mass, as a charge density integral, is possible in some situations by carefully subtracting
the black hole solution from the corresponding linear dilaton at infinity.

PACS number(s): 04.70.Dy, 04.50.+h, 11.25.Sq

I. INTRODUCTION

Black holes and spacetime singularities are fundamen-
tal concepts which have been taken into account in the
search for the possible links between general relativity
and quantum mechanics. The black hole concept is con-
nected to the nonlocal notion of an event horizon. On the
other hand, a spacetime singularity is a concept which is
usually associated with unbound values of several phys-
ical quantities. Both concepts are not related a priori.
Yet, in classical general relativity, the existence of a black
hole implies the existence of a spacetime singularity. It is
conjectured that quantum effects of spacetime will play a
role in explaining the singularity as a true quantum ob-
ject. A possible quantum mechanical &amework for gen-
eral relativity is provided by string theory. Within this
theory, black hole solutions have been found for various
number of dimensions [1]. These solutions, in turn, allow
for the possibility of analyzing the singularity problem
&om new perspectives. In particular, black hole solutions
in two-dimensional (2D) spacetimes have been playing an
important role in the understanding of these issues. In-
deed, in pertubation theory, the string field equations
yield a 2D black hole with spacetime singularities simi-
lar to the Schwarzschild metric [2, 3]. In contrast, in the
exact conformal quantum field theory [3, 4] it has been
shown that the corresponding spacetime is free of singu-
larities [5]. This is welcome since it provides an example
where the exact quantum description prevents the forma-
tion of a singularity. There are several 2D theories with
nontrivial dynamics. One that has been widely studied is
the constant curvature theory of Teitelboim and Jackiw
[6, 7]. Within this theory one can show that the corre-
sponding black hole is also free of spacetime singularities
and with a structure analogous to the exact string solu-
tion [8]. A 2D theory, which also has been discussed, is
the B = T theory [9, 10]. Another 2D theory, introduced
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in [ll], equivalent to planar general relativity, also ad-

mits black hole solutions which, as expected, give rise to
spacetime singularities.

In order to see how these features, such as existence
or not of singularities and event horizons, might develop
from theory to theory, it is important to have a gen-
eral theory in which the above 2D theories could be con-
nected, each being a special case of the general theory. In
this manner, results found in one of the theories could be
related straightforwardly with the others. Brans-Dicke
theory in 2D provides such a link [11]. The theory is
specified by two fields, the dilaton P and the graviton

g„„, and two parameters, the cosmological constant A,

and the parameter ur. In this paper we solve and ana-
lyze black hole and related solutions for any values of the
parameters ~ and A. In order to distinguish black hole
solutions Rom other solutions we have to define properly
the notion of black hole event horizon. As it is known [12]
one has first to characterize the possibility of escaping to
future infinity, which we denote by J'+ (although it does
not necessarily mean future null infinity). We then say
that the spacetime M contains a black hole if M is not
completely contained in the causal past of future infin-

ity denoted by J (P+). The black hole region is then
given by M —J (P+), whose boundary is defined as be-
ing the event horizon. In Sec. II, we set the equations.
In Sec. III, we divide the solutions in difFerent classes,
depending on the values of the various parameters, and
study their causal structure with the corresponding Pen-
rose diagram. In Sec. IV, we calculate the Arnowitt-
Deser-Misner (ADM) masses of the solutions. Finally, in
Sec. V, we conclude and comment on the links between
the solutions.

II. THE EQUATIONS

We propose to solve the action

1S= — d zg ge ~ B—4—ur(8$) +4k2'
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e T b = —2(~ +1)D /Dbms+ D Dbg —g bD, D'P

+(~+ 2)g bD, QD'P —g bA = 0, (2)

where g is the determinant of the 2D metric, B is the cur-
vature scalar, P is a scalar field, A is a constant, and u is a
parameter. For w = 0 one obtains the Teitelboim-3ackiw
theory, for cu = —

2 one has planar general relativity, for
—1 one has the erst-order string theory, and for

~ = +no one obtains a pure geometrical theory. Equa-
tion (1) is a Brans-Dicke type action in two dimensions.
A generalized action, where P = P(g), ur = w(g), and
A = A(g) has also been proposed [13j. Here we treat ~
and A as constants.

Varying this equation with respect to g
b and P one

gets the equations

ds = — to cosh (St tz + 2)Asz) + do,

which is defined for —oo ( z ( oo. Inserting this solution
in Eq. (6) we obtain the metric

ds' = —tanh' ~ + 2 A2x

4((++1)s cosh - ' zt(z + 2)Asz) dt' + dz', (10)

t4d+1

b 2(~+1)
cosh - * stt(z+ 2)Asz),

where the third constant of integration was absorbed by a
time rescaling. To clarify some features of the metric it is
worth writing it in the Schwarzschild gauge, by defining
the radial coordinate r:

R —4~D,D'Q + 4pdD, QD'Q + 4A = 0, (3) with

where D represents the covariant derivative.
In order to And black hole solutions we write the metric

in the unitary gauge

d82 2vdg2 + dZ2 (4)

—((u+ 2) P + A = 0,

v +A =0,
2~/ +v —2~/ +2u)P v +v' —2A =0.

(s)

(6)

(7)

Note that the Bianchi identities in vacuum imply that 2D
spacetimes have only two independent equations; thus we

can consider (7) as a spurious equation.

III. THE SOLUTIONS

Equation (5) can be cast in a more elucidative form. If
one defines C = e ~ +21'b, then (S) turns into 4 = (~+
2)A2Ct. Thus, the character of the solution (hyperbolic,
trigonometric, or linear) will depend on the sign of (u +
2) A2. We consider the three cases separately: (~+2)A

0, (~ + 2)Az & 0, and (~ + 2)A = 0.

A. (~+2)Az &0

In this case the general solution of Eq. (5) is

where v is a function of x and t. If we assume the solution
to be static in these coordinates, then Eqs. (2) and (3)
reduce to the three equations

2(ur + 1)A2

Q((d + 2)A2

and b = const ) 0. We draw attention to the fact that
the line —oo ( z ( +oo corresponds to the segment

co+ 1

1 & ar/(b +& ) & +oo; each pair of space inverted points
degenerates into just one r. Because of this important
circumstance true event horizons will form in cases where
black holes were not expected, as it will become clear.
Using Eq. (11) the dilaton and metric fields take the form

.l. .. .

P =- —1n(ar) ~i-+i~

2 dr
ds = —a r —b(ar)-+' dt +,(14)

a r —b(ar)-+t

where in Eq. (13) we have set to zero the constant of
integration. In Sec. IV we show that the constant b (or
Pp) is related with the ADM mass of the solution. Note

m+1
that ar = 6 +2 gives the radius of the horizon and also
that in the unitary gauge the value of the dilaton at the
horizon, z = 0, is P = Pp.

In the Schwarzschild gauge the solutions are expressed
as power laws in the radial variable ar. The cases u = —1
and ~ = —2 seem to have to be handled separately, but in
fact one can treat them as limiting cases. As usual, when
one has power-law solutions, one also expects exponential
and logarithmic solutions. These are precisely given by
the cases ~ = —1 and ~ = —2, respectively.

An important quantity, which signals the appearance
of a singularity, is the scalar curvature, given by

1
ln[Acosh(g(ur + 2)Azx)

m+2
+Bsinh(g(~ + 2) A'z) ], (8)

4 (~ + 1) 2~b -+~
B = —2A + ar +1

tzt+ 2 tzt+ 2
(is)

where A and B are constants of integration. Without
loss of generality, this solution can be subdivided in three
different classes, A & ~B~, ~A~ & ~B~, and A = ~B~.

X. A&(H[

Since for different values of 6 the causal structure does
not change, we take here b = 1 (which as we shall see in
Sec. IV is equivalent to Pp = 0). To find the maximal
analytical extension of the metric one has to write it in
the conformal gauge. The conformal radial coordinate r
is found from

As we will show this case yields eight black holes.
Whenever A & ~B~, solution (8) can be written as

dr

a r — ar ~+'
(16)
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In the advanced and retarded null coordinates,

u=t —r„
the metric becomes

v = t+r„ (17)

ds = —a r —(ar) +' dudv. (18)

The maximal analytical extension is found through the
Kruskal coordinates, given by

0
II
C)

1 —Q(~+2)%~a

Q((u+ 2)A'
(19)

Q(&uy2)4~v

Q(ur + 2)A'

In general, the integral in Eq. (16) does not have an
analytical expression. Moreover, the maximal analytical
extension depends critically on the values of cu. In what
follows we consider rational values of u. There are seven
cases which have to be treated separately: 0 & ~ ( +oo,
u = 0, —1 & u & 0, u) = —1, —2 ( u) ( —1, —oo ( u) &
—2) and 4) = goo.

(a) 0 & u & +oo. Within this range of values of ur

there is no general analytical solution for the integral
in Eq. (16). Thus, one should analyze a typical case.
Here we consider ~ = 1. The dilaton and the metric in
Schwarzschild coordinates are

e-'4' = ~ar,
dr2

ds' = —(a'r' —~ax) dt'+
a2r2 — ar '

(21)

(22)

with a = ~. The conformal radial coordinate can be~3 '

found from Eq. (16):

2~S 2~ar + 1
arctan

3a 3
(~a~ 1)'—

r, = —ln
3a ar + ~ar + 1

(23)

and

ar —1 S

~ar (ar + ~ar + 1) '
Iv « —1I

~3 arctan
(24)

1 ~ar —1 ~s „~ ~~+~
UV =—

3&' par + ~a~ y 1

One can now draw the Penrose diagram. For ar ~ +oo,
one has UV = —3» e ~, which is a vertical hyperbola
in the Kruskal picture, i.e., a straight vertical (timelike)
line in the Penrose diagram (see Fig. 1). There is a hori-
zon at ar = 1, UV = 0. We recall that this region,
1 ( ar ( oo, is degenerate in the sense that each point
r corresponds to a pair (—x, x) in the unitary gauge.
Thus, region I is formed by two distinct triangles glued
at ar = 1 (x = 0). Note now that in Kruskal coordinates
the metric is not analytic at ar = 1. From Eq. (24) we
see that on passing from ar ) 1 to ar & 1, the metric
changes sign. Thus in region II, for ar ( 1, one has to

In the Kruskal coordinates (19) and (20) the metric takes
the form

FIG. 1. Penrose diagram for the black hole with ~ = 1,
A ) 0, and A ) IBI (representative case of 0 & ~ & +oo).
Region I corresponds to two triangles glued at the horizon.
Double lines represent spacetime singularities and simple lines
in6nities and horizons. This diagram is similar to the extreme
four-dimensional Reissner-Nordstrom black hole diagram.

do U + U = —U( —u) in order that the time direction

is vertical. In this patch one has UV = —
3&, e 2~3 for

ar = 0. Thus the singularity at ar = 0 is also a vertical
hyperbola, i.e., is a timelike singularity. To regions I and
II there would correspond regions I' and II', obtained
through the transformation u ~ —u, v ~ —v, where
the light cones are reversed. However, no trajectory can
leave regions I and II to enter regions I' and II', and vice
versa. For this reason, regions I and II are totally dis-
connected from I' and II'. The latter regions are simply
replicas of the former, and therefore there is no need to
draw them. The future infinity g+ can be properly de-
fined at ar + oo. As a matter of fact, there are two
disconnected g+ at z = +oo. Observers in these two
disconnected regions can only communicate by passing
through the horizon ar = 1 (x = 0) into region II. The
solution is indeed a black hole, because the causal past
J (J'+) is not the whole diagram. One can now mul-

tiply regions I and II ad infinitum, obtaining a Penrose
diagram which is similar to the one corresponding to the
extreme four-dimensional Reissner-Nordstrom black hole
solution. Note, however, that whereas inside the horizon
we have here a time-dependent metric, in the extreme
Reissner-Nordstrom case the metric is static. The scalar

4Acurvature R = —
3 8+

~ „~,&, is negative for all r,
which means that gravity has a nonattractive character
everywhere. In particular, it gives a timelike singularity
inside the horizon.

(b) u = 0. This case gives the Teitelboim-Jackiw the-
ory, where the scalar curvature is constant, R = —4A .
We have shown [8] that, surprisingly, this constant curva-
ture theory has two important features: first, it admits a
black hole, and second, the black hole is free of spacetime
singularities. The maximal analytical extension gives a
chain of universes connected by timelike wormholes (see
Fig. 2 for the Penrose diagram). In Schwarzschild coor-
dinates the dilaton and the metric take the form

e-'& = ar, (26)
dr2

ds' = —(a'r' —1) dt' + (27)

where a = ~2]%I. There is again a duplication of region
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ar=O

FIG. 3. Penrose diagram for the black hole with ~ = —-'

(representative case of —1 ( u ( 0), A ) 0, and A ) ~B~.

Regions I and I' describe two identical but space-inverted re-

gions. Regions II and II' describe two identical but time-
reversed regions, the black hole and the white hole, respec-
tively. Infinities are timelike lines. The case ~ = ——„ is also a
black hole in general relativity.

FIG. 2. Penrose diagram for (i) the maximally extended
black hole of the Teitelboim-Jackiw theory, u = 0, A ) 0,
and A ) ~B~, and (ii) the black hole with ~ = goo, uA ) 0,
and A g ~B~. Region I is also duplicated. There is an infinite
chain of regions, none of them contains a singularity.

I, so that observers at each end of the line z ~ koo can
only communicate if they enter through z = 0 (ar = 1)
into region II. An identical duplication applies to region
III. The nonsingular character of the whole spacetime is
analogous to the behavior of the exact string black hole

[5]. The primed regions (I', II', and III') are copies of the
unprimed ones.

(c) —1 ( w ( 0. For this range of values of w there is
one which is particulary important, w = —2. This gives
planar general relativity [11]. The dilaton and metric in
Schwarzschild coordinates are given by

—2f 2 2 (28)

ds = —~ar ——~dt
(, , I ), dr

(29)ar) a'r' ——'
a@

where a ~A~. The scalar curvature is R

(30)

1 —
( )

~ There is a spacelike singularity at

ar = 0, where B = +oo. Inside the horizon the curva-
ture is positive; it passes through zero at the horizon,
ar = 1, and then becomes negative. Infinity is rep-
resented by a timelike line, as in the four-dimensional
anti —de Sitter spacetime. The Penrose diagram is given
in Fig. 3. Region I can also be duplicated by using the
unitary gauge. However, we note that, contrary to the
two previous cases, the black hole character of the solu-
tion does not depend on this duplication. In other words,
solution (28), (29) is by itself a black hole solution. This
remark also applies to the black holes described in the
following three subsections [III A 1 (d) —III A 1(f)].

(d) ld = —1.
This is the original two-dimensional black hole [2, 3]; it

gives the exponential metric. In the Euclideanized ver-
sion is called the cigar space. From eq. (12) we see that
for w =- —1 we lose the scale, a = 0. Then, we have to
define a new coordinate, r ~ —lnar. The dilaton and
metric are then

dr2
8 = — y —e

I —e 2
I
Ar (31)

The range of r is —oo ( r ( +oo. The scalar curvature
js g —4&2e —2

I I and so there js a sjngular jty at r ~
—oo. Spacetime is asymptotically flat for r ~ +oo. The
Penrose diagram is shown in Fig. 4; it is identical to the
Schwarzschild black hole. Two new regions above and
below the singularity have been discussed in literature
I3, 4)

(e) —2 ( w ( —1. Here we analyze two typical cases,
~ = —

2 and a = —3, which give different causal struc-
tures.

For w = —— the dilaton and metric are
2

—2(j)-2
a r

dr2
ds' = —(a'r' —a'r'j dt' +

(32)

(33)

with a = —v 2]A]. In Schwarzschild coordinates the
scalar curvature is given by B = —4A (1 —3ar). There
is a spacelike singularity at ar m +oo and a tirnelike sin-
gularity at ar ~ —oo. It is useful to change the radial
coordinate into az = —.The metric then takes the form

FIG. 4. Penrose diagram for the black hole with ~ = —1,) 0, and A ) ~B~. It is similar to the diagram of Fig. 3, but
now infinities are null, I.e. , is identical to the Schwarzschild
diagram. This is the black hole of string theory.

2 1 1 5 , dz'
ds = — 1 ———

I
dt +a2z2 az) 1

az-

We see that in these coordinates the metric is confor-
mal to the Schwarzschild metric. However, at ar = 0
(az = +oo) one can continue the solution into the other
singularity at ar = —oo. To make the manifold spatially
complete one extends it vertically, giving an infinite chain
of universes (see Fig. 5).
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where a = 4]A~. The scalar curvature is R

4A 8 —~, which blows up ar = 0. The singular-

ity is a null line hidden inside the horizon. The Penrose
diagram is shown in Fig. 7.

(g) &u = goo. Taking the limit u ~ goo in Eqs. (13)
and (14) we obtain

=0

ds = —(a r —ar) dt2= 22 2
dr'

a2r2 —ar ' (40)

FIG. 5. Penrose diagram for the black hole with u = ——
(representative case of —2 & u & —1), A ) 0, and A ) ~B~.

There are an infinite chain of universes containing spacelike
and timelike singularities.

For u = ——the dilaton and metric are
3

—2P
a r

dr2
ds' = —(a'r' —a'r') dt'+ (36)

1—2P

~ar '

dr2
ds' = — a'r2 —(ar)a~2 dt'+

(ar)s/2 '

(37)

with a = —
~A~ and R = —sA2[1 —6(ar)2]. Now,

the singularities at ar = koo are both spacelike. The
maximal analytical extension is given by a diagram that
covers the whole plane (see Fig. 6). These two diagrams
cover all possibilities for rational ~.

(f ) —oo & ur ( —2. As a typical case we take u = —3.
Note that since a+2 & 0 we are considering A2 ( 0. The
dilaton and the metric in Schwarzschild coordinates take
the form

This case yields naked singularities, anti —de Sitter
spacetime, and also black hole solutions. Whenever

[A~ & ~B~, Eq. (8) takes the form

1
lnsinh

~

g(tv + 2)A z) + $0,a+2
and the metric in the unitary gauge is given by

(41)

ds = —coth ~+ 2 A22;

)&sjnh ~+ (v+2 A x dt +d~ . 42

with a = 2~%~, A = wA = const & oo. As one can
easily see &om Eq. (15), the scalar curvature is constant,
R = —8A2. Thus, we obtain a black hole with a causal
structure similar to the ur = 0 case (see Fig. 2) [10]. By
adding a Lagrangian matter term to the action (1) one re-
covers in this limit the R = T theory. In four dimensions
the Einstein theory of relativity is also recovered from
the Brans-Dicke theory by taking the limit ~ m +oo.
In this sense it is natural to consider the theory given

by Eq. (1) in the limit u m goo as the two-dimensional
analogue of general relativity. This is in contrast with
the case u = —2, which is identical to vacuum planar
general relativity.

Since ~ ~ —oo and u ~ +oo have the same solutions
one can form a cyclic chain of diagrams, the next one
being the typical case u = 1 (the diagrams with ~ =
—2 and A ) 0 or A & 0 —Secs. IIIC1 and IIIC2,
respectively —can also enter in this cycle).

FIG. 6. Penrose diagram for the black hole with u = ——
2

3
(also representative of —2 & ru & —1), A ) 0, and A ) ~B~.
There are an infinite chain of universes containing spacelike
singularities. The diagram tiles the whole plane.

FIG. 7. Penrose diagram for the black hole with cu = —3
(representative case of —oo & u & —2), A & 0, and A ) ~B~.
The singularities are null and the infinities are timelike.
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To write Eq. (42) in the Schwarzschild gauge, one defines
the radial coordinate r,

co+ 1
$ (m+2 2(~+1)

sinh - * Q(~+2)i*z),
a (43)

where a was defined in Eq (.12) and b ) 0. Then the
dilaton and metric fields take the form

P = —ln(ar) '~.+&1 (44)
r2

ds = — a r + b(ar) -+& dt +, (45)
a r + b(ar) -+i

FIG. 9. Penrose diagram for the anti —de Sitter spacetime
with ~ = 0, A ) 0, and ~A( & (B~.

where in Eq. (44) we have set to zero the constant of
integration. As for Sec. IIIA1 we now divide Sec. IIIA2
in seven subsections according to the range of ~. In this
section, as in Sec. IIIA1, we choose b = 1 (Po ——0).
Taking b & 0 in Eq. (14) is equivalent to Eq. (45).

(a) 0 & u & +oo. For the typical case u = 1 the metric
takes the form

dr2
ds = —(a r +~ax)dt +

a r + ar (46)

The conformal radial coordinate can be found to be

2 ~ar + 1 2~3 2~ar —1r, = —ln + arctan
par —~ar + 1 ~3

dr2ds' = —(a'r' + 1) dt' + a2r2 + ] (48)

Spacetime is nonsingular and we have here the two-
dimensional anti —de Sitter spacetime (see Fig. 9). This
is a solution of the Jackiw-Teitelboim theory.

(c) —1 & or & 0. A typical case is ur = —z, which gives
a solution of planar general relativity. The metric is

ds = —~ar + —~dt+ dr

ar) a2r2 +—
The conformal coordinate is given by

(49)

Defining the null coordinates u = t —r, and v = t + r„
we find in a Penrose diagram (u, v) that the singularity
and infinity are timelike. Since there are no horizons, the
singularity is naked (see Fig. 8).

(b) u = 0. The metric is given by

1 (1+ar) 1 2ar —1r, = ——ln + arctan
6a 1 —ar + azrz v3

(50)

Performing the transformation ar m —ar we see that
this solution coincides with the black hole solution given
in Eq. (33) (see Fig. 5 for the Penrose diagram).

For u = ——the metric is4
3

dr2
ds = —(ar +ar )dt + a2r2 + a4r4' (52)

which corresponds to the naked singularity shown in
Fig. 11.

(f ) —oo & w & —2. As before, we consider a typical
case ~ = —3. Then the metric in Schwarzschild coordi-
nates takes the form

dr
ds = — ar +(ar) ~ dt + azrz + (ar)s~z

In a Penrose diagram (u, v), one can see that there is a
timelike naked singularity. Infinity is also timelike just
as in Sec. III A 2 (a) (see Fig. 8).

(d) ~ = —1. This is the case provided by string the-
ory. The spacetime has been widely studied [3, 4]. In
the Euclideanized version it is called the trumpet space-
time. The Penrose diagram is identical to the four-
dimensional Reissner-Nordstrom naked singularity (see
Fig. 10). Spacetime is asymptotically flat.

(e) —2 & w & —1. For the typical case u = —
2

the
metric is

dr2
ds = —(ar +ar )dt +

a r + a r

The Penrose diagram is shown in Fig. 12. The singularity
at ar = 0 is represented by null lines.

0
iI

0
II+
8

8

FIG. 8. Penrose diagram for the naked singularity in cases
(i) 0 & (u & +oo, A ) 0, and ~A~ & ~B~, (ii) —1 & (u & 0, A

0, and )A) & (B~. The two points represent timelike infinity.
Spacelike and null in6nities are represented by timelike lines.

FIG. IO. Penrose diagram for the naked timelike singu-
larity in cases (i) u = —1, A ) 0, and ~A~ & ~B~, (ii) u = —1
and A = 0 (in this case A must be dropped out).
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FIG. 13. Penrose diagram for the Minkowski spacetime,
corresponding to cases (i) u = —1, A ) 0, and A = ~Bi, (ii)
u=pooandA =0, (iii)u=0andA =0, (iv) A =0,
co= —2, and a=0.

FIG. 11. Penrose diagram for the naked timelike singu-
larity in cases (i) u = ——,A ) 0, and ~Ai & ~B~, (ii) w = ——
and A = 0 (in this case a must be replaced by c).

the scalar curvature is constant, R = —2a, there are no
singularities.

B. (~+ 2)As & 0

(g) u = goo. In the limit ur -+ goo Eqs. (44) and (45)
become

The solution of Eq. (5) changes from hyperbolic to
trigonometric and is given by

=0,
dr2

ds = —(a r +arjdt +
G T +QT

(54) 1 (
ln Cess~ SC

—(to+2)Asn)
su+ 2

This black hole solution coincides with the solution found
in Sec. III A 1 (g) (Fig. 2), as it can be seen by redefining
T M T n

a. A= iai

+Dsin —u+ 2 A2x (60)

where C and D are constants of integration. This can be
always put in the form

Whenever A = iBi, the solution of Eq. (5) takes the
form of the linear dilaton

1
loess (y' —(ts + 2)Asn) + po,a+2 (61)

(t'(&) =— z+ Pp.
Q((u+ 2)A'

(56) which is defined for ized & 2
. The metric in—(~+2)A~

the unitary gauge can be written as

The metric is given by

(57)

where the constant a is defined in Eq. (12). For u = —1
one obtains immediately from Eq. (57) that spacetime is
of Minkowski type (see Fig. 13). For u g —1 the dilaton
and the metric in the Schwarzschild gauge read

1

P = -ln(ar)'(. +»,
dr2

d8 = —ardt + (59)

Taking b = 0 in Eq. (14) is equivalent to Eq. (59). This
is not a black hole solution with horizons at ar = 0
(x = —oo), since there are no duplications. The lin-
ear dilaton with u = —2 is treated in Sec. IIIC4. The
maximally extended spacetime is shown in Fig. 14. Since

d82 = —tan2 —a+2 A2z

4{~+1.)
x cos '

~ Q—(o +2)Asn) dI + do (62)

Schwarzschild coordinates are recovered if we write
cos —u+ 2 A x = ar +&b, where a

)
. The metric is then

Q—((v+2)A~

FIG. 12. Penrose diagram for the naked null singularity
in cases (i) —oo & w & —2, A & 0, and iAi & iBi, (ii)—oo & (s) & —2 and A = 0, (in this case a must be replaced
by c).

FIGn 14. Penrose diagram for the linear dilaton, appear-
ing in cases (i} (tu + 2)A ) 0 ((s) g —1) and A = iBis (ii)
A = 0, ~ = —2, and n + 0.
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ar=0

ar=O

FIG. 15. Penrose diagrams for the cosmological solutions
with 0 & ~ & +oo and A & 0. There are two disconnected
pieces, one having the singularity in the past, the other with
the singularity in the future. This diagram can be obtained
from the diagram of Fig. 1 by a 90' rotation.

FIG. 19. Penrose diagram for the naked singularity with
~ = —

~ and A & 0. Singularities are timelike and spacelike.
This diagram can be obtained from the diagram of Fig. 5 by
a 90' rotation.

FIG. 16. Penrose diagram for the de Sitter spacetime with

(i) u = Oand A & 0, and (ii) u =+oo, uA & 0. This
diagram is constructed by horizontally pasting diagrams of
the four-dimensional de Sitter spacetime. This diagram can
be obtained from the diagram of Fig. 2 by a 90' rotation.

ar=+co

Oi
II
C)

—2 2 2
dr2

ds = — b(ar) -+~ —a r dt
b(ar) +' —a2r 2

(63)
As before, we chose b = 1 (Po ——0). One can now

work the maximal analytical extension. We again divide
into seven distinct cases. It is easy to work out that the
Penrose diagrams are given by a 90 degrees rotation of
Secs. IIIA 1(a)—III A 1(g) (see Figs. 15—21). We now

quickly comment on each typical solution, as given in
Sec. III A 1.

For u = 1 there are two difFerent diagrams (see
Fig. 15), one with the singularity in the past, the other
with the singularity in the future. This is in contrast
with Sec. IIIA1 (a) (see Fig. 1), where the two discon-
nected pieces were simply replicas of each other. Region
II is duplicated. However, the horizons are cosmological
rather than black hole event horizons.

For ~ = 0 this solution corresponds to the 2D de Sitter
spacetime. The maximal analytical extension is given in

FIG. 17. Penrose diagram for the naked singularity with
—1 & u & 0 and A & 0. This diagram can be obtained from
the diagram of Fig. 3 by a 90' rotation.

FIG. 18. Penrose diagram for the naked singularity with
cu = —1 and A ( 0. This diagram can be obtained from the
diagram of Fig. 4 by a 90 rotation.

FIG. 20. Penrose diagram for the naked singularity with
(IcJ 3 and A & 0. Singularities are timelike . The diagram
covers the whole plane. This diagram can be obtained from
the diagram of Fig. 6 by a 90' rotation.
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FIG. 21. Penrose diagram for the naked singularity with
—oo & u & —2 and A ) 0. This diagram can be obtained
from the diagram of Fig. 7 by a 90' rotation.

Fig. 16. Region I is duplicated. The diagram is rather
similar to the one obtained by pasting together diagrams
of the four-dimensional de Sitter spacetime. Contrarily
to the four-dimensional case, the Penrose diagram is not
observer dependent.

For u = —1/2 and u = —1 the timelike singularities
are naked (see Figs. 17 and 18, respectively). Regions I
of both diagrams are duplicated. Inanities are spacelike
and null for ur = —1/2 and ur = —1, respectively.

For ur = —3/2 and for u = —4/3 the singularities are
naked (see Fig. 19 and 20, respectively).

For ~ = —3 the Penrose diagram looks like a
Schwarzschild diagram, where the singularities take the
place of the Schwarzschild infinities (see Fig. 21).

For ~ = goo the Penrose diagram is similar to the
u = 0 case (see Fig. 16).

C. (co+2)A = 0

Here there are four distinct cases to be considered.

f. A~gOand(u= —2

This solution gives a naked singularity. In the unitary
gauge, it is given by

FIG. 23. Penrose diagram for the highly naked singularity
with ~ = —2 and A & 0. The whole frontier of the diagram
is singular. This diagram can be obtained from the diagram
of Fig. 22 by a 90' rotation.

where we have set to zero in Eq. (66) the constant of
integration. It is an interesting example. The scalar cur-
vature is R = 12A + 8A ln( —2~A~r). Thus, there are
singularities at ~A~r = 0 and ~A~r = —oo. The Penrose
diagram (see Fig. 22) shows that the whole frontier is
singular. The solution can be called a highly naked sin-
gularity.

2. A~(0 and~= —2

The Penrose diagram for this naked singularity is given
by a 90 degrees rotation of the previous case, Sec. IIIC1
(see Fig. 23).

8. As =0 and~+ —2

It is straightforward to solve the differential equations
(5) and (6) to give

A2

4 = ——*'+do
2

(64)

(65)

1
1nz+ Pp,(8+2

ds = —x +2dt +dz .

(68)

(69)

In the Schwarzschild gauge the dilaton and metric read
In Schwarzschild coordinates this gives the logarithmic
case mentioned earlier: 1

ln cr,
1—2P

2/A/r'

ds = —4A r ln( —2~A~r) dt +—1 dr2

4Azrz ln (
—2~A~r)

(66)

(67)

2
ds = (cr) -+' dt', +-dr

Cr +1
(71)

+2, we have in Eq. (70) set to zero the
2(~+i)

constant of integration. For ~ = —1 one has to redefine
the radial coordinate r as in Sec. III A 1 (d).

A
II
C)

FIG. 22. Penrose diagram for the highly naked singularity
with ~ = —2 and A ) 0. The whole frontier of the diagram
is singular.

FIG. 24. Penrose diagram for the naked singularity in
cases (i) 0 & cu & +oo and A = 0, (ii) —1 & cu & 0 and
A = 0. Singularities are timelike.
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cr=- m

X
Q(u) + 2)A2

ds =g bdx dx = —e dt +dx,

(75)

(76)

FIG. 25. Penrose diagram for the naked singularity in the
case ~ = —— and A = 0. Singularities are timelike and
spacelike. The whole frontier is singular.

m+2
From the scalar curvature, 8 =

(

4
l, (cr) +i, we

conclude that for all values of ur (except ~ = 0 and
ur = goo) there are singularities; since horizons are ab-
sent, these singularities are naked. For —oo ( ~ ( —2
the singularities are null (see Fig. 12), and for other val-
ues of u the singularities are spacelike and timelike (see
Figs. 10, 11, 24, and 25). For ~ = 0 the spacetime is of
the Minkowski type (see Fig. 13). In the limit cu -+ goo
the metric (69) goes to the Rindler metric, whose maxi-
mal analytical extension yields the Minkowski spacetime.

A =0 andw= —2

The solution is

2 1 Awhere a = ( + 1 [see Eqs. (56) and (57)]. At spatial
Q(~+2)A2

infinity, z —i oo, the black hole solution (9), (10) can be
written as

0=4+v,
gab gab + ~ab y

(77)

(78)

where P and g b are the background (linear) dilaton solu-
tions given in Eqs. (75) and (76), and y and b, s are the
fiuctuations above the background due to the presence of
the black hole. Now, when z -+ oo, g gTo —goes into

T O ~ 2/(~+2)X&x ~'P +
Q(a+ 2)A )

(79)

From (9) and (10) and (75)—(78) we find

e + 'e V + "*andh„=0 Thus2
v (~+2)P2

from (74) and (79) one obtains

P = nz+ (bo,

e4~*dt2 + d~2
(72)

(73)

]. A2

2 g(u) + 2)A'
e

—2(~+2)Pp (80)

where o. is any constant with the same units as A. This
case yields the linear dilaton solution of ~ = —2, which
is identical to the case analyzed in Sec. III A 3. The cor-
responding Penrose diagram for n g 0 is given in Fig. 14.
n = 0 gives the Minkowski spacetime.

IV. THE ADM MASSES OF THE SOLUTIONS

A useful and important quantity that appears in the
theory of general relativity is the Arnowitt-Deser-Misner
(ADM) total mass, which can be defined for isolated
black holes. For the two-dimensional black holes one can
calculate an analogous quantity. In a static spacetime
there is a timelike Killing vector, ( = (&,), which im-

plies the existence of a conserved quantity given by p
Tos(, where T s is given in Eq. (2). The correspond-
ing charge density is a total divergence, Po = g—gp .
The total charge is then the analogue of the ADM mass,
which can be found through the equation

P dp = —gT" dp, (74)

where p represents the spatial coordinate at spatial in-
finity.

In this paper we have worked with the unitary and
Schwarzschild gauges. In order to compare the expression
for the ADM masses we calculate the integral of Eq. (74)
in both gauges.

The idea is to subtract in a correct manner the black
hole &om the corresponding linear dilaton solution at
spatial infinity. In the unitary gauge the linear dilaton
solution is given by

One can easily End that in this case p = 0 and hzz ——

3w+4
b(ar) -+' . Thus, from (74) one obtains

MBH ———- b.
2 Q(~+ 2)A2

(82)

In the Schwarzschild gauge the mass of the black hole is

related to b, the value of ar at the horizon, since there b =
(ar) +'. This is what one should expect from experience
with the Schwarzschild metric. Through Eqs. (80) and

(82) we can relate Ps and b by

—2(~+~)yp (83)

Note that expression (80) applies only for the solutions
of Sec. IIIA1, where A ) ]B~ (b ) 0). On the other
hand, Eq. (82) is valid for b ) 0, b ( 0, and b = 0. It is

now interesting to analyze expression (82) for the several
solutions we have obtained.

When (m+2)A ) 0, A ) 0, and b ) 0 one has
seven diff'erent black holes [Secs. III A 1 (a)—III A 1(e)
and IIIA1(g), Figs. 1—5 and 7, respectively], and the

In the unitary gauge the mass depends on Ps, the value
of (b at the horizon z = 0 (see also [3]). Following the
same procedure for the Schwarzschild gauge we And from
Eqs. (13) and (14) and the corresponding linear dilaton
solutions (58) and (59) that the total divergence is given
asymptotically by

o 0 2~ps 0(p 1 a 3(++4
~gTp ——(ar) -+~ a + — (ar) =+i hii

OT BT 4M+ 1

(81)
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ADM mass is non-negative, MBH & 0. For cu = 0 one
obtains the mass of the Teitelboim-Jackiw black hole,

M(w = 0) =
2 zb~A~. For ur = —

z one obtains the

two-dimensional mass (in this case a surface density) of
the corresponding planar black hole in general relativity,

M(w = —2) =
2 &b~A~. For u = —1 one obtains Wit-

ten's value, M(ur = —1) = zb~A~. In the limit &u ~ goo
one obtains the surprising result M(u = goo) = 0, al-
though &om the causal structure of the solution, Sec.
III A 1 (g), one can ascertain the presence of a black hole.
When (u + 2)A ) 0, A ) 0, and b & 0, which corre-
sponds to Secs. IIIA2 (a)—IIIA2 (e) and IIIA2 (g) (see
Figs. 2, 5, and 8—11), one has solutions with nonpositive
mass, some are naked singularities. When (w+ 2)A & 0
and 6 = 0 one has the linear dilaton, and by construction
these solutions have zero mass.

When (ur + 2)A2 ) 0, A2 & 0, and b ) 0, which is Sec.
IIIA1 (f ) (Fig. 6), one has a black hole with negative
mass. The corresponding naked singularity, with b & 0
(Sec. III A 2 (f ), Fig. 12), has positive mass.

When (u + 2)Az = 0 and A2 ) 0 (Sec. III C 1, Fig. 22)
one has a naked singularity with infinite mass, which is a
highly naked singularity. The case A & 0 (Sec. III C2,
Fig. 23) gives a highly naked singularity with infinite
negative mass. For A = 0 (Secs. IIIC3 and III C4,
Figs. 10—13 and 24) the ADM mass is zero. Some of
these are (massless) naked singularities.

When (u+ 2)Az & 0 one has always imaginary masses
(see Sec. III B, Figs. 15—21). The ADM mass concept in
these cases is meaningless.

V. CONCLUSIONS

We have presented a bewildering variety of solutions
which appear in a theory given by action (1)—see Table I
for a summary. The theory has two parameters: the cos-
mological constant A and the Brans-Dicke parameter cu.

For special values of u some important cases arise. Thus,
(i) u ~ goo yields a purely geometric two-dimensional
theory, (ii) u = 0 gives the constant curvature theory,
(iii) u = —

z is equivalent to (vacuum) planar general
relativity, and (iv) ~ = —1 is the action one obtains in

TABLE I. This table summarizes all the cases discussed in the text. In the classification column the short names used are
WS, with singularity; WOS, without singularity; BH, black hole; NS, naked singularity; and LD, linear dilaton.

Main

dcvzsron

(~+ 2)A' ) 0

((v+2)A' & 0

((u + 2)A = 0

Subsidiary
drvss j.on

A & iBf
(b & 0)

(b & 0)

A= iBi
(b = 0)

A'&0
4" &0

=0

A'=0

Range of u

0&a &+oo
co=0
—1&641 &0
u= —1
—2&m & —1
—oo&u& —2
u= goo
0&a &+oo
a=0
—1&&&0
u= —1
—2&co& —1
—oo&u& —2

0&m &+oo
m=0
—1&le/&0
u= —1
—2&co& —1
—oo & cu & —2

0&m &+oo
m=0
—1&m&0
cu = —1
—2&Le) & —1
—oo&cu& —2
~=+oo
(u= —2 (m=0)
(u= —2 (m+0)

Section in
the text
III A 1 (a)
III A 1 (b)
III A 1 (c)
III A 1 (d)
III A 1 (e)
III A 1 (/)
III A 1 (g)
III A 2 (a)
III A 2 (b)
III A 2 (c)
III A 2 (d)
III A 2(e)
III A 2 (f)
III A 2(g)
III A 3
III A 3

III B
III B
III B
III B
III B
III B
III B
III C 1
III C 2

III C 3
III C 3
III C 3
III C 3
III C 3
III C 3
III C 3
IIIC4
IIIC4

Figure
number

Fig. 1

Fig. 2

Fig. 3
Fig. 4
Fsgs. 5,6
Fig. 7
Fig. 2

Fig. 8
Fig. 9
Fig. 8

Fig. 10
Figs. 11,5
Fig. 12
Fig. 2

Fig. 13
Fig. 14

Fig. 15
Fig. 16
Fig. 17
Fig. 18
Figs. 19,20
Fig. 21
Fig. 16
Fig. 22
Fig. 23
Fig. 24
Fig. 13
Fig. 24
Fig. 10
Figs. 11,25
Fig. 12
Fig. 13
Fig. 13
Fig. 14

Classification

BH WS (Reissner-Nordstrom type)
Black hole WOS
Black hole WS
BH WS (Schwarzschild type)
Black holes WS
Black hole WS
Black hole WOS
Naked singularity
Anti —de Sitter spacetime
Naked singularity
Naked singularity
Naked singularity and BH WS
Naked singularity
Black hole WOS
Minkowski spacetime (LD)
Anti —de Sitter spacetime (LD)

Future and past spacelike singularities
de Sitter spacetime
Naked singularity
Naked singularity
Naked singularities
Naked singularity
de Sitter spacetime
Naked singularity
Naked singularity
Naked singularity
Minkowski spacetime
Naked singularity
Naked singularity
Naked singularities
Naked singularity
Minkowski spacetime
Minkowski spacetime (LD)
anti-de Sitter (LD)
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string theory by imposing conformal invariance on the
string world sheet.

Out of all the solutions the most interesting maybe
the black hole solutions with real ADM masses. Depend-

ing on the value of u and A they have several different
causal structures. There are structures similar to (i) the
extreme Reissner-Nordstrom (0 & u & +oo, A & 0,
and A ) ]B]), (ii) the nonsingular black holes similar to
the exact string theory (~ = 0, Az ) 0, and A ) ]B~;
~ = goo, a~A2 & 0), (iii) the Schwarzschild black hole
analogue (ii) = —1, A ) 0, and A ) ]B~). There are also
new structures: (i) —1 & ~ & 0, A2 & 0, and A & B~ be-
ing a Schwarzschild-like black hole with a timelike infin-

ity, (ii) —2 & iv & —1, A ) 0, and A ) ~B] yielding two
Penrose diagrams, one of them tiles the whole plane, and
(iii) ai = —2 and A g 0 giving the highly naked singular-

ity. One also finds several naked. singularities, obtained
by rotating through 90' the above-mentioned diagrams,
as well as many other solutions giving naked singulari-
ties, anti —de Sitter, de Sitter, and Minkowski spacetimes.
Having studied the geometrical structure of this quite
general two-dimensional theory, one can now explore its
physical consequences, such as thermodynamical proper-
ties and black hole evaporation in a fashion similar to
what has been done recently [14].
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