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We demonstrate a systematic method for solving the Hamilton-3acobi equation for general rela-
tivity with the inclusion of matter 6elds. The generating functional is expanded in a series of spatial
gradients. Each term is manifestly invariant under reparametrizations of the spatial coordinates
("gauge invariant"). At each order we solve the Hamiltonian constraint using a conformal transfor-
mation of the three-metric as well as a line integral in superspace. This gives a recursion relation
for the generating functional which then may be solved to arbitrary order simply by functionally
difFerentiating previous orders. At fourth order in spatial gradients we demonstrate solutions for
irrotational dust as well as for a scalar 6eld. We explicitly evolve the three-metric to the same order.
This method can be used to derive the Zel'dovich approximation for general relativity.

PACS number(s): 04.60.Ds, 98.80.Hw

I. INTRODUCTION

In applications to cosmology, Hamilton-Jacobi (HJ)
theory plays a vital role in describing the gravitational
field. It serves as a starting point for a semiclassical
analysis used both in stochastic infiation [1,2,3] and in
quantum cosmology [4]. Recently it has been shown how

to apply HJ techniques in solving the classical Einstein
equations. For example, one may derive the Zel'dovich
approximation describing the formation of pancake struc-
tures in a matter-dominated universe [5,6].

The Hamilton-Jacobi equation for pure gravity was
first derived by Peres [7]. He showed that the momen-

tum constraint implies that the generating functional or
the phase of the semiclassical wave functional remains
invariant under arbitrary reparametrizations of the spa-
tial coordinates (difFeomorphisni invariance). However,
he was not able to solve the HJ equation. We find that
a crucial ingredient is the introduction of matter fields.
We also capitalize on the diKeomorphism invariance of
the generating functional.

In this paper we expand the generating functional in
a series of spatial gradients. This approximation scheme
has a long history dating back to Lifshitz and Khalat-
nikov [8], as well as Eardley, Liang, and Sachs [9]. In
a quantum context, Teitelboim [10] and Pilati [11] con-
sidered an analogous approach which they called the
strong-coupling expansion. Accurate to first order in
spatial gradients, Salopek and Bond [3] explicitly solved
the Hamilton-Jacobi equation and the momentum con-

straint with scalar fields present. In an important gen-
eralization, Salopek and Stewart [12] added dust fields

and then demonstrated solutions to second order. The
principal goal of this paper is to give solutions to higher
order.

New techniques yield a practical and systematic
method of computing higher order terms. It proves
convenient to employ a conformal transformation of
the three-metric to simplify the Hamiltonian constraint,
which can then be integrated using a line integral in su-

perspace. A comparison with an exact solution shows

that in situations of interest for cosmology even the first
few terms can be quite accurate.

We start in Sec. II by writing out the Hamilton-Jacobi
equation for general relativity including two types of mat-
ter fields, a regular scalar field P, and a dust field y de-

scribing a pressure-Bee Quid of irrotational massive par-
ticles, for example, cold dark matter. The spatial gra-
dient expansion is introduced, and the Hamilton-Jacobi
equation is expanded to all orders in spatial gradients.
Solutions of this equation correct to zero and two spa-
tial gradients are reviewed. A new technique involving
a conformal transformation is introduced in Sec. III in
order to find solutions to higher orders. A recursion re-

lation is derived which enables one to compute solutions
to any given order, and we explicitly give the fourth or-

der terms. For a single dust field, we solve the evolution
equation for the three-metric in Sec. IV, and show that
our solution recovers the Szekeres exact solution [13] to
Einstein's equations. This is followed by some conclud-
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ing remarks. (Units are chosen so that c = 8' G = h = 1.
The sign conventions of Misner, Thorne, and Wheeler
[14] will be adopted throughout. )

II. HAMILTON-JACOBI EQUATION FOR
GENERAL RELATIVITY

In HJ theory the primary object of interest is the gen-
erating functional 8, which is the phase of the semiclas-
sical wave functional 4 e'~. For general relativity,
the HJ equation is simply the energy constraint with the

momenta replaced by functional derivatives of the three-
metric. In addition we must consider the momentum
constraint, which demands the gauge invariance of 8.

In this section we write 8 as a series of terms grouped
according to the number of spatial derivatives that they
contain. The Hamilton-Jacobi equation is likewise writ-
ten as a sum of such terms. We review solutions for 8
correct to zeroth order (no spatial gradients) and to sec-
ond order (two spatial gradients) for a single dust field
and for a single scalar field.

The action for general relativity interacting with a
scalar field P and a dust field y is

/' I,
d zg g~ —i—lR — g+"8 —$8„$—V(p, g) — n (g""B„y&y+ m') (2.1)

where ~ ~R is the Ricci scalar of the space-time metric
g„„,P is a scalar field, and y is a velocity potential for
irrotational dust particles of rest mass m (which is a uni-
versal constant). V(P, y) is a potential for the matter
fields. The rest number density n = n(t, z) is a Lagrange
multiplier which ensures that the four-velocity

where R is the Ricci scalar of the three-metric.
Variation of the action (2.4) with respect to the mo-

menta gives the evolution equations for the field vari-
ables:

(2.6a)

U" = —g""y „/m (2.2)

satisfies U"U„= —1. y may be rescaled to include m,
and so &om now on we set m = 1.

In the Arnowitt-Deser-Misner (ADM) formalism the
line element is written

dk = (
—N +p'~N;Nj) dt +2N;dtdz*+p;~dz'dz~,

(2.3)

where N and ¹ are the lapse and shift functions, respec-
tively, and p;j is the three-metric. We can then rewrite
the action in Hamiltonian form:

4 —&'x.') /& = g& + x, 'x', (2.6b)

(pij —
Ni~j

—Nj~i) /N = 2P K (2'Yj k lil 7ij 'Ylpl) &'

(2.6c)

where a vertical bar denotes covariant differentiation
with respect to the three-metric. Variations of the ac-
tion (2.4) with respect to the field variables yield the
evolution equations for the momenta. However, these re-
maining evolution equations are automatically satisfied
provided that

2= d4z or~. C. +~"j,, —N —N'R; (2.4) 8'()=6@() (2.7)

& = w
' '~"~"' [2&'n, a —vvvkr] + /1+ v"x,'x, m*

+-,'~-'/' (~~) '+ &'/'v(c. )
1 1/2R+ 1 1/2 ijy y O

R* = —2(p'xm '),. +sr pre;+& @,; =0,
(2.5a)

(2.5b)
I

Here the vr'~ denote the momenta conjugate to p;z and
C = (P, y) is an assembly of the scalar and dust fields
with corresponding conjugate momenta x . We use the
summation convention over the subscript a = 1, 2. Varia-
tions of the lapse and shift functions produce the Hamil-
tonian and momentum constraints

satisfy the constraint equations (2.5) and provided the
evolution equations (2.6) hold. In this interpretation the
energy constraint (2.5a) is a self-contained equation for 8,
whereas the momentum constraint (2.5b) demands that
8 be gauge invariant. The lapse and shift functions do
not enter the constraints. Loosely speaking, Eqs. (2.6)
imply that trajectories in superspace are orthogonal to
the phase functional. (In a more general formulation,
8 actually generates a canonical transformation to new
variables [12].)

In terms of the generating functional, the Hamiltonian
and momentum constraints are

&(z) = ~
~ ~

[2~'i(z)»~(z) —~'. (z)»i(z)]
b8 h8

Yij z»l
(2.8a)
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/' b8 ) 88 b8+,(*) — 2
l /, kg

( )
l

+
g ( )

A~,.+
y 2,2

(2.8b)

Equation (2.8a) is now called the Hamilton-Jacobi equa-
tion.

(2.6c) gives

(2.15)

A. Spatial gradient expansion of the generating
functional

Our method will be to expand the generating func-
tional

where k,~(x), the "seed" metric, is an arbitrary function
of the spatial variables. This is the standard result for a
dust-dominated universe at long wavelengths.

Second we consider a scalar field self-interacting with
an exponential potential

g(o) + g(2) + g(4) +. . . (2.9)
(2.16)

in a series of terms according to the number of spatial
gradients they contain. As a result the Hamilton-Jacobi
equation can be grouped into terms with an even number
of spatial derivatives:

where p is a constant. For this case, one can find analytic
solutions. Equation (2.13) has an attractor solution

x = m(')+m(')+m(')+" (2.10) H(P) =
3(l —1/3p)

exp /—
v'&s )

(2.17)

Solution of zeroth order Hamiltonian For more details see Ref. [3].

The Hamilton-Jacobi equation of order zero is

(p) y/z 88 88(o) (o)
'Y

g g
(2 /j k Ai fij "/ki)

/i j "/k l

, , &SS~')l L8")—1/2 + + 1/2V (C ) G
2 i Sit )

(2.11)

2. Solution of the second order -Hamiltonian

In this section we will give a brief review of the second-
order Hamiltonian, which was treated in Salopek and
Stewart [12].

The second-order H 3 equation is

The di8'eomorphisrn invariance of the generating func-
tional suggests a solution of the form (2.18)

(2.12)

Because the integral is over d z p /, the functional is in-
variant under coordinate transformations, and it clearly
contains no spatial derivatives. The numerical factor —2
is chosen so that H corresponds to the usual Hubble
parameter in the long-wavelength approximation. The
following condition must be satisfied in order that the
zeroth energy constraint vanishes:

p'/'d'z J(4 )R+ K '(C.)C i, C,
'

+L (@t,)64 (2.19)

Their method was to write an ansatz for the functional
8( ) which contains all terms that are second order in spa-
tial gradients and are diKeomorphism invariant. There
are three types of terms —R, 4,4 ", and AC' .

The functional is

3 Bg 3 By 3
(2.13) The last term may be integrated by parts, and by re-

defining

We now consider two solutions of this nonlinear equation.
First for a single dust field and vanishing potential it is
trivial to show that

2
H&x) =

3X
(2.14)

is a solution. Settiri-~ the shift function to zero, and
choosing our time coordinate to be y (i.e. , the lapse func-
tion N = 1), solution of the metric evolution equation

OLgab ~ gab (2.2G)
OCb'

we may set L = G. Substitution of the ansatz (2.19) into
the Hamilton-Jacobi equation at this order [Eq. (2.18)]
yields three sets of coupled partial differential equations
which then must be solved. The number of equations
exceeds the number of unknowns. However, no contra-
diction arises because some are redundant for reasons
which will be discussed in the next section.
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HJ+ =1/2,J
x (2.21a)

For a single dust field there are two independent equa-
tions: 2K +K =0.J

(2.21b)
x

Given the zeroth order solution (2.14), these can be
solved to give

S(') = d'~~'/' —,',~+ Dq-'/' R+ '——',&-'+ —,
'D&-'/" &'~&,&, (2.22)

The term proportional to the arbitrary integration con-
stant D will be referred to as the complementary func-
tional.

In an analogous way, for a single scalar field with the
zeroth order solution (2.17), we find (neglecting the com-
plementary functional)

2(p+1) H

III. SOLVING THE HIGHER ORDER
HAMILTONIAN

Although the Hamiltonian constraint of order 2n, (3.1),
is basically a linear equation for 8( ") [unlike the zeroth-
order equation (2.11)],it is nevertheless not immediately
apparent how to calculate 8( ") given the previous or-
ders, partly because the term in curly brackets in Eq.
(3.1a) is complicated. In this section we will show, first
for a single dust field, and then for a single scalar field,
a technique which yields a recursion relation for the gen-
erating functional. Finally we indicate brieHy how to
extend the analysis to multiple fields.

A. Single dust Beld

g(2n)z&'"' = I~a&;,

+~(2n) =0.

«e «s&'"& as&'"&

)bx

(3.1a)

Here the remainder term R( n), which is independent
of 8( n), contains contributions from all previous orders,
and is assumed to be known:

~(2n) —Z/2
" .' bg(2p) bg(2n-2p)

kl

l
1 hg(2p) hg(2n 2p)—

+ -x/2 ~
2 bP hP

( i ) hg(2n —2p)+). i

'
I
(~*'x„x,,)"

p=1 &x

(2&~swh —V*,Wl i)

+ y(2n)

(3.1b)

where the superspace potential V( ) is defined to be

R+ pp' P;P~ f rn —o= 1,
0 otherwise.

(3.1c)

The ansatz method that was used to solve the second
order case can be generalized to higher orders, but it is
extremely tedious because the number of terms increases
dramatically. For example the fourth order case has 15
types of diffeomorphism invariant terms leading to 15
coupled sets of partial differential equations. Although
some of the &ee functions can be set to zero, just as
in Sec. IIB2, there are still 8 variables satisfying 15
equations. It is difficult to proceed further along these
lines, and so we adopt an alternative approach.

Using the expression for 8( ), (2.12), we write down
the Hamiltonian of order 2n:

To simplify the HJ equation (3.1) for a single dust field,
we utilize a conformal transformation of the three-metric
to define a metric variable

fv(*) —= II '(x(*)) ~v(*) (3.2)

where 0 satisfies

(3.3)

The HJ equation (3.1a) reduces to

hg(2n)

X f;.
+ ~(2n) 0 (3.4)

Second order revisited

To show how to use this conformal transformation, we
shall now return to the second-order HJ equation with
one dust fieM present:

= —&'" = —O' 'R+7' ' 7*'x'x . (3.5)

The right-hand side of this may be expressed in terms

We note immediately that there are some obvious so-
lutions to the homogeneous version of this equation
hS(2")/bX = 0 which correspond to the complemen-

f'g
tary functionals. Any functional of only the conformal
metric f,~ that has (2n) spatial gradients and is diffeo-
morphism invariant will satisfy this equation. For ex-
ample, at the second order 8(2) = D f dsxf i~2 R is the

complementary functional, where R is the Ricci scalar of
f;~. This corresponds to the arbitrary part of (2.22).
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of the conformal metric f;~ using the standard rules for
conformal transformations, for example,

where R' is the Ricci tensor of the three-metric p,~, R'
is the Ricci tensor of f,~, and a semicolon denotes co-
variant differentiation with respect to f;~. Rewriting the
right-hand side and using the definition of the conformal
factor (3.3) we find

(3.7)

By inspection the solution is which has the line-integral solution

(3.8a) (3.11)

where the y-dependent coefBcients j and k are

X Q(~I)
2

k(y) = HO, (3.8b)

and D is a constant. We can use the conformal transfor-
mation rules to find the generating functional in terms
of the three-metric p,~ by using the zeroth-order solution
(2.14) and the conformal factor

g(2)— d'z ~X'(z) &'" [X'(z) f*2(z)] (3»)

where C is an arbitrary contour whose upper end point
is yI, and whose lower end point is arbitrary. If the two
end points are fixed, the solution is independent of the
choice of contour C provided that Pgidy~ is exact. By
analogy, if I d z dy(z) 7Zl l is exact, the solution of Eq.
(3.7) is

(3.9)

which satisfies (3.3). This procedure recovers the gener-
ating functional (2.22) obtained by the direct approach.
The constant of integration D in the definition of j yields
the complementary functional at this order.

However, Eq. (3.7) may be solved directly. A similar
situation occurs in potential theory where one wishes to
integrate an equation of the form

(3.1O)

'(z) = s&(z), dy'(z) = y(z)ds, 0&s&1.
(3.13)

The real parameter s is analogous to the Tomonaga-
Schwinger proper-time parameter [15]. The integration

over s, f ds s2) = 3/5 is trivial leading to

The upper limit of integration is y(z) and the lower
limit yo(z) is an independent and arbitrary function.
The complementary functional is set to zero by choos-
ing yo = 0. We choose the simplest path for the line

integral, that of a straight line in superspace:

~() ~ ~() g j 3

x (3.14)

which, after an integration by parts, gives the same result as before, Eq. (3.8).

2. Four th order

We illustrate the conforrnal transformation method for the fourth order. We rewrite 'R( ) in terms of the conformal
metric f,z and we find that, as before, we can integrate the equation directly: It is exact. The resulting generating
functional written in terms of f,~ is

8t'~ = d' f' '(l(x) (

R"R,, ——R' (+ m(x)B'+ (x) R" —
2
f"

( x x;, +r(x)x.,;'*x'x;,
I

where

(3.15a)

l(y) = —2 dy', + I, m(y) = M, i(x)~(X): g2( )
) 4) (3.15b)

The two arbitrary constants I and M give the additional complementary functional. Moreover, the complementary
functional &om the second order gives a contribution to this order through the dependence on j. This is a very
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succinct and tidy expression, which becomes more complicated when expressed in terms of the original three-metric

p;~, [using the conformal factor (3.9):

I

x
(3.16)

where we have neglected all the complementary function-
als.

8. Beeursian elation

If for simplicity we choose to ignore all the comple-
mentary functionals at each order, we find that a simple
recursion relation may be derived which relates each or-
der to the previous orders, assuming that the remainder
at each order is exact. It is trivial but tedious to show
that the remainders R( ) and R( ) are exact by function-
ally differentiating 8(2), (3.8), and 8(4), (3.15). A general
proof of the exactness of the remainder 'R( ") and, as a
result, the arbitrariness of the contour C in the integral

8( ") = — d x dy'(x)R( ") [y'(z), f; (x)] (3.17)
C

would rely on the fact that the Poisson brackets
('R(z), ))t(y)} yield the momentum constraint: Integra-
bility is assured provided gauge invariance is maintained
at lower orders. (See also DeWitt [16] and Moncrief with
Teitelboim [17].)

By induction, one can show that each term in R( ")
on substitution of the line integral (3.13) has an s de-
pendence of s2")s. Hence the integral of the HJ equation
(3.17) is

1
8(")=— d z day z R(" sy z, , z

0

d z& z ~( ) & z . . z

and we may rewrite this in terms of the three-metric p;~".

d'*~(*)R""'[&(*)~' ( )]2n+ 3

g8(2le) g8(2ra 2k)—
d'& V '~'). X (2W i&i' —Z', qadi)u + 3

s i Yij 'Y)'el

(1) & g8(2n —2k)+).x]~
'

] (~"x,;x,,)' +x~""') .
(,i') (3.19)

This expression has no reference to the conformal metric
f;~, and hence is easy to use in practice. In summary,
to find the generating functional at each order, one must
functionally differentiate the previous orders, and substi-
tute in the above recursion relation.

equation

(3.22)

For a single scalar field, the resulting HJ equation (3.1a)
has a form similar to that of dust:

B. One scalar field g8(2rs) +/(2 ) —0 (3.23)

&v(&) =—f~'(u)fV (*) (3.2O)

To simplify the HJ equation (3.1) for a single scalar
field we use a similar conformal transformation to the
dust Geld case plus a change of variables for the scalar
field. Many of the equations are similar. Once again,
f;, (x) is defined by.

which again reduces the system to a simple first-order
functional difFerential equation with one independent
variable.

R( ") must be rewritten in terms of f;~ and u. At
second order we find that it is exact, and the HJ equation
(3.23) has the solution

where the new variable u(p) (which at the zeroth or-
der is a comoving, synchronous time variable) is defined
through an integral

where

31/2 + + (3.24a)

8H2
(3.21)

j(u) = du'+D,
" O(u')

0 2
k(u) = HO . (3.24b)

The conformal factor satisfies the ordinary difFerential This expression is remarkably similar to the dust field
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u = p/H, (3.25)

case (3.8). For the exponential potential considered pre-
viously (2.16) with the zeroth-order solution (2.17), u
and the conformal factor are defined by

These results can be used to show that the generating
functional above (3.24) agrees with our original approach
(2.23).

The fourth-order solution also has a very similar form
to the dust case:

I', .
d x f ~ l(u)

~

R'~R;~ ——R
~

+ m(u)R2+ n(u) R'~ — f'—~ u, ;u,q+ r(u)u". ,u''u.
,,) ( 2 )

(3.26a)

where

t(u) = —2 du', + L,
o 8 e~e~ (u~) As (u, )

+M, 1
r(u) =—

40

(3.26b)

The main difference between this solution and the dust case (3.15) is that here the coefficient of the R term depends
on u. Expressed in terms of the three-metric p,~ and P this becomes quite complicated.

3 |' 1), (3
+—

I
1 ——

f
R4'4(;+ I

——2
f
R"0);4), + 0, '0 . '

4 E p)
'

&» )
+

i

— + —
i ji, '4 'di, + I

———+, i
4 '4i 4'4i, ]

3 t 1 ), (,
t'5

(3.27)

The recursion relation for a scalar field may be calcu-
lated in a similar way to the dust case. The integral of
the HJ equation (3.23) may be written as

of the second- and fourth-order remainders can be shown

explicitly. The exactness of the higher orders would seem
to follow &om the Poisson brackets of the constraints.
One can solve (3.28) using a line integral as before:

g(2n) d z du'(z) R~'"l[u'(z), f,, (z)], (3.28)
a

3 I 2~ f
1

i~j~

] ~ du'(x) = u(z)ds, O ( s ( $.

(3.29)

where uo is a constant function which we can set to zero
(this sets the complementary functionals to zero). Once
again, as in the dust case (Sec. IIIA3), the exactness

By induction, one can show that each term of 'R( "), on
substitution of this line integral, has an s dependence
s( " )+( ")",and hence

g(2n) d z u(z) 'R "[u, f,, ](2n —1) + (3 —2n)p

1
" ' pg(2s) gg(2~ —2J)

+ —X/2 i ss('» ss('"-")
~-2 hP hP

+ y(2n) (3.30)

Again, this expression has no explicit reference to the
conformal metric, and is easy to use.

C. Multiple fields

One can solve the Hamilton-Jacobi equations for mul-
tiple fields by employing the method of characteristics.

I

The characteristic equations are

with solution

(3.31a)

(3.3lb)
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~*j = ~'[X(z)l &V(z)

4 = &[x(z) + q(*)1,

(3.32a)

(3.32b)

6eld. A comparison is made with the Szekeres exact solu-
tion of Einstein's equations. The Zel'dovich approxima-
tion is brie8y discussed. First we find it useful to de6ne
a restricted generating functional.

where the f;~ (z) and the q(z) are constants of integration
along a characteristic, and A. Restricted generating functional

= KO. (3.33)

D8 "
(2„)

Dx(z) y

(3.34)

where D denotes functional differentiation along a char-
acteristic. One of the characteristic equations [Eq.
(3.32a)] can be seen to define a conformal transforma-
tion.

In this way Eq. (3.1a) has only one independent field

x(*).

8h'j(z)Ix] —= 8h'j(z) x(z) = x]. (4.1)

The rate of change of the restricted generating functional
8h j(z)lxl is

At the end of the calculation, we are Bee to choose
our time hypersurface. For a single dust 6eld, a natural
choice is a surface of uniform y, which corresponds to
comoving synchronous gauge —the evolution equation
for X, (2.6b), shows that the lapse N = 1. From now on
we will also choose the shift function N' = 0.

We de6ne the restricted generating functional
8 [p;z(z) ]X], in which the dust field is assumed to be ho-
mogeneous, by

IV. EVOLUTION OP THE THREE-METRIC

Using an iteration scheme, we show how to solve the
evolution equation (2.6c) for the three-metric. We give
explicit solutions to 6fth order for a homogeneous dust

I

&8h j(z) lx] ds b8h' j(z) x(*)]
~x . bx(z) - x(*)=x

in which case the Hamilton-Jacobi equation implies the
integrated Hamilton-Jacobi equation for 8[p;j(z) ~X]

O =
R

+ & * V &&,a(*)W4(*) —7', (*b4i(*) —-&
(98 s i]2 b8 b8 1 z/2

x 'Yij z 'Yk! z 2
(4 3)

and the momentum constraint reduces to

(4.4)

The restricted generating functional is much easier to
calculate in practice. The gradient expansion and the
conformal transformation trick work for Eq. (4.3) as well.
However, integrability questions are not important here
because there is only one equation to solve which always
possesses solutions.

We can either compute the restricted functional us-

ing the integrated HJ equation (4.3), or using the full
functional (3.16) and setting X; = 0 at the end of the
calculation. Both methods give the same answer. The
restricted generating functional to fourth order is easily
seen from (3.16):

R"' be(*)ix) = f4'»" s'5'o~' —(R*'&. —'-.R')

(4.5)

One can go even further and compute the sixth order
functional for a single homogeneous dust 6eld:

S~'& b;, (*)~y) = f 4 zp'~', ,y'( ——„R'+ , RR"R;, 4R"R,R, +—R"R;, ~~~" —— RR' ~~) . -(4 6)

B. Evolution of the three-metric for dust

One can use these results to compute the evolution equation for the three-metric correct to higher order in spatial
gradients for a single dust field. We adopt the iteration scheme proposed in Ref. [12]. The evolution equation
computed from the ADM action [Eq. (2.6c)] on substitution of the spatial gradient expansion of the generating
functional, truncating at sixth order, is

(9p;~ i/2 (b8( ) b8( ) b8( l b8( ) )"=2~ "(2~;~; -~~. ) I, +, + +
'Yk! 'Yk! 'Yk! 'Yle!

(4.7)
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where we have set the shift %; to be zero. We choose our time coordinate to be y which fixes the lapse function
X = 1.

Retaining only the leading term on the right-hand side gives the first-order result for pl l(y, z), Eq. (2.15).
Substituting this expression into the right-hand side, and retaining only third-order terms, one finds

t, 3)
= 2H,i-i + Bk, —4R, (4.8)

where R;~:—R,~ (ki ) and R:—R(k~ ) are the Ricci tensor and Ricci scalar, respectively, of the seed metric k~ . The
third order expression for the three-metric is then

pI, l(y, z) = y ~ k,, (z) + 20' R(z) k,, (z) —4R,, (z) (4.9)

One more iteration leads to the fifth-order expression

10RR,~—+ s~R, ,~ + 17R,"R~„—2R,, I,
'" ~,

)
(4.10)

where a semicolon denotes covariant differentiation with
respect to k;~. A similar iteration scheme could be ap-
plied equally well to the scalar field case.

1. Corn@at i son to an exact solution

In this section we will compare our approximation
scheme to an exact solution of Einstein's equations-
the axisymmetric specialization of the Szekeres solution

[13] for irrotational dust, which has a line element

ds = dt + a (t) d—z + dy + (d(z') —c(z)a(t))2dz

(4.11)

where d(z') has the form

d(*') = do(z) —-'. c(z)(z'+ V'), (4.12)

k,~ (z') = diag 1, 1, d (z') (4.13)

where d(z*) is given by (4.12). We can now evaluate all
the terms on the right-hand side of (4.10). It is worth-

and do(z) and c(z) are arbitrary functions of z.
We interpret our evolution equation (4.10) as evolving

the seed metric k;~(z) which we choose to be

while using a computer algebra program, particularly for
the fourth-order part. Even for a simple metric such as

(4.13) the individual terms such as R,~.A,
'" are quite com-

plicated, and so it is extraordinary that the end result is

so simple. We find that

pI,
l = y ~ diag 1, 1, (d(z') —c(z)y ~ ) (4.14)

which is precisely the Szekeres solution (4.11).
We can use this to check that there is no seventh-order

contribution to the Szekeres solution kom our method by
finding the solution to the sixth-order evolution equation.
We find that with the seed metric (4.13) there is indeed

no contribution to the metric from the sixth order, i.e. ,
(7) (5)
u U

For situations of interest for cosmology, we do not wish

to assume such a special form for the seed metric. For this
case, the expansion can be improved quite significantly
if one notes that the the determinant of the three-metric
must be non-negative. However, one disturbing property
about the third order expression (4.9) is that after a suf-

ficient amount of time, the three-metric may no longer be
positive definite not only does the expansion break
down, it gives nonsensical results. One may remove this
embarrassing problem by writing (4.9) as a "square":

(4.15)

Both Eqs. (4.9) and (4.15) agree to third order, but the
latter is the preferred form because it is non-negative.
This improved result reproduces the Zel'dovich approxi-
mation. See Refs. [6] and [19] for a discussion of higher
order terms.

V. CONCLUSIONS

In this paper we have developed a systematic method
for solving the Hamilton-Jacobi equation for general rel-
ativity using a spatial gradient expansion. We derived a
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recursion relation by which we can compute the gener-

ating functional at each order by summing various com-
binations of the functional derivatives of lower orders.
The key ingredients are a conformal transformation of
the three-metric and a line integral in superspace.

Our formalism provides some deep insight into the
structure of semiclassical superspace which now far ex-
ceeds investigations in homogeneous models. Superspace
describes an ensemble of evolving universes, and its com-
plexity strains the imagination. However, the gradient
expansion allows one to separate superspace into an infi-

nite but discrete number of manageable pieces which are
relatively easy to understand.

Because the line integral in superspace [see Eq. (3.12)]
is independent of the choice of contour (provided the end
points are fixed), we now begin to understand the invari-
ance of the generating functional under diferent time-
hypersurface choices. The exactness of the remainder
terms is highly nontrivial, and this important property
can essentially be traced to the fact that the Poisson
bracket of the Hamiltonian constraints, (R(x), 'R(y) j,
yields the momentum constraint. Integrability is closely

related to the gauge invariance of the theory.
The first few terms of the gradient expansion are of

considerable interest for a dust-dominated universe de-
scribing, for example, the cold-dark-matter model. It
is quite reassuring that the fifth order three-metric re-
produces the exact Szekeres solution. In addition, HJ
theory provides an eKcient and practical means of cal-
culating higher terms in the Zel'dovich approximation
[6,19]. However, we have not discussed the convergence
of the expansion. For more general problems, it seems
likely that one must employ techniques that will improve
the rate of convergence [18].
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