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A Poincaré gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational
field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with
the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at
most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations
and under general coordinate transformations, is given. Gravitational field equations are studied in
detail, and solutions of the equations for weak gravitational fields are examined for the case with
a static, “spin”less point like source. We find, among other things, the following. (1) Solutions
of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory.
(2) For a class of the parameters in the gravitational Lagrangian density, the torsion is “frozen” at
the place where “spin” density of the source field is not vanishing. In this case, the field equation
actually agrees with the Einstein equation, when the source field is “spin”less. (3) A teleparallel
theory developed in a previous paper is “included as a solution” in a limiting case. (4) A Newtonian
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limit is obtainable if the parameters in the Lagrangian density satisfy certain conditions.

PACS number(s): 04.50.+h

I. INTRODUCTION

Recently, lower dimensional gravity has been attract-
ing considerable attention. The (2+1)-dimensional Ein-
stein theory has no Newtonian limit and no dynamical
degrees of freedom, but it has nontrivial global struc-
tures. This theory has been studied mainly because of
the local triviality and of the global nontriviality [1-3].
For the (3+1)-dimensional gravity, there have been pro-
posed various theories alternative to the Einstein the-
ory, among which we have a teleparallel theory [4] and
Poincaré gauge theories [5-9]. A Poincaré gauge theory
has been examined [10] also for the (1+1)-dimensional
case.

It would be significant to develop various theories of
gravity also for (2+1)-dimensional case, which will bring
us toy models useful to examine basic concepts in theories
of gravity. In a previous paper [11], the present author
has proposed a teleparallel theory of (2+1)-dimensional
gravity having a Newtonian limit and black hole solu-
tions.

The purpose of this paper is to develop a Poincaré
gauge theory of (2+1)-dimensional gravity, in a limiting
case of which a teleparallel theory given in Ref. [11] is
“included as a solution.”

II. DREIBEINS, THREE-DIMENSIONAL
LORENTZ GAUGE POTENTIAL, AND
RIEMANN-CARTAN SPACE-TIME

The three-dimensional space-time M is assumed to be
a differentiable manifold endowed with the Lorentzian
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metric g, dz* ® dz¥ (p,v = 0,1,2) related to the fields
e* = eF,dz* (k = 0,1,2) through the relation g,, =

ek mriet, with (n) def diag(—1,1,1). Here, {z#; p =

0,1,2} is a local coordinate of the space-time. The fields
e = e*,0/dz*, which are dual to ek, are the dreibein

fields. The Lorentz gauge potentials A*, (= —Al*))
transform accordingly as
Alklu(w) = Akl#(m) +wkm(I)Amlu(w)
+wlm($)Akmu(r) - 6#“)“(93) ) (2.1)

under the infinitesimal Lorentz gauge transformation of
k
e*,(x):

e/ku(m) = eku(m) + wkl(w)el,u(m) ) (2.2)

ki d

def pimwk

where w m 1s an infinitesimal real valued func-
tion of z and is antisymmetric with respect to k& and [.
Here, (n*') is the inverse matrix of (mx), and in what
follows raising and lowering the indices k, [, m,... are ac-
complished with the aid of (n*!) and (k- The covariant
derivative Dy of the field ¢ belonging to a representa-
tion o of the three-dimensional Lorentz group is given
by

i .
DksO = ey <8u(p + §AlmuM1mtp> s (2.3)

where My, def —i0,(My1). Here, {M,;, k,l =0,1,2} is a
basis of the Lie algebra of the three-dimensional Lorentz
group satisfying the relation

[Mkh Hmn] = —nklin - nlnﬁkm

+nanIm + nlkan ) (24)

My =My, (2.5)
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and o, stands for the differential of o. The field strengths
of ek, and of A*, are given by

k  def k k k k
T = e*1e”n(0e”, — Oye”,) + e 1A%, — e A%,

(2.6)

RM,., et e, (8,48, — 8,4,
—Ak AT, AR AT (2.7)
respectively. We have the relation
Ritmn = MemBin — MenRim — Mim Bien + Min Rkm
— 3 (MkemMin — Mknim )R, (2.8)

where we have defined Ry, def R,™;,, and R def R*,.

For the world vector field V = V#9/8z*, the covariant
derivative with respect to the affine connection '} is
given by

D, V* =9,V* +T% V*. (2.9)
We make the requirement
D,\V* = e ,D,V* (2.10)
for the Lorentz vector field V¥, where V# def et VE,
Then the relation
Ak, =T e et + ek 0,e"r (2.11)
follows and we have
T, =T (2.12)
Rkluv = ekz\ele,\puu 3 (213)
def p P _
D,\g,“, = 8,\g,“, - F“/\gp,, d Fu)\gllﬂ =0 (2.14)
with
T, e v (2.15
vA = Ly v . )
def
R“VAP = af\r‘ljp - aprs,\ + Ffr‘,\rl’;p - ng ltz\ . (216)

The components T#, and R*,, are those of the torsion
tensor and of the curvature tensor, respectively, and they
are both nonvanishing in general. Thus, the space-time
M is of the Riemann-Cartan type. From (2.14) we obtain

Lo = {2} + K, (2.17)

where the first term denotes the Christoffel symbol,

def 1
{p/\u} = Egl\f(a#ggu + augfp - 359,“,) ) (218)
and the second stands for the contortion tensor
def
K*,, = -1 (T",w -T>, - T,,",,) : (2.19)

The field components e*, and e*; will be used, as for
the case of V# and V* in the above, to convert Latin
and Greek indices.

III. LAGRANGIAN DENSITIES AND
GRAVITATIONAL FIELD EQUATIONS

For the matter field ¢, La(p,Drp) is a Lagran-
gian [12] invariant under three-dimensional local Lorentz
transformations and under general coordinate transfor-
mations, if Lps(g, Oky) is an invariant Lagrangian on the
three-dimensional Minkowski space-time.

For the fields e, and A*,, Lagrangians, which are
invariant under local Lorentz transformations including
also inversions and under general coordinate transforma-
tions and at most quadratic in torsion and curvature ten-
sors, are given by

Lt = at®* ™ty + BvFve + va" ™ arim + 6, (3.1)

Lr = a1E¥E + a2I® It + a3R? + aR . (3.2)

Here, tiim, vk, and agi, are the irreducible components
of Ty, defined by

def
tiim = 3(Totm + Tikm) + 3 (Mmikvt + DmiVi) — 30410
(3.3)
def

Vg = Tllk 5 (3.4)

and

def

akim = 5 (Trim + Tkt + Timi) (3.5)

respectively, and Ej; and Ii; are the irreducible compo-
nents of Ryjmy defined by

Eu® 3 (R — Rix) (3.6)

and
In® 3(Ret + Rig) — 3mu R, (3.7)

respectively. Also, a, 8, v, 8, a1, az, a3, and a are real
constant parameters. Then,

péer! / Ld’ (3.8)
C

is the total action of the system, where c is the light
velocity in the vacuum and L is defined by

L= /=g[Lc + Lu (¢, Dip)] (3.9)
. def def
with Lg = Lt + Lg and g =det(g,,). For the case
witha; = a2 =a3=0,a#0,a =8 =+ =0 and with
0 = 0, the Lagrangian L reduces to the Einstein-Cartan
Lagrangian [13,14].
The field equation §L/de’, = 0 reads [15]

2aR_,-,~ + 4J[ik]{jl]Rkl + 4k [jl]Rki - 2J[ik] [jk]R

—2DkFijk + 2UkFijk + 2H,'j — nijLG =T, (3.10)

where we have defined
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Jijkt def 2a3Rnienji + 2nik(@1 Ej + axly) ,  (3.11)
D*Fiji € e#*(9,Fyj + A™ wFmijk
+4;"  Fimk + A"  Fijm) (3.12)
de
Fiji = altije — tixj) + B(mijve — mikv;) + 2vaijk
= —Fy;, (3.13)
and
def
Hi; = TwiF¥; — YTuF* = Hj; (3.14)

Also, T;; denotes the energy-momentum density of the
field ¢ defined by

0L

def
A4 —gT,-j = Ej“*(s‘ei— (315)
n

with Ly def v/—gLas. The field equation §L/§A%, = 0

reads

2D Jiijym + (% tml — gl + 0! )J[ijl[lm]

ijk = Sijk (3.16)
with

def

D' Jijpen = e (Oudpijipny + Ai™ T imil i

+A;™ Jimyey + Ak p (i) ima)

+ A" W Jij)km)) (3.17)
def 2a a
Hiji = — (a + ?) (thij — tejs) — (ﬂ - 5)
X (Mriv; — Mjvi) + (4 — @)aije = —Hjik -
(3.18)

Here, S;jx is the “spin” [16] density of ¢ defined by

e 6L
vV *QSijk de - ———N!— .

Chn 5 A%, (3.19)

IV. ALTERNATIVE FORMS OF THE
GRAVITATIONAL FIELD EQUATIONS

We shall rewrite the gravitational field equations (3.10)
and (3.16), by using the expression

Aijp = Diju + Kiju (4.1)

with A;;,, being the Ricci rotation coefficient

ef
Aiju = 1e*,(Ciji — Cjin — Chij) (4.2)
where
def ,, A
Cijk = € ]’6 k(a,,ei)\ ‘-8,\6“,) . (43)
There is the relation
Rijuv = Rijuw ({}) + Rijuu (K) (4.4)
with
def
Rijuu({}) = 048450 — 80,8050 — AF Ay + AF L Ak,
= ei/\eij)\mw({}) s (4.5)
def
Riju(K) = VuKij, — Vo Kij,
—Kik“Kjky + KikUKjkN s (4.6)

as is shown by substituting (4.1) into (2.7). Here,
R*,,.({}) stands for the Riemann-Christoffel curvature
tensor

def

Yo ({}) = 8“{911} - 6”{9Au}
HAHHS A (4.7)

and V, Kj;;, denotes the covariant derivative with respect
to the Ricci rotation coefficients when the index is Latin,
and with respect to the Levi-Civita connection when the
index is Greek. Each irreducible part of R;;z; is split into
two parts, as is known by using (4.4) in (3.6) and (3.7),
and Jjjki can be expressed as

Jijr = Jiji({}) + Jijri(K) (4.8)
where J;jxi({}) and J;j5:(K) are formed of the irreducible

parts of R;;x({}) and of R;;xi(K), respectively. The ten-
sor J;jki({}), in particular, is given by

Jizr({}) = 2a2ma R ({}) + 2 (as - %) nienjiR({}) .

(4.9)

where R;;({}) and R({}) are the Ricci tensor and the
Riemann-Christoffel scalar curvature, respectively,

Ri;({}) & erie’ ;R ({D) . RN E 09 R;({)) -
(4.10)

The gravitational Lagrangian Lg can be rewritten as
Lo = R () Ru({}) + (o5 - 52) [RUDP + aR({})

%mwfgv“) ,

+Lp + L — (4.11)

where
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2 a
L % ( + _g) peimg o (ﬁ— 5) -

+ ('y — %) akl"‘akzm +4, (4.12)
Ly ef Lp — a; R*( {HRu({})
— (a3 - Z) RGN - aR. (4.13)

Here, we have used the relation
J

V3R = VGR({}) - \/fg‘(—gt“'"tkzm
+ ’U vk + 1aklmak1m)
—20,(v—gv*) .

Using the above formulas in (3.10) we get the alternative
form of the field equation for e*,:

(4.14)

20G35({}) + 5 (5az + 1208) Ris ((NR({Y) — 202 R ({1 Rin( )

2(12

i {azR“({})Ru({}) - (— + ) [R({})F} + ani 2B () Rua(K) — R({)R(K))

3

+a2R;; ({}) R(K) + ;(az + 6a3) R({}) Rji(K) — 2a2R;*({}) Rjx (K) + 4Jjasy ny (K) R¥

+4J "y (K) Ry — 205, (K) R — 2D*Fijy + 20" Fjjy + 2H}; — 13(Ly + Lp) = Ty (4.15)
I
where G;;({}) is the three-dimensional Einstein tensor ), def To: F™; — %TjktFi’kl = H,. (4.19)
def
G () = By ({}) — am R - (4.16) We have the relations
Here, we have defined i/jk = L(Hyj — Huj — Hjks) (4.20)
Ru(K) ® R™ tmi(K), R(K) < R*y(K), (417)

Hijie = Fijp — Fiy (4.21)

e 2a
ik e (Ot + ?> (tije — ting) + (ﬂ

a ’
Z) Aijk = ‘Fikj )

a
- 5) (mijv — Mikv;)
+2 (7 - (4.18)

]

as shown by comparing (3.18) and (4.18). The field equa-
tion for A%, is rewritten as

—202ViG({}) - 8 (“3 *% )"k[z 9;G({}) +2(D" = V') Iz ({}) + 2D i (K)

+ (gtk[lm] = &cl'v™ + ! ) Jiij)um) —

where G({}) = def i Gi;({}). By examining the alterna-

tive forms of the gravitational field equations (4.15) and
(4.22) we find the following.

(1) For the case with S;jx = 0 and with T;; = 0, any
solution of the equations

Gi;({}) —misA =0, (4.23)

Tijk =0, (4'24)
satisfies (4.15) and (4.22) with § = 2A(a+6a3A). We can
say shortly, “solutions of the vacuum Einstein equation
are solutions of the vacuum gravitational field equations
in this theory.”

(2) Equation (4.22) does not contain third derivatives
of the metric tensor, if and only if

az = agz = 0. (425)

(3) When condition (4.25) is satisfied, then (4.15) and

Hijk = Sijk (4.22)

(4.22) are considerably simplified. In (4.15), the terms
quadratic in the Riemann-Christoffel curvature tensor
are all vanishing. In (4.22), the first three terms disap-
pear, and all the remaining terms are linear or quadratic
in the torsion temsor. Thus, if the intrinsic “spin” of
the source is vanishing, S;jx = 0, then (4.22) is satisfied
by the vanishing torsion, and when the torsion vanishes,
(4.15) reduces to the equation

2aG;;({})

For the case with a = 1/(2k) with x being the “Einstein
gravitational constant,” (4.26) agrees with the Einstein
equation, because T;;=T}; for a vanishing S;;x, as is seen
from (5.10) of the next section. The following, however,
should be noted: The torsion tensor does not necessarily
vanish, even when condition (4.25) is satisfied and the
intrinsic “spin” of the source field is vanishing.

(4) When condition a; = 0 is satisfied in addition to
condition (4.25), then (4.15) and (4.22) reduce to

-6 =T . (4.26)
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2aGy;({}) — 2D*Fj;;, + 2kaink +2H;; — nijLy = Tj;
(4.27)
and

—Hjjr = Sijk » (4.28)

respectively. The torsion tensor is linearly dependent on
Sijk, if

(3 +2a)(26 —a)(4y —a) #0,

as seen from (3.18) and (4.28). Thus, the torsion is
“frozen” at the place where the “spin” density S;;i does
not vanish.

If Sijr = 0, (4.15) for the present case reduces to (4.26).
Also, the field equations for the “spin”less source fields
agree with those in the Einstein theory.

(4.29)

V. EQUATION OF MOTION FOR
MACROSCOPIC BODIES

We shall derive the equation of motion for macroscopic
bodies, which can be done in a way similar to the case of
the (3+1)-dimensional theory [7].

From the fact that the gravitational action integral

o 1
P /LGd3z (5.1)
C

with
def
LG = \/#gLG, (5.2)

is invariant under general coordinate transformations,
the identity

V=9(Y" e + Zi;" 8,47,
= av{V‘g(Yuu+ZijVAiju)} (5~3)
follows, where

0L¢

VoYt e (5.4)
M
and
ef OLg
[—gZi* _5,4; . (5.5)
I

The gravitational field equations SL/de’, = 0 and
SL/6A%Y, = 0 can be expressed as

Y,y =1, (5.6)
and

Zi;" = -85, (5.7)

respectively. By using (5.6), (5.7), and the formula

0 (v —9Y,.") — \/—gY"“B“ei,,
= V=9(V.Y." + Ax YY), (5.8)

in (5.3), we obtain the response equation to gravitation
VT + Ax TV — 20, AY 8"
1 »
=AY ,8,(\/—gS:i;¥) = 0. 5.9
\/_—g K ( J ) ( )
Also, the identity

t 0Ly

J‘?T[ij] = V.(V-95:;") - ET;M“‘W (5.10)
follows from the invariance of the action
ef 1
Iy < - /LMdBw, (5.11)
C

under local Lorentz transformations. Here, we have de-
fined
Viu(v/—95i;")

def

= 0u(V—=98i") + V—=9A:" ,Sm;"
V=A™ Sim® (5.12)
We obtain

VVTMV + ﬁAijuV,,(\/—gS"j”) - 28[,Aiju]siju

1 g
——=A%,0,(v/—9S:;;") =0,
\/jg‘ H J )
by use of (5.10) and the field equation éL/dp =
0L /d¢ = 0in (5.9). We apply this equation to the mo-
tion of a macroscopic body for which effects due to the
“spin” s of the fundamental constituent particles can be
ignored, then the energy-momentum tensor of a macro-
scopic body is symmetric and satisfies the conservation
laws

(5.13)

V,T," =0. (5.14)

From (5.14), we can show, in a way quite similar to the
case in the four-dimensional Einstein theory, that the
world line of a macroscopic body is the geodesic line of
the metric g, dz* ® dz".

VI. TWO LIMITING CASES
A. The case with a; & oo (¢ = 1,2,3)

Suppose that the parameters a; (¢ = 1,2,3) have the
expression

(1=1,2,3), (6.1)

1 _
a; = Fai
where f is a parameter characterizing the magnitude of
a;’s and it can be regarded as standing for the coupling
strength between the Lorentz gauge field and the matter
field . Multiplying both sides of (3.16) by f2 and taking
the limit f — 0, we get

— 4 7
2D" T i)k + (gtk“m} — dllom + ak’"‘> Jiigypm) =0,

(6.2)
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where

= def _ — —
Jijri = 2asRnienji + 2ni (@1 Ej + @2151) (6.3)
By substituting R;jz = 0, which is a solution of (6.2),
into (3.10), we obtain

—2DkFijk + 2’UkF1;jk + 2H1;j - ’I’h‘jLT = T,'j . (64)
Specifically, if we set A%, = 0, (6.4) with § = 0 reduces
to (3.7) of Ref. [11], which is the gravitational field equa-
tion in a teleparallel theory. Even for this limiting case,
the theory given in this paper is not identical to the the-
ory developed in Ref. [11], because (6.2) does not neces-
sarily imply R;jr; = 0. To put it briefly, the teleparallel
theory developed in Ref. [11] is “included as a solution”

in the limiting case with a; — oo (i = 1,2,3) and with
6 =0.

B. The case with a — 00,8 — o0,y — oc©

When a, 3, and v become large, the torsion tensor be-
comes infinitely small with H;;x kept finite, which follows
from (3.16). In the limit of & — 00,8 = 00,7 — 00, the
underlying space-time is of the Riemann type, and H;ji
is given by

Hiji = =222V iGii({})
a
-8 (as + ) ms8nG({}) = ik,

which is obtained from (4.22). By using (2.8), (4.20), and
(6.5) in (4.15) we obtain

(6.5)

2aGi;({}) + §(7az + 6a3) Ri; {DR({}) - a2 R:*({DRix ({})
~ij | ~302 R ({)Ru({}) + }(52 + 3a3) (RU{D)?] +202V* V4G5 ({})

—$(az + 6a3)(1;; VE*Vi — ViV;)G({}) = Tij — V*(Siji — Sinj — Sii) -

This equation is obtainable also directly from the La-
grangian L def Lgr + Ly(p, Viy), where

Ler ' a: B (N Ru(() + (a3 - §) (R’

Vi 3 ety (a,@ + %Al’"“Mlmcp) . (6.8)

VII. LINEARIZED GRAVITATIONAL FIELD
EQUATIONS AND RELATION TO THE
NEWTON THEORY

A. Linearized equations

We now examine the gravitational field equations in
the weak field situations in which

; def
i der 4 g1
a'y = ey =8y

(7.1)

and A%, are so small that it is sufficient to keep only
terms linear in @', and in A%,. In this approxima-
tion, Greek and Latin indices need not be distinguished

GLL) = 030y — 58,8,k — 3 Dby — 1, (9r9,h> — TR,

1) def 2a a a
F'ful\ = (01 + 3) (Buwr — tuaw) + (ﬂ - 5) (MupVx — Nuavy) + 2 (7 - —) Quvr = —F’ff},, )

(6.6)

[

with each other, and thus we shall use Greek indices
throughout the present section with the understanding

that they are raised and lowered with (n*) def (T)W)_1
and (7,,) ef diag(—1,1,1). For this case, the compo-
nents g,, of the metric tensor have the expression

Juv = Nuv + h,.w (72)

with

def
huw = apy +ay, .

(7.3)

Noting (4.1) and (7.1), we employ a,, and the tor-
sion tensor T,, as independent field variables, and ex-
press the linearized gravitational field equations in terms
of them. In what follows, we consider the case with
d = 0 only, because the “cosmological term” § in the
Lagrangian Ly is not in harmony with our weak field ap-
proximation. After some calculations, we find that (4.15)
and (4.22) take the forms

1
2aGY) - 20°F'0), =T, (7.4)
and
1

Z3), = Sy, (7.5)

respectively. Here, we have defined
(7.6)
1 (7.7)
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def a
74, % 0a (055~ 0,652) + 8 (12+ ) mn G 4 (o1 + w0017
1
+§[6“8¢,{2a1t”[,\,,] + 3a2t,\,,°} — 6A8,{2a1t”[w] + SGztuua}]
1 , 1
+6(3a1 + ag — 48a3)7,[,01)0,v7 + i(al +a2){0, 0, va) + Mo Ovy}
+a1050),ax),7 + HYL,, (7.8)
with GO 4F v Q1) % puvp 0% 99, and
def 2a a
HS‘),, = - (a + g) (toaw — topr) — (ﬁ - 5) (Moavy — Mpva) + (47 — @)aru, = —H,SIA)V . (7.9)
[
(1) (1) (1) (1) .
These G,v, F’W)‘, VAW G and H,,, are the lin- 2 (a+ 2_“) a)‘t«\[w] +2 (ﬁ— E) Bpuvy)
earized expressions for G, ({}), F"w/\, Zapw, G({}), and 3 2 ’
H),,, respectively. In the lowest order approximation a
now considering, we have the differential conservation law —4 (’Y - Z) 8'\auu,\ =T - (7.18)
9,T," =0 (7.10) Taking the trace of (7.17), we obtain
and the Tetrode formula 920G _ 4 (ﬁ _ g) vy = T (7.19)
8,\5‘“,/\ = TU“’] . (7.11)

The field equations (7.4) and (7.5) are invariant under
the infinitesimal gauge transformations

R = hyw +0uAy +OLA, (7.12)

"
%

| = [ +Wuy y Wpy = —Wyp (7.13)
with A, and w,, being both arbitrary infinitesimal func-
tions. The transformations (7.12) and (7.13) are the in-
finitesimal versions of the general coordinate and local
gauge transformations, respectively. The invariance un-
der the transformation (7.12) means that the antisym-
metric part af,,) does not have physical significance. By
virtue of the invariance under the transformation (7.12),
we can put the harmonic condition

0"hu, =0, (7.14)

which is assumed from now on. Here, we have defined

def

R = hpw — 2nuh . (7.15)

The linearized Einstein tensor now takes the form
Gl =-1D0hy . (7.16)

It is convenient to decompose (7.4) into symmetric and
antisymmetric parts:

2
2aGf}V) -3 <a + ?a> 3'\t}w,\

a
-2 (ﬁ B 5) (Muw @ vx — 8(uvy)) = Ty (7.17)

with T 4 n**T,,. Both sides of (7.4) are divergence-

less because of (7.10), while the divergence of (7.5) with
respect to v gives (7.18) by virtue of (7.11). Thus, the
field equations (7.4) and (7.5) give (94+9) — (3+3) =12
independent equations for 3 + 9 = 12 independent field
variables.

B. hgo due to a static, “spin”less pointlike source

Using (7.8), (7.17), and (7.19) in the the symmetric
part of the divergence of (7.5) with respect to z*,

(1) A
A =—0"Sx(uv) »

oy = (7.20)

we obtain the fourth-order field equation for h,,,:

AQOhy, + BO? hyy + C(ny, 0—0,0,) Oh = TEH

(7.21)
with
ALY a4, (7.22)
pif_ Bes (7.23)
3a + 2a
def 1 aas
c¥ -~ 13 6as) — 3aas} — — 2,
627 = a) (P(az + 6as) = 3aaz} — 27
(7.24)
and
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) def A az + 24a3 _
T(;u) = T(u) — 20" Sx(uv) — m(nm/ 0-08,0,)T
2a; 1
- 3a + 2a <DT(I“’) - 5("#" a —6“6,,)T

+28"6"6(,‘S,,)>‘p) . (7.25)

It is worth mentioning that the parameters a; and v do
not appear in (7.21) with (7.22)—(7.25). We consider now
the gravitational field produced by a static, “spin”less
source located at the origin, for which Sy, is vanishing
and T, is given by

Mc%6%(r) , =v=0,
Tuv={0 (r),

otherwise (7.26)

with r % (z!,x2). For this case, TC%) has the expression
TG8) = Mc2{8%(x) + (P + Q)A8*(r)} ,
e eff
e 7 o,
T5 = Me*(P - Q)(0a85 — ap8)8%(r) ,

(7.27)

Mc?
T+m(2PA—B—2C)/(

with C; and C, being integration constants, r 5 |r|

and k & (k1,k2). Substituting (7.31) into (7.21) with

p = v =0, solving the equation thus obtained and using
(7.22), (7.23), and (7.24) and the formula

hoo(r) = —

ezk~r

Br200e -4

where the indices a and  run over 1 and 2, A e (61)%+

((92)2 5 and

def G2 + 24ag def az
= ——F——— = — . 7.28
P 6(28—a)’ @ 3a + 2a (7.28)
Taking the trace of (7.21) we obtain
AOh+ (B+2C)0%h=TED | (7.29)

where h def n“"ﬁ“,,, and

T Ef puvp(e® — _Mc26%(r) — 2M P PAS(r) .
(7.30)

In the following, we shall solve (7.21) and (7.29) to give a
time-independent circularly symmetric potential hgo for
each of the four cases.

1. The case with a # 0

For this case, (7.29) is solved, by utilizing the method
of Fourier integration, to give

d’k + C, / 8[(B +2C)k* — Ale’™**d?k + C, (7.31)

1 (% ikrcoso
Jolkr) = 5 /0 gikreos0 g (7.32)
we obtain
J
Mczag (3(1 + 20,) foo kJo(kT‘)
4ma o 3daazk? —a(3a + 2a)
+Mc2(a2 + 24(13)(2ﬂ — a) /oo kJo(kT‘) dk
4ma o 20(az + 24a3)k? + 3a(20 — a)
+67C1|28 — af / 5128(az + 24a3)k? + 3a(28 — a)|kJo(kr)dk
0
oo 2 _ N
+Csl3 + 2a|/ 0[3aaqk a(Z;a + 2a))Jo(kr) dk + C, (7.33)
0
I —_—
ai=2 (i=2,3) (7.35)

with k 4 |k|, and C5 and Cj being integration constants.
Here, Jy denotes the Bessel function of the first kind and
of index zero.

2. The case with a = 0 and aBa;(a; + 24as) # 0

In a way similar to case 1, the solution

Mc2(3a + 40) Mc%(ay + 6a3) ,
hoo(r) = 24raf Inr— 4maz(az + 24a3) rlar
+Csr% + Cs (7.34)

is obtained, where C5 and Cg are integration constants.

3. The case with a; — oo, as — oo, and af # 0

The parameters a; and a3 are assumed to have the
expression

f2

with f being a real constant, and we consider the limiting
case with f — 0. Multiplying both sides of (7.21) and
(7.29) by f? and taking the limit f — 0 and following a
similar procedure as in the above, we find

3a+ 48
24raf

hoo(r) = Mclnr + Cqr? + Cs (7.36)

with C7 and Cs being integration constants.

4. The case with a — oo, B — oo, and a # 0

The potential for this case is given by
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dk +

kJo(kT')

2 oo
hoo(r) = _Mc?ay / kJo(kr)
0

4Ta

MCz(ag —+ 24(13) /oo
o (

azk? —a 4ma

az + 24a3)k? + 3a

209(0.2 + 6(13) *° (5[((12 + 24(13)](32 + 3a]k.]0(k'!‘)
n dk
3 0 azk? —a

LGy /°° 8[(az + 24a3)k? + 3a)Jo(kr)
0

k

with C; (=9, 10, 11) being integration constants.
C. Relation to the Newton theory

We consider a macroscopic body for which effects due
to the “spin” s of the fundamental constituent particles
can be ignored. The world line of motion of this macro-
scopic body moving freely in the space-time under con-
sideration is the geodesic line of the metric g,,dz* ® d¥,
as has been known in Sec.V. Thus, when the motion is
sufficiently slow and the gravitational field is weak, this
body obeys the equation of motion

d’r ou
w = ar (7.38)
with U % —c%hgo/2. Neither of the solutions (7.33)

and (7.37) can give a Newton potential. The potential U
given by the solution (7.34) satisfies the Newton equation
for the gravitational potential,

AU = 4rGM4(r) (7.39)
if the conditions
96
3a + 40 = ——fﬁ—wg , (7.40)
az + 60,3 =0 ) (741)

are both satisfied and when the integration constants Cy
is chosen to be zero: Cs = 0. Here, G stands for “Newton
gravitational constant.” Also the solution (7.36) gives the
Newton potential, if the condition (7.40) is satisfied and
if C7 = 0. Thus, each of the case 2 with the conditions
(7.40) and (7.41) and of case 3 with condition (7.40) can
give a Newtonian limit by a suitable choice of the inte-
gration constant. But, it should be noted that the field
equations for h,, are fourth-order differential equations
for both cases.

VIII. SUMMARY AND COMMENTS

We have formulated a Poincaré gauge theory of (2+1)-
dimensional gravity and the results can be summarized
as follows.

(1) The theory is underlain with the Riemann-Cartan
space-time, and the gravity is attributed to the curva-
ture and the torsion. The most general gravitational La-
grangian, which is at most quadratic in curvature and

) 2
dk-}—Cm/ d(azxk a)JO(kr)dk+Cll
0

; (7.37)

f

torsion tensors, is given by Lg def Lt + Lg with L7 and
Lp being given by (3.1) and (3.2), respectively.

(2) The gravitational field equations are given by (3.10)
and (3.16), the alternative forms of which are (4.15) and
(4.22), respectively.

(3) Solutions of the vacuum Einstein equation with the
cosmological constant A satisfy the vacuum gravitational
field equations with § = 2A(a + 6asA).

(4) Equation (4.22) does not contain third derivatives
of the metric tensor, if and only if a; = a3 = 0. For
the case with a; = a3z = 0, the vanishing torsion satisfies
(4.22) with S;j, = 0, and (4.15) reduces to the Einstein
equation (4.26) for the vanishing torsion.

(5) For the case with a; = a; = a3 = 0 and with
(3a +2a) (203 — a)(4y — a) # 0, the torsion is “frozen” at
the place where the “spin” density S;;jx does not van-
ish. If @ = 1/(2k) in addition and the source field
is “spin”less, field equations for the gravitational and
source fields agree with those in the Einstein theory.

(6) The world line of the macroscopic body is the
geodesic line of the metric g,,dz* ® dzV, if the effects
due to the “spin” of the fundamental constituent parti-
cles can be ignored.

(7) In the sense mentioned in Sec. VI A, the telepar-
allel theory developed in Ref. [11] is “included as a solu-
tion” in the limiting case with a; — oo (i = 1,2,3) and
with § = 0.

(8) For the case with @ — 00,8 — 00,7 — 00, the
underlying space-time is of the Riemann type.

(9) The linearized field equations lead to the fourth-
order differential equation (7.21) for weak gravitational
potentials. For the gravitational field produced by a
static “spin”less pointlike source, (7.21) has been solved

to give the potential U def —c?hgo/2. The solutions are
classified into four cases 1, 2, 3, and 4. Each of the case 2
with the conditions (7.40) and (7.41) and of case 3 with
condition (7.40) can give a Newtonian limit by a suitable
choice of the integration constant.

The following is worth mentioning.

(a) Even for the case with a; = a2 = a3 = 0,a =
1/(2x) and (3a + 2a)(28 — a)(4y — a) # 0, field equa-
tions are different from those in the Einstein theory, if the
source field has nonvanishing “spin.” For this case, space-
times in the vacuum regions are locally the same as those
in the Einstein theory, but the quantized theory and
nonlocal properties such as the gravitational Aharonov-
Bohm effect [17, 18] due to the “spin”ning source fields
are presumably different from those of the latter theory.

(b) Condition (7.40) agrees with condition (5.11) in
Ref. [11] in its form. This is quite naturally understood,
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if we note the discussions in Secs. VI A and VII B 8 and
the fact that the parameter a; does not appear in the
linearized equation (7.21) with (7.22)—(7.25).

(c)As is known from (3), black hole solutions [19,20]
of the ordinary three-dimensional vacuum Einstein equa-

tion with a negative cosmological constant satisfy the
vacuum gravitational field equations in our theory. Also,
it is worth adding that these solutions are independent of
the black holes in a teleparallel theory discussed in Ref.
[11].
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