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Poincare gauge theory of (2+1)-dimensional gravity
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A Poincare gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational
field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with
the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at
most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations
and under general coordinate transformations, is given. Gravitational field equations are studied in

detail, and solutions of the equations for weak gravitational fields are examined for the case with
a static, "spin" less point like source. We find, among other things, the following. (1) Solutions
of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory.

(2) For a class of the parameters in the gravitational Lagrangian density, the torsion is "frozen" at
the place where "spin" density of the source field is not vanishing. In this case, the field equation
actually agrees with the Einstein equation, when the source field is "spin" less. (3) A teleparallel
theory developed in a previous paper is "included as a solution" in a limiting case. (4) A Newtonian
limit is obtainable if the parameters in the Lagrangian density satisfy certain conditions.

PACS number(s): 04.50.+h

I. INTRODUCTION

Recently, lower dimensional gravity has been attract-
ing considerable attention. The (2+1)-dimensional Ein-
stein theory has no Newtonian limit and no dynamical
degrees of freedom, but it has nontrivial global struc-
tures. This theory has been studied mainly because of
the local triviality and of the global nontriviality [1—3].
For the (3+1)-dimensional gravity, there have been pro-
posed various theories alternative to the Einstein the-
ory, among which we have a teleparallel theory [4] arid
Poincare gauge theories [5—9]. A Poincare gauge theory
has been examined [10] also for the (1+1)-dimensional
case.

It would be significant to develop various theories of
gravity also for (2+1)-dimensional case, which will bring
us toy models useful to examine basic concepts in theories
of gravity. In a previous paper [11], the present author
has proposed a teleparallel theory of (2+1)-dimensional
gravity having a Newtonian limit and black hole solu-
tions.

The purpose of this paper is to develop a Poincare
gauge theory of (2+1)-dimensional gravity, in a limiting
case of which a teleparallel theory given in Ref. [11] is
"included as a solution. "

metric g„dz" dz (p, v = 0, 1, 2) related to the fields
e" = e"„dz" (k = 0, 1, 2) through the relation g~

e"„rookie' with (alki) = diag( —1, 1, 1). Here, {z";p =
0, 1, 2) is a local coordinate of the space-time. The fields

ei = e" k/cjcl"z, which are dual to e", are the dreibein
fields. The Lorentz gauge potentials A" „(= —A'"„)
transform accordingly as

A'"'~(z) = A"'~(z) + ~"-(z)A '~(z)

(z)A" „(z) —B„io"'(z), (2.1)

e'"~(z) = e"~(z) + ~"i(z)e'~(z) (2.2)

im A;where ~"' = g' u" is an infinitesimal real valued func-
tion of x and is antisymmetric with respect to k and I,.
Here, (rI"') is the inverse matrix of (ski), and in what
follows raising and lowering the indices k, l, m, ... are ac-
complished with the aid of (il"') and (rtkil. The covariant
derivative DA, p of the field p belonging to a representa-
tion o of the three-dimensional Lorentz group is given

by

under the infinitesimal Lorentz gauge transformation of
(*):

II. DREIBEINS, THREE-DIMENSIONAL
LORENTZ GAUGE POTENTIAL, AND

RIEMANN-CARTAN SPACE- TIME

The three-dimensional space-time M is assumed to be
a differentiable manifold endowed with the Lorentzian

Di, (p = e"i,
~
0„(p+ —A ~Mi (p

i

2 )
(2.3)

[Mi,(, M „]= —rtg Mi„—rji„Mi,

+@A.„M) + g) MI,„, (2.4)

where Mki =' ia, (Mi, i). Here, (—M&i, k, I = 0, 1, 2) is a
basis of the Lie algebra of the three-dimensional Lorentz
group satisfying the relation
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and o., stands for the difFerential of cr. The field strengths
of e"„and of A '„are given by

III. LAGRANGIAN DENSITIES AND
GRAVITATIONAL FIELD EQUATIONS

R"' „=e" e"„(B„A"„—B„A"'„

A"—„pA v+A ~vA'"p)
&

respectively. We have the relation

Rklmn —'gkmRln 'gknRlm glmRkn + glnRkm

(2.6)

(2.7)

For the matter field p, LM (&p, Dk p) is a Lagran-
gian [12] invariant under three-dimensional local Lorentz
transformations and under general coordinate transfor-
mations, if LM(rp, Bkp) is an invariant Lagrangian on the
three-dimensional Minkowski space-time.

For the fields e „and Ak'„, Lagrangians, which are
invariant under local Lorentz transformations including
also inversions and under general coordinate transforma-
tions and at most quadratic in torsion and curvature ten-
sors, are given by

(2.s) LT' = ntk™tki + pv vk + pa aki + b, (3.i)

D„V& = a„v&+ r"„.V" .

We make the requirement

(2.9)

where we have defined Rki = Rk i and R = R k.
def m def

For the world vector field V = V"8/Bz", the covariant
derivative with respect to the afBne connection I'~&„ is
given by

L~ ——a1E"'Ekl + a2Ik'Ikl + a3R + aR . (3.2)

def 1 1 1tki = , (Tki +—Tik ) y 4(rt kvi+rl ivk) —
—,rIkiv

Here, tkl, vk, and akl are the irreducible components
of Tkl defined by

Dl Vk = e le"„DvV" ) (2.10) (3.3)

for the Lorentz vector field V", where V" = e"kV .def k

Then the relation

def
vk —T lk ) (3.4)

k v k A k vA i„=rq„e „e i+e B„e i,
follows and we have

(2.ii)
and

def 1
aki = s(Tki + T ki + Tl k)

k k AT pv=e AT pv& (2.12) respectively, and Ekl and Ikl are the irreducible compo-
nents of Rkl n defined by

k k pR l~v —e Pe lR ppv ) (2.13) E.i '=" ,'(R.i Ri—k)— (3.6)

with

def p p
DAgpv —Agpv ~&pgpv ~vggpp = O (2 14) and

Ikl =
2 (Rkl + Rlk) s'gklR, (3.7)

(2.15) respectively. Also, n, p, p, b, ai, a2, as, and a are real
constant parameters. Then,

The components T"„p and B" pp are those of the torsion
tensor and of the curvature tensor, respectively, and they
are both nonvanishing in general. Thus, the space-time
M is of the Riemann-Cartan type. From (2.14) we obtain

I def ~ ld3
C

(3.s)

is the total action of the system, where c is the light
velocity in the vacuum and L is defined by

(2.i7) L = v 9[Le', + LM((p, D—kip)] (3.9)

where the first term denotes the ChristofFel symbol,

(2.is)

and the second stands for the contortion tensor
def 1 AK &
= —

2 T pv T& v Tv p. (2.19)

The field components e"~ and e~k will be used, as for
the case of V" and V in the above, to convert Latin
and Greek indices.

def defwith L~ = LT + LIt and g = det(g„„). For the case
with ai ——a2 ——as ——0, a g 0, n = P = p = 0 and with
b = 0, the Lagrangian L~ reduces to the Einstein-Cartan
Lagrangian [13,14].

The field equation bL/be'„= 0 reads [15]

2aR~, + 4J~;kjI~ljRkl + 4J " [~qRg„—2J[," |.kjR

2D"F;~k + 2v"F;~k +—2H, ~
—g;~L~ = T;~, (3.10)

where we have defined
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defJ,, ) ( ——2asRg;kil, ) + 2n'), {aiE,) + a2I, )), {3.11)
def 1+'~~ = 2' .{&'~~ —&~'~ —&~'~) (4.2)

D"F,,),
=' e""(B„F,,), + A,

where

def
C,,) ——e, e ) ((9„e,), —8),e,„) . (4.3)

+A, „F, k+A), „F;, ), (3.12)
There is the relation

def
F', k = ~(t', a —t*),) + P(n, ,vt. —rt;):v, ) + 2&a,,).

(3.13)

R*'~- = R*~~-({})+ R*~.-(K)

with

def kR,,„„({})= 0„6,, —0 A,~„—6; „6 ),

(4.4)

kl 1 klBij = ~kliF & 2 T&'klFi = Hj i

= e,„e~ R" „({}), (4 5)

&LM
g~'i = ei( be'„ (3.15)

with LM =' g gI M. T—he field equation 8L/8A'~„= 0
reads

2D J[;j][kl] + 3tk —bk v + ak J[;j][lm]
l 4 [lm] [l m] lm

Also, T,~ denotes the energy-momentum density of the
field &p defined by

def
Rijpv(K) = +,Kijv —)7vKij)i

k k—K, „K,k + Ki K~k„, (4 6)

({})
~'f

g
~

x
~

(4.7)

as is shown by substituting (4.1) into (2.7). Here,

R"z„({})stands for the Riemann-Christoffel curvature
tensor

with

H, ,k = S,-, ), (3.16)

+~j „J['m][kl] + ~k „J[ij][ml]

and V'„K,j denotes the covariant derivative with respect
to the Ricci rotation coefBcients when the index is Latin,
and with respect to the Levi-Civita connection when the
index is Greek. Each irreducible part of B,~kl is split into
two parts, as is known by using (4.4) in (3.6) and (3.7),
and Jijkl can be expressed as

+A) „J[,j l [) ~[» (3.17) J,,~) = J,,~)({})+ J;,).)(K), (4.8)

where J,~),)({})and J,~),)(K) are formed of the irreducible
parts of R;~q) ({})and of R,~y) (K), respectively. The ten-
sor J;~&&({}),in particular, is given by

x(rl)„v, —rj), v, ) + (4p —a)a,,i = Hq')—
(3»)

def ELM
v gSij)i = ekp.

~
(3.19)

Here, S,~A,, is the "spin" [16] density of p defined by

~vii(()) = &~~i~ &&i(()) + i {oa ——' pic, ,B(o), ,
3

(4.9)

where R,~({})and R({})are the Ricci tensor and the
Riemann-Christoffel scalar curvature, respectively,

R*.({)) =' "".R" -({)) R({)) =' ~'R. ({))

IV. ALTERNATIVE FQRMS QF THE
GRAVITATIONAL FIELD EQUATIONS

(4.10)

The gravitational Lagrangian L~ can be rewritten as

We shall rewrite the gravitational field equations (3.10)
and (3.16), by using the expression

= ~ &"'(())R H)) + {o ——
) (&H))l'+ "&H))

+ijv = +iiI + K~iv {4.1) +L~ + L'R — 0„{Q gv"), —
—g

(4.11)

with A,.j~ being the Ricci rotation coeKcient where
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2a) „,~ a
Lz =

I
~+ —It t'ai +

3 ) 2

+
a Il~ +

L'Ii = L~ —a2R"'((})R~~((})

a3 —— R —aR .2

3 )

Here, we have used the relation

(4.12)

(4.13)

v' g—R = v' —gR((})—v' —g ',—t-"' tl.(

+2v vg + —a aI l
I x Il~

—20„(g—gv") . (4.14)

Using the above formulas in (3.10) we get the alternative
form of the 6eld equation for e'„:

2aG;i({})+ —(5a2 + 12as)R;i((})R((})—2a2R;"((})Rig((})

+~v a2R"'((})Rsi((})—
I

' + as
I
[R((})j' + a2~v(2R"'((})Rsi(K) —R(f})R(K)}3 )

+a2R~((})R(K)+ —(a2 + 6as)R((})Ri,(K) —2a2R;"((})Ris(K)+ 4J[;s][iq(K)R"'

+4J["'][ii](K)Ri„—2J[;"] .„(K)R—2D"F i, + 2v"F,' I, + 2H,' —rl ~(L'T, + LR) = T~, (4.15)

where G;i((}) is the three-dimensional Einstein tensor (4.19)

G* ((}) =' R' ((})—-'&* R((}).

Here, we have de6ned

Ri,i(K) =' R s i(K), R(K) = R s(K), (4.i7)

F „= '(H;, —H-; —H;)

We have the relations
~4.S6~

(4.20)

(4.is)

gJ ( 2' ( a
F,",i,

='
I
~+ —

I (t', i. —t'~, )+ IP
—— (g*,vt —rl'i vi)3)

I+2 p —— a; I,
———FI,

(4.2i)

as shown by comparing (3.18) and (4.18). The field equa-
tion for A'~„ is rewritten as

—2aa2 ~;G ~a(()) —8 (as+ —
) 2a~;8 ]G(()) + 2(D —2'

) 12~2~a2({)) + 2D J~a2aq(K)

+ 3 ti2 —
bi2 v + as J[;z][i222]

—H2yi2 = S~ 12

4 [lm] [l m, ] lrn (4.22)

G;, ((})—g;, A = 0, (4.23)

where G((}) =' rl'&G;~((}) By exam. ining the alterna-
tive forms of the gravitational field equations (4.15) and
(4.22) we find the following.

(1) For the case with S;z& = 0 and with T;~ = 0, any
solution of the equations

I

(4.22) are considerably simplified. In (4.15), the terms
quadratic in the Riemann-Christoffel curvature tensor
are all vanishing. In (4.22), the first three terms disap-
pear, and all the remaining terms are linear or quadratic
in the torsion tensor. Thus, if the intrinsic "spin" of
the source is vanishing, S;~i, = 0, then (4.22) is satisfied
by the vanishing torsion, and when the torsion vanishes,
(4.15) reduces to the equation

{4.24)
2aGv((}) ~Vb = Tv . - (4.26)

a2 ——a3 ——0 . (4.25)

(3) When condition (4.25) is satisfied, then (4.15) and

satisfies (4.15) and (4.22) with b = 2A(a+6asA). We can
say shortly, "solutions of the vacuum Einstein equation
are solutions of the vacu»m gravitational 6eld equations
in this theory. "

(2) Equation (4.22) does not contain third derivatives
of the metric tensor, if and only if

For the case with a = 1/(22c) with e being the "Einstein
gravitational constant, " (4.26) agrees with the Einstein
equation, because T;~=T~,. for a vanishing S;~I„as is seen
from (5.10) of the next section. The following, however,
should be noted: The torsion tensor does not necessarily
vanish, even u)hen condition (4.25) is satisfied and the
intrinsic "spin" of the source jietd is vanishing.

(4) When condition ai ——0 is satisfied in addition to
condition (4.25), then (4.15) and (4.22) reduce to
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2aG;i(()) —2D"F k+. 2v"F k.+ 2II,', —. . ri;,.L'T ——T~

(4.27)

(4.28)

V' T„+4 „T —20t A'~„IS,

A"„c] (i/ —gS, )—:0 .
g

(5.9)

in (5.3), we obtain the response equation to gravitation

(3n + 2a) (2P —a) (4p —a) 7L 0, (4.29)

respectively. The torsion tensor is linearly dependent on

S;,I„ if
Also, the identity

i bLM
y gT[,—g —=V„(g gS;,—") —— M, ,p

2 p
(5.10)

as seen from (3.18) and (4.28). Thus, the torsion is
"&ozen" at the place where the "spin" density S;~I, does
not vanish.

If S;zk = 0, (4.15) for the present case reduces to (4.26).
Also, the field equations for the "spin"less source fields
agree with those in the Einstein theory.

follows from the invariance of the action

IM —— LMd xdef 1 3

C
(5.11)

under local Lorentz transformations. Here, we have de-
fined

V. EQUATION OF MOTION FOR
MACROSCOPIC BODIES

V„(g gS,,") = l9„(—vt' —gS-;,.") + g—gA, „S
+v' —gA, „S; (5.12)

We obtain
We shall derive the equation of motion for macroscopic

bodies, which can be done in a way similar to the case of
the (3+1)-dimensional theory [7].

From the fact that the gravitational action integral

V T„+ ' 6,,„V (Q gS" )
——20( A'~„]S,,

A*~„o] (Q—gS,~. ) = 0, (5.13)

def 1 3IG ——— Lcd x (5.1)

with

L~ = i/ gLG, — (5.2)

is invariant under general coordinate transformations,
the identity V' T„=0. (5.14)

by use of (5.10) and the field equation 8L/8y
FILM/8p = 0 in (5.9). We apply this equation to the mo-

tion of a macroscopic body for which effects due to the
"spin" 8 of the fundamental constituent particles can be
ignored, then the energy-momentum tensor of a macro-
scopic body is symmetric and satisfies the conservation
laws

Q —g(Y'"O„e,„+Z,, "O„A*' )
= c] (vl —g(Y„+Z,,"A"„))

follows, where

(5 3)

From (5.14), we can show, in a way quite similar to the
case in the four-dimensional Einstein theory, that the
world line of a macroscopic body is the geodesic line of
the metric g„„dx"8dx .

and

p def bLG
v' —g&" =-

be'„
(5.4) VI. TWO LIMITING CASES

A. The case with a; ~ oo (i = 1, 2, 3)

The gravitational field equations bL/8e'„= 0 and
bL/8A'~„= 0 can be expressed as l

a, =,a, (i = 1, 2, 3), (6 1)

Suppose that the parameters a, (i = 1, 2, 3) have the
expression

and

Z,„; = —S;~

(5.6)

(5.7)

where f is a parameter characterizing the magnitude of
a,. 's and it can be regarded as standing for the coupling
strength between the Lorentz gauge field and the matter
field y. Multiplying both sides of (3.16) by f and taking
the limit f m 0, we get

respectively. By using (5.6), (5.7), and the formula

ct„(Q—gY„)—vt' gY*"B„e, —

= Q—g(V'„Y„+Ap „Y" ), (5.8)

2D J[ij][kl] +
(

tk ~k & + ak
~

J[ig][lrn]

(6.2)
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where

def
J;~),( = 2asRg, srhi + 2g;i, (aiEzi + a2~zi) . (6.3)

in the limiting case with a; ~ oo (i = 1, 2, 3) and with
= 0.

B. The case with n -+ oo, P ~ oo, p -+ oo

By substituting R;~i,&
= 0, which is a solution of (6.2),

into (3.10), we obtain

I(. k—2D Fjg+2v Fij~+2H;j —g;~Lz' = T,~ . (6.4)

Specifically, if we set A'~„= 0, (6.4) with b = 0 reduces
to (3.7) of Ref. [11],which is the gravitational field equa-
tion in a teleparallel theory. Even for this limiting case,
the theory given in this paper is not identical to the the-
ory developed in Ref. [11],because (6.2) does not neces-
sarily imply R;jA,.~

——0. To put it brieQy, the teleparallel
theory developed in Ref. [11] is "included as a solution"

II', i. = —2a2&l'&, )s(())
a2—8 a3+ —

gg~; jG —Sijg &
(6.5)

which is obtained from (4.22). By using (2.8), (4.20), and
(6.5) in (4.15) we obtain

When o(, P, and p become large, the torsion tensor be-
comes infinitely small with HijI, kept finite, which follows
&om (3.16). In the limit of o. -+ oo, p ~ oo, p m oo, the
underlying space-time is of the Riemann type, and H;jp
is given by

2aG;~ (()) + s (7a2 + 6as) R;~ (())R((j)—8a2R;"(())Rzs(())

~V -3a2R"'(())R~((()) + &(5a2+ 3as)(R(()))' + 2a2'7"&~("-*~((])

-'-. (a2+ 6a )(~V&"&~ —&'&')(-"(4)) = ~V —~"(~Vs —~'» —~'s') . (6.6)

This equation is obtainable also directly from the La-
- def

grangian L = L(-R + LM((p, V'i, (p), where

GR'=" ~2&"H))&~~(0) +
i

~s —3') (&(0))'

with each other, and thus we shall use Greek indices
throughout the present section with the understanding

that they are raised and lowered with (rI ") =' (i1„„)
def

and (rl„„) = diag( —1, 1, 1). For this case, the compo-
nents g„„ofthe metric tensor have the expression

+.R(()) (6.7) g„„=g„„+h„„ (7.2)

a.~ „Vg(p = e"i,
~
B„(p+ —6 „Mi (p

~

. (6.8)
with

def
hpv —apv + avy. ~ (7 3)

VII. LINEARIZED GRAVITATIONAL FIELD
EQUATIONS AND RELATION TO THE

NEWTON THEORY

A. Linearised equations

We now examine the gravitational field equations in
the weak field situations in which

Noting (4.1) and (7.1), we employ a„„and the tor-
sion tensor Tp„„as independent Geld variables, and ex-
press the linearized gravitational field equations in terms
of them. In what follows, we consider the case with
b = 0 only, because the "cosmological term" b in the
Lagrangian L~ is not in harmony with our weak field ap-
proximation. After some calculations, we find that (4.15)
and (4.22) take the forms

(7.4)

V P P (7.1) and

and A'~„are so small that it is sufficient to keep only
terms linear in a'„and in A'~„. In this approxima-
tion, Greek and Latin indices need not be distinguished

(~)Z~„„———Sp„

respectively. Here, we have defined

(7.5)

G(i) =' BqB(„h"„)— B„B„h——0 h„—„—g„„(BiBph" —Clh)—,2 " 2 "" 2 "" (7.6)

I (i) peg t' 2a l a 1(~)F „.i =
l

~+ —l(4-~ —t~~-)+ p —— (&~-» —&~»-)+Pgr 3 ) P~ P &
2 P& P ~

4 P+ gaA~ (7.7)
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Z~ = a2 BpG —O~G~ + 8 as + —'g [pop]G + (ai + a2)'g [p~p~crt A]
(&) def (i) (~) (&)

+ —[0„0 (2ait [g ] + 3a2tp„) —B~O (2ait [„]+ 3a2t„)jP c7

1
+—(3ai + a2 —48as)iI [„0~]o[ v + —(ai + a2)(0~0[„vp] + g~[p v„])6 P

+ayO 0[~ay] + +g(~) (7.8)

with G( ) = g" G„v, h, = g"vh„v, ——t9"8„,and

HA„. = — ~+ —
[ (' ~ —t ~) — P —— (n»p —9 pv A) + (41 —a)aA,.= —H„),.(il def & 2a1 a (~)

)
(7.9)

earized expressions for G„(()),+' z, Z&„, G(()), and
Hp„, respectively. In the lowest order approximation
now considering, we have the differential conservation law

2ab a
2

]
o' + —

~

0 tp[~ ] + 2 p —— cI[pv~]
3

—4 p —— ap, vw = T[p.v] . (7.18)

O„T„=0 ( . ) Taking the trace of (7.17), we obtain

and the Tetrode formula

~~„v = T[„.) ~ (7.11)

G( ) 4 gA T
2

(7.19)

h„* =h„+B„A +0 A„, (7.12)

The field equations (7.4) and (7.5) are invariant under
the infinitesimal gauge transformations

def
with T = rI" T„. Both sides of (7.4) are divergence-
less because of (7.10), while the divergence of (7.5) with
respect to v gives (7.18) by virtue of (7.11). Thus, the
field equations (7.4) and (7.5) give (9+ 9) —(3+ 3) = 12
independent equations for 3+ 9 = 12 independent field
variables.

a[ )
——a[tv) + u~v, W~v

———ave (7.13)

with A„and ~„„being both arbitrary infinitesimal func-
tions. The transformations (7.12) and (7.13) are the in-

finitesimal versions of the general coordinate and local
gauge transformations, respectively. The invariance un-

der the transformation (7.12) means that the antisym-
metric part a[„) does not have physical significance. By
virtue of the invariance under the transformation (7.12),
we can put the harmonic condition

(7.14)

which is assumed from now on. Here, we have defined

8 hpp due to a static, "spin" less pointlike source

(&)0 Zp( )
— t9 Sg(pv) (7.20)

we obtain the fourth-order field equation for 6„:

A h„+B h„+C(g„—B„o] ) h=T[„' ]

Using (7.8), (7.17), and (7.19) in the the symmetric
part of the divergence of (7.5) with respect to z",

def
h,„v = h,„—-g„vh .

The linearized Einstein tensor now takes the form

(7.15)

(7.16)

with

(7.21)

(7.22)

It is convenient to decompose (7.4) into symmetric and
antisymmetric parts:

def

3o. +2a ' (7.23)

2aG&„'.] —3
~

n+
]

a"t„.&

gpv +A (p v) (psv) (7.17)

def 1 aa2
C = {8P(a2 + 6as) —3aa2)—

6(2P —a) 30!+ 2Q

(7.24)
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T = T(~v) —2(9 Sl(rdv) (7/rdv (9rdC)v)T( ff) def l a2 + 24a3

2a, (
3a+2a ( 2~

UT(„) ——(r)„„CI 0„—8„)T def a2 + 24a3 def a2

6(2P —a)
' 3a + 2a

(7.28)

def
where the indices a and P run over 1 and 2, 6 = ((9l)2+
((92)2, and

+2(9 (9 O)(&Sv)l& (7.25) Taking the trace of (7.21) we obtain

It is worth mentioning that the parameters a~ and p do
not appear in (7.21) with (7.22)—(7.25). We consider now
the gravitational 6eld produced by a static, "spin"less
source located at the origin, for which Sl„„is vanishing
and T„„is given by

A Cl K+ (B + 2C) U2 h = T( ~), (7.29)

where h =' g""h„„,and

T(' ) =' fI" T(' ) = Mc —b (r) —2Mc Phb (r) .
Mczhz(r), p, = fd = 0,

PV' 0 otherwise (7.26) (7.30)

with r =' (xl, z ). For this case, T(r',„)has the expression

In the following, we shall solve (7.21) and (7.29) to give a
time-independent circularly symmetric potential hop for
each of the four cases.

T ' = Mc'(b (r) + (P+ Q)b, h2(r)},
T( &) Z( &) 0On nO

T 'p ——Mcz(P —Q)(8 Bp —b pA)h2(r),

(7.27)
The case arith a g 0

For this case, (7.29) is solved, by utilizing the method
of Fourier integration, to give

Mc2 Mc2 ~ik r
h(e) = — lee + (2PA —B —2C) dek y C& f df(B y 2C)k —Afe'"'"dek+ Ce (721)2~A 4+2A (B+2C)k —A

defwith Cl and C2 being integration constants, r = jr~

and k =' (kl, k2). Substituting (7.31) into (7.21) with

p = v = 0, solving the equation thus obtained and using
(7.22), (7.23), and (7.24) and the formula we obtain

(7.32)

hpp(r) =—Mc a2(3a + 2a) kJp(kr)
4+a p 3aa2k —a(3a + 2a)

+
Mc (a2 + 24a3) (2p —a) k Jp(kr)

dk4+a 0 2p(a2 + 24as) k2 + 3a(2p —a)

+6rrClj2p —aj b[2p(a2+ 24a3)k +3a(2p —a)jkJ0(kr)dk
0

b[3aa2k —a(3a + 2a)j Jp(kr)+C3 3a+ 2a dk+ C4
0

(7.33)

def
with k = ~k~7 and C3 and C4 being integration constants.
Here, Jp denotes the Bessel function of the first kind and
of index zero.

a;= —', (i =2, 3) (7.35)

2. The case 2sith a = 0 and aPas(as + 24as) g 0

In a way similar to case 1, the solution

Mc2(3a + 4p)
00 lnr-

24n.aP
+Csr + C6

Mc2(a2 + 6a3) r lnr
47ra2(a2 + 24as)

(7.34)

is obtained, where C5 and C6 are integration constants.

8. The case 2sith as -+ oo, as ~ oo, and aP g 0

The parameters a2 and a3 are assumed to have the
expression

3a+ 4P 2hpp(r) = Mc ln r + C7r + Cs
24m aP (7.36)

with Cy and C8 being integration constants.

The case 2sith a ~ oo7 P —k oo, and a + 0

The potential for this case is given by

with f being a real constant, and we consider the limiting
case with f ~ 0. Multiplying both sides of (7.21) and
(7.29) by f and taking the limit f -+ 0 and following a
similar procedure as in the above, we And
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hpp(r) =— kJp(kr) Mc (a2+ 24as) kJp(kr)dk+ dk
a2k' —a 4ma p (a2 + 24as) k2 + 3a

+ 2Cg(a2 + 6as) b[(a2 + 24as)k + 3a]kJp(kr)
dk

3 0 a2k —a

b [(a2 + 24as) k + 3a]Jp (kr )+Cg dk+ C1P
p

b'(a2k' —a) Jp(kr) + 11 (7.37)

with C; (i=9, 10, 11) being integration constants.

C. Relation to the Newton theory

We consider a macroscopic body for which efFects due
to the "spin" s of the fundamental constituent particles
can be ignored. The world line of motion of this macro-
scopic body moving &eely in the space-time under con-
sideration is the geodesic line of the metric g„„dz" d",
as has been known in Sec.V. Thus, when the motion is
sufIiciently slow and the gravitational field is weak, this
body obeys the equation of motion

d2r gU
dt2 Or

(7.38)

with U =' —c2hpp/2. Neither of the solutions (7.33)
and (7.37) can give a Newton potential. The potential U
given by the solution (7.34) satisfies the Newton equation
for the gravitational potential,

AU = 4~GMb(r), (7.39)

if the conditions

96npvr G
(7.40)

a2+ 6aq ——0, (7.41)

VIII. SUMMARY AND COMMENTS

We have formulated a Poincare gauge theory of (2+1)-
dimensional gravity and the results can be summarized
as follows.

(1) The theory is underlain with the Riemann-Cartan
space-time, and the gravity is attributed to the curva-
ture and the torsion. The most general gravitational La-
grangian, which is at most quadratic in curvature and

are both satisfied and when the integration constants C5
is chosen to be zero: Cs ——0. Here, t stands for "Newton
gravitational constant. " Also the solution (7.36) gives the
Newton potential, if the condition (7.40) is satisfied and
if Cq ——0. Thus, each of the case 2 with the conditions
(7.40) and (7.41) and of case 8 with condition (7.40) can
give a Newtonian limit by a suitable choice of the inte-
gration constant. But, it should be noted that the field
equations for h~„are fourth order differential -equations
for both cases.

def
torsion tensors, is given by L~ ——LT + L~ with Lz and
I,R being given by (3.1) and (3.2), respectively.

(2) The gravitational field equations are given by (3.10)
and (3.16), the alternative forms of which are (4.15) and
(4.22), respectively.

(3) Solutions of the vacuum Einstein equation with the
cosmological constant A satisfy the vacuum gravitational
field equations with b = 2A(a + 6asA).

(4) Equation (4.22) does not contain third derivatives
of the metric tensor, if and only if az ——as ——0. For
the case with a2 ——as ——0, the vanishing torsion satisfies
(4.22) with S;~i, = 0, and (4.15) reduces to the Einstein
equation (4.26) for the vanishing torsion.

(5) For the case with ai ——a2 ——as ——0 and with
(3ci+2a)(2P —a)(4p —a) P 0, the torsion is frozen" at
the place where the "spin" density S;~p does not van-
ish. If a = 1/(2z) in addition and the source field
is "spin"less, field equations for the gravitational and
source fields agree with those in the Einstein theory.

(6) The world line of the macroscopic body is the
geodesic line of the metric g„„dx" Cgw dz, if the effects
due to the "spin" of the fundamental constituent parti-
cles can be ignored.

(7) In the sense mentioned in Sec. VI A, the telepar-
allel theory developed in Ref. [11] is "included as a solu-
tion" in the liiniting case with a, -+ oo (i = 1, 2, 3) and
with b = 0.

(8) For the case with a —i oo, P ~ oo, p —i oo, the
underlying space-time is of the Riemann type.

(9) The linearized field equations lead to the fourth-
order differential equation (7.21) for weak gravitational
potentials. For the gravitational field produced by a
static "spin" less pointlike source, (7.21) has been solved

to give the potential U = —c hpp/2. The solutions aredef

classified into four cases 1, 2, 8, and g. Each of the case 2
with the conditions (7.40) and (7.41) and of case 9 with
condition (7.40) can give a Newtonian limit by a suitable
choice of the integration constant.

The following is worth mentioning.
(a) Even for the case with ai ——a2 ——as ——0, a =

1/(2r) and (3a + 2a)(2p —a)(4p —a) g 0, field equa-
tions are difFerent from those in the Einstein theory, if the
source field has nonvanishing "spin. " For this case, space-
times in the vacuum regions are locally the same as those
in the Einstein theory, but the quantized theory and
nonlocal properties such as the gravitational Aharonov-
Bohm effect [17, 18] due to the "spin"ning source fieldk

are presumably difFerent from those of the latter theory.
(b) Condition (7.40) agrees with condition (5.11) in

Ref. [11] in its form. This is quite naturally understood,
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if we note the discussions in Secs. VI A and VII B 8' and
the fact that the parameter aq does not appear in the
linearized equation (7.21) with (7.22)—(7.25).

(c)As is known from (3), black hole solutions [19,20]
of the ordinary three-dimensional vacuum Einstein equa-

tion with a negative cosmological constant satisfy the
vacuum gravitational field equations in our theory. Also,
it is worth adding that these solutions are independent of
the black holes in a teleparallel theory discussed in Ref.
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