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Two-dimensional dilaton gravity interacting with a four-fermion model and scalars is investigated,
all the coefficients of the Lagrangian being arbitrary functions of the dilaton field. The one-loop
covariant effective action for two-dimensional (2D) dilaton gravity with Majorana spinors (including
the four-fermion interaction) is obtained, and the technical problems which appear in an attempt
at generalizing such calculations to the case of the most general four-fermion model described by
Dirac fermions are discussed. A solution to these problems is found, based on its reduction to the
Majorana spinor case. The general covariant effective action for 2D dilaton gravity with the four-
fermion model described by Dirac spinors is given. The one-loop renormalization of dilaton gravity
with Majorana spinors is carried out and the specific conditions for multiplicative renormalizability
are found. A comparison with the same theory but with a classical gravitational field is done.

PACS number(s): 04.50.+h, 04.60.Kz, 11.10.Gh

I. INTRODUCTION

There is an increasing interest in the study of two-
dimensional (2D) dilaton gravity for different reasons.
First, the insurmountable difBculties involved in deal-
ing with 4D quantum gravity make 2D dilaton gravity a
very interesting laboratory, which may presumably lead
to the understanding of general properties of true quan-
tum gravity. In fact, it is much easier to work with 2D
gravity, because there the by now well-known methods of
conformal field theory can be successfully applied. Sec-
ond, 2D dilaton gravity with matter may well serve as a
good toy model to study very important features of black
hole evaporation and thereby connected issues (see [1] for
a review and list of references).

Different approaches to the quantization of 2D dilaton
gravities (mainly, string-inspired models) have been dis-
cussed in papers [2—9] (see also the references therein).
Specifically, the covariant effective action and the one-
loop renormalization of some specific models have been
studied in Refs. [3,5,7].

In the present paper we shall obtain the covariant ef-

fective action corresponding to a very general, multiplica-
tively renormalizable [3,4) (in a generalized sense) model
of 2D gravity with matter. Its action has the form

d2 g @, p
2

g(@)0 V'A—0-+b(4') (0 & b0bj

2
f (4 )g" —B—„g;O„y, + V(4, y)

It includes a dilaton field 4, n Majorana fermions g
interacting quartically via a symmetric constant matrix
N b, and m real scalars y, We shall also consider the
(much more difficult) case in which this action contains
2D Dirac fermions. Notice that we have chosen the mat-
ter to interact with the dilaton via arbitrary functions.

This action describes and generalizes many well-known
dilaton models. For instance, the celebrated bosonic
string effective action corresponds to

Z(4) = Se ', C(4) =e, V(4) = 4A e

(2)
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On the other hand, in the absence of matter our action
for

Z =0, C(4) = 4, V(4) = A4, (3)

coincides with the Jackiw-Teitelboim action [9]. But
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other dilaton models are parametrized by the set
(Z, C, q, b, f, V). It goes without saying that one can
also add gauge fields to the matter sector.

In principle, at the classical level the theory defined
by the action (1) can be transformed into an equivalent
theory whose corresponding action is more simple. In-
deed, this can be done by choosing the Beld yq as defined
through the equation

Z (O)8~4 = B~(pi, (4)

and write then O = 4(p2). After having done this, by
making the transformation [6]

gpv
~ e2s(v~)g

gp, v) (6)

with a properly chosen p(rp2) [6], one can see that the
theory (1) with the transformed metric (6) is classically
equivalent to the more simple, particular case

Z = 1, C = c(p2, V = e ~~'lV((p2, y), f(O) = f((p2),

(7)

b(C') = b(v 2) "'"' q(4') = q(p2) "'"'
However, the model (7) [which, generally speaking, may
be considered as a representative of the general class (1)]
is still complicated enough. Moreover, it still includes
arbitrary functions of the dilaton (now p2), as (1) does.
Finally, the classical equivalence may be lost at the quan-
tum level. For all these reasons, we choose to consider
the quantum effective action corresponding to the more
general theory (1).

As is well known, there exists some equivalence be-
tween the calculation of the effective action in 2D gravity
and string calculations in the tr-model approach [10—12],
because 2D gravity can also be presented as some partic-
ular D = 2 o model. An approach based on the o.-model
interpretation has been recently developed in Ref. [8],
where it has been shown that in the conformal gauge
the coupling constants of 2D dilaton gravity may be con-
sidered as initial data for covariant P-function equations
which correspond to the o-model interpretation. Some
choices of these coupling constants may lead to new dila-
ton gravities. Our approach is in fact similar to the stan-
dard renormalization of quantum gravity and, as we will
see, may also lead to some new models of 2D dilaton grav-
ity defined by different conditions when compared with

[8]
Being more speci6c, in this paper we shall construct

the covariant eff'ective action of the theory (1), study its
one-loop renormalization, and discuss some thereby con-
nected issues. The work is organized as follows. In the
next section we describe in full detail the calculation of
the one-loop covariant effective action in 2D dilaton grav-
ity with Majorana spinors. This is, to our knowledge, the
first example of such a kind of calculation in two dimen-
sions. The inclusion of scalars is also discussed in that
section. Section III is devoted to the computation of the

and by expressing 4' as 4 = 4 (pi). Next, let us introduce
a new 6eld y2 via

c~2 = C(@(~i))

covariant effective action of dilaton, scalars, and Majo-
rana spinors for quantum systems in classical spacetime.
In Sec. IV we discuss the technical problems that appear
in the derivation of the covariant effective action in 2D
dilaton gravity with Dirac fermions. The solution of these
problems is found, via reduction of the system to the pre-
viously discussed case of the theory of quantum dilaton
gravity with Majorana spinors. In Sec. V the one-loop
renormalization of quantum dilaton gravity with Majo-
rana spinors is discussed. The conditions of multiplica-
tive renormalizability are speci6ed and some examples
of multiplicatively renormalizable dilaton potentials are
obtained. Finally, the conclusions of the paper are pre-
sented in Sec. VI. There is also a short appendix on the
sine-Gordon model.

d2 g @ pv
2

q(4)—Q—p"Bpg + b(4) (Q N sQsj + V(4)

(8)

Our purpose is to calculate first the effective action for
the theory (8), before proceeding with the general case.

Let us introduce some notation:

T""= -- (4.~"&"W. + 4.~"&"4.j,4
T =T"„, J = Q N span. (9)

Notice that T„„is not the stress tensor. We are going
to use the formalism of the background field method,
representing

: 0+ n 4': 4'+ v, : e" + h",

where g, 4, and e" are background fields. The action (8)
will be expanded to second order in quantum fields. The
Lorentz symmetry of the zweibein (e") is "frustrated"
by imposing the no-torsion condition e „h& —ep„h" = 0
as a constraint: we insert the corresponding b function
into the path integral but do not exponentiate it. The
corresponding ghost contribution, which is proportional
to b (0), may be discarded. This procedure fixes one out of
four gauge parameters and leaves three to be undone by
the metric variations. Thus, the variation of the zweibein
h~ is solved for the metric variation h~„:

h" = —h"e~ + —h""h e
1 3

a 2 P a 8 ~v a

That is, we will work with the variations of the metric
rather than the zweibein. The quantum fields are ar-
ranged into a vector P = (y; h; h„„;g j, where h,„„=
h„—~ g~v. The equations of motion with respect to the

II. THE ONE-LOOP EFFECTIVE ACTION
OF 2D QUANTUM GRAVITY WITH MATTER

In this section we will calculate the covariant effec-
tive action for the theory given by the action (1). For
simplicity, we 6rst set the scalars y; = 0 and discuss
dilaton-Majorana gravity only, i.e., the action
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background fields are

.q'

b@
= 0 = iqp '7~@ + i —(V'„4 )(p g) —4bJ(Nq)

2

where, as usual, 'R = —KA + L V'p + P, and the last
term in (18) is the ghost operator corresponding via (15)
to difFeomorphisms.

Now,

bS = o = —z(ae) —-z'(g"c)(g„c)
bc 2

+O'R+ V'+ qT + gJ',

(12)

(13)

/
Z —C"/C C'/2

C'/2 O

0

o o

0
0

Q ppv, uP
2

0

q'@

(q/4)~

qi )

gp, v" bg„.
= o = -&C'+ V+ -qT+t J'.1

2

Here b„denotes the right functional derivative.
The covariant gauge-Gxing condition is

(14)
and the other (essential) matrix elements are defined by
the second variation of the classical action. To calculate
the divergent part we use the same technique as in Ref.
[3], representing

'R = —K 16+2E 'I7), + II
C" „ iq —„y" = —V' ti" + —'7"p+C" 4C

c~~ = —C~g g~~

(15)
EA K—1LA

2
rr = -K-'P.

(2o)

and the total quadratic contribution to the action takes
the form

After that, the standard algorithm can be used: namely,

(16) —Tr ln'R = —Tr ln 16 + 2E V'p + II
2 2

where II is the second-order minimal operator (though
the coefficient matrix multiplying the Laplacian is not
invertible, since the fermionic fields are of first order).
Following Ref. [13], we introduce another operator

/'1 0 0
0 1 0
0 0 P„„„
0 0 0

0
0
0

—i8 sP 7'
(17)

I' = —Tr ln'R ——Tr lnO —iTr ln JH,
2 4

and define 'R = IIA so that the one-loop efFective action
in terms of supertraces becomes

=1 2 (-
d z +g Tr

[
II + —1 —E"Ep

26 6

EA

where e = 27r(n —2). The matrices E" and II can be
defined in the same way as in Refs. [5]. We do not write
them explicitly, since some of the components have very
long expressions. To obtain the divergent part, I'2
we have to evaluate the functional (super)traces of the
matrices E" and II according to (21). After some tedious
algebra we arrive at

f 3qZ q q' l (4bz 4b

4C C') i C" C
26'

i — 1 2 8 —n 2 2, t'2C'
12—a = —Tr ln'R = —— d x~g B+ —V+ —V'+

[2E 6 C C' iC
Zl &3c" c"z&——,

I (~c)—,+, (~"c)(~,c)C') ( 2C2 CI2
)

32b2
(N sNs ) [

J — J(i/i @)
q q ) q

(22)

where we have used the Majorana identity gp"N"g = 0
for all k.

The next step is to subtract the squared contribution,
i.e. , the second term in Eq. (18):

i

ghost operator
~P

. v'v (24)

——Tr lnO
4 div

i / B'i= -T in[ —a+ —i
[4 q 4 )

1 2 n
d. x~g B.

2c 12

To complete the calculation one has to consider the

where again b„stands for the right functional derivative
and the generators of the difFeomorphisms are

In the nonspinor sectors the 't Hooft —Veltman doubling pro-
cedure [14] is assumed.
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V'~ = —(V„4), hp = gp 9'„—g pV —g„Vp, which leads to

&'. = —(&-@)+ 8 h- »1 &&" .

Explicitly,
~l ~l

M „" = g„"6 ——(V„4)V" — (V'" V—„4)

+R„"—i (Qp"V' g),
(26)

The final answer is

(27)
gll Sgl 2

(V'"4) (V'g4) + T—

1, (48 —n 2 2, f C' Z i iC" C" C"Zi" *~g R+ —V+ —,V'+
~

———,
l

(&@') + —3 — (~"@')(&xe')
2e j 12 C C'

5 C C') ( C C C' )+,+ ——,
I

+ l, ———,—,+, (N.,N,.) ~

J' —,J(yx'y)
( 3qZ 3q q' ) (4bZ 4b 2b' 8bq' 16b ) 2 32b

Notice that all surface terms have been kept in Eq. (28).
Having performed the above calculation, it is not dif-

Bcult now to take into account the scalar Belds y;, and
to repeat it for the efFective action (1). In fact, the in-
troduction of the scalars leads to minor changes. All
matrices becozne 5 x 5 (rather than 4 x 4): in the back-
ground field notation g; ~ y; + o; the quantum fields
are p = (rp; h; h„„;il; o';). Scalars do not spoil the min-
imality of the second functional derivative operator, so
that the gauge condition may be left untouched. As a
consequence, neither ghost terms nor the squared con-

tributions change, and only a few matrix elements of I"
and P do. The 't Hooft and Veltman procedure [14] is

bV bV

8C
' '* b' y;

The matrix K becomes

jt Z —C"/C C'/2 0 q'Q 0
C'/2 0 0 (q/4) g 0

0 0 (C/2)P""' —~ 0 0
0 0 0 ql 0
0 0 0

(29)

(30)

assumed to have been implemented whenever necessary,
and we use the notation

Repeating the above procedure we may calculate the extra terms which appear in the effective action as a result of
the scalar 6elds contribution:

mf' (mf" mf' ~
2 —aiv extra terms = d + ~g & R Vss + +@+

2
~ (+ @)(+&@)

Thus, the complete one-loop divergences for the theory (1) become

1 2 48—I'd;„= —— d x ~g26

/'C' Z mf')
(C C' 2f

J(gN g)I .

n+ 2m 2 2, V;, (C" 3C'
12 C C' f C C

t' 3qZ 3q q' & (4bZ 4b 2b'

(4C' 4C C' ( C' C C'

C"Z mf' mf" ~

4 2 2
~ (V"C)(V),4)

8bq' 16b
(NsNb) ~Jq'

(32)

This is the main result of the present section —the one-
loop eHective action for 2D dilaton gravity with matter.
Furthermore, one can easily generalize this expression to
the case when Maxwell Gelds are added, namely, when
one considers action (1) plus the Maxwell action: With the background vs quantum Geld separation A„~
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A„+ Q„, in the Lorentz gauge,
I""„'z; ———— d x~g R+

~

& fi'
26 (, 2C'

fi )
2C

d'* v «i(@')(&~&~)' (34) I f II
+f1 ~c +

~

fl
fi ( fi

I 2

(7"4')(&~@') .
i j

the extra contributions are known to split into the I"
terms and total divergences (see the second and third
references [5]), which may be calculated independently,
to yield

(35)
Thus, the total divergent contribution to the one-loop

efFective action of the theory (1) plus the Maxwell terms
(33) is given by

1
I'd.

2E

(C" 3C"
+I

( 3qZ 3q q' ) /4bC 4b+,+ ——,IT+
(, 4CI' 4C C') (, C"

C"Z mf" mf" f,"
C" 4f' 2f fi

n —2—m+ 60 2 2, &„~&fi' fi '(

12 C C' f 2C' 2C

(V'"C)(V'pO) +
~

———,+ +
~

AC
f C' Z mf' fi')

2b' 8bq' 16b l 2 32b
+ 2 (N~sNs~)

l
J

2 J(QN Q)CI qCI q2 ) q2
(36)

This gives the divergences of the covariant effective action
(for a recent discussion of the covariant effective action
formalism, see [15]; a general review is given in [16]).
The renormalization of the theory (1) using the one-loop
effective action (32) will be discussed in the next sections.

III. THE ONE-LOOP EFFECTIVE ACTION
IN CURVED SPACETIME

I' = —Tr ln'8 ——Tr lnO
2 4

where

(37)

In this section we will calculate the one-loop effective
action for the theory (1) in the case when the gravita-
tional Beld is a classical one, but the dilaton and the rest
of the matter fields are quantized. Such a calculation is
much simpler than the one carried out in the previous
section, since there are no gauge-Bxing terms and corre-
sponding ghosts.

The effective action has the form

(Z qadi)I

K= 0 q1
&0 o

0
0

-fi)
and the L and P can be calculated easily. The divergent
part of the effective action is expressed in terms of the
traces of matrices similar to the ones discussed in Sec.
II. We then get

I'g; = —— d z vtg —R+ Tr (E"Ep) + Tr ((7"Eg).
2E' 12

(-—Tr II+ —1 (40)

I

('I(' I 'g
II, I &i).

The basic matrices which enter in the operator of small
disturbances are

(I 0 oi0= 0 -i~V 1 0
&0 o i)

(39)

'8 = —KA+ L"V'p + P, (38)

and the quantum fields are arranged in the vector form
where the Brst term comes &om the matrix 0 squared.
Calculating these functional traces, we arrive at

f I f II"' +
Z

—
Z

((7"X)(&~X)
(2 Z 2Zj

C" n+ 2m+ 2) V"
I'g; = —— d x g +

26 Z 12 p Z

fmf"
2f

f bII
+

Z

(V"e)(V„C)+
~

—
~

~++ —' —2' T

(N gN„)J' ——,J(gN 0),
I

.
q q ) q

(41)

Expression (41) gives the one-loop efFective action of the system composed of quantized dilaton, scalars, and
Majorana fermions in an external gravitational Geld. It is interesting to note that, contrary to what happens when
the gravitational field itself is quantized (Sec. II), we get a nontrivial renormalization of the C(C')R term and f(4')
in the kinetic term of scalars.
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IV. THE ONE-LOOP EFFECTIVE ACTION
FOR DILATON GRAVITY WITH

DIRAC FERMIONS

In this section we will be interested in the covari-
ant effective action of dilaton gravity (DG) with Dirac
fermions. We will show that some technical problems of
the covariant formalism may actually be solved in this
case, after which the calculation will be performed pre-
cisely as in Sec. II for Majorana fermions with dilaton
gravity.

Let us start from the Gross-Neveu model of n Dirac
fermions O'. The action of such a model interacting with
dilaton gravity is

(~x)(~x) = (x~)(~x) (46)

This could hardly solve all the problems one encounters
in higher spacetime dimensions, but in d = 2 it allows us
to surmount the problem of the nonminimality.

Let us introduce two subsets of the Majorana real-
valued fields vPi 2 according to the rule

Wi + i'll'2

v2
(47)

case since with the help of the Majorana transposition
rules one gets

where

+
2

(42)

The existence of the Majorana representation in two
spacetirne dimensions ensures that the fields may be
taken as real, so that g is the charge conjugate of g,
as it should be. Using the Majorana properties, one has

S = dx g —Z@g"" ~4 „41

2

+C(C)R+ V(4) (43)

S = d x g —q 4 gp"'I7p g+ —q C 2pVp
2 2

——b(4) (givPi + g2g2) + dilaton gravity,
4

The functions b(4) and q(4) are supposed to be smooth
enough. (Notice that recently a semiclassical approach to
the Gross-Neveu model with Jackiw-Teitelboim dilaton
gravity has been discussed in Ref. [17].)

The equations of motion corresponding to the action
yield

iq4'p Vp@+ ——q(Vp J ) + 2bJ —2g„„=0,
b'gDG

2 PP
b

'I

iq4p" —Vq4 — q'(V~4) J—"+ 2bJ = 0,
2

bgDG
iq'Cp"V&@+ -q"(V~4)J"—b'J'+ = 0.

2 C

(48)

where no surface term has been dropped. Notice also
that the covariant derivatives here may be substituted
with the ordinary ones, cf. Eq. (8) above, since the spin
connection drops out of the Majorana bilinears in two di-
mensions. The latter circumstance makes the calculation
of the one-loop effective action much easier since it is not
necessary to vary the spin connection.

Further, it is profitable to arrange the two Majorana
fields into a larger multiplet (Q g" i defined as

Here we denoted the currents J = 4'4' and J"= 4p"4.
To compute the one-loop effective action we find the

terms quadratic in the quantum fields (@~ 4'+ X, etc.).
We write down only a few of the most important terms:

) ++
qxv"Vix —qh -@v"V"x

2

(49)

Clearly, this is a Majorana field as well, with all its in-
herent properties. Thus we have

S= dx g -q4 p" p —b4 N

+dilaton gravity, (50)

-2b(~x)(~x) +. . . (45) where N~g ——
2 b~g.

The scalar current may be recast in the Majorana form
as

The last two terms give rise to a nonminimal operator
after the fermionic squaring y ~ g, y ~ —ip Vpy.
One can choose the gauge fixing condition to cancel the
second term in Eq. (45), as was done in [13],but the last
term remains and there is obviously no chance of getting
rid of it. This problem always appears in the four-Fermi
theories but so far it has not been made public since the
four-Fermi terms are not renormalizable on index in the
spaces with d & 3.

The problem we tackled never arises in the Majorana

J = 44 =QNg.
Also, let us introduce a quantity

z — ++~ — ++~
T& = —— 4p"V' C +Cp"V

4

z —~++T = T„=——Cp V'~%,
2

(51)

(52)
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then by the same reasoning as before we get

(53)

Now the problem reduces to the old one: that for the
Majorana case, with only minor changes. The divergent
part of the one-loop efFective action for the Gross-Neveu
model with the Dirac fields becomes (we use for this cal-
culation the results of Sec. II)

24 —n 2 2, fC'
I'q; = —— d z~g R+ —V+ —V'+

I2f 6 C C' ~C
z & . &c" c" cz&

I
(ae) + —3, —,(v'"e)(v', c)

( 3qZ 3q q' l t'8b' 4hZ 4b 2b'
+I + ——IT+I ( -&)+(4C" 4C C'1 E q'

8bq' l
qC' )

(54)

Let us now try to generalize our result to the most
general case of the four-Fermi interaction (@A@)2, the
matrix A being an arbitrary combination of the Dirac al-
gebra elements (some examples are: p"ps, p"p"p", and
so on). The fact is that all these A's fall into three cases
since the two-dimensional Dirac algebra basis consists of
just three elements: 1, p", and p5. Thus the most general
situation is

Js ——igpsMQ, .b =
I

I/2 l
0 (60)

where the dots stand for possible mixed terms propor-
tional to ab. We will compute these terms at the end of
the section.

First, go to the Majorana field multiplet g so that

~quartic = d z ~g bi(4) J + b2(C') Js

+bs(4) J"J„ (55)

and

J" = if'"Mg .

with arbitrary smooth functions b (4i), b2(C), and bs(4)
The currents here are defined as usual:

Note also that

J5 ——4p5 @, J"= Cp" @ . (56) QM g= ——J (62)

However, things may be simpli6ed even further, with the
use of the two-dimensional Fierz identity which yields

J"J„=J5 —J
Hence we can eliminate one of the three structures and,
technically, the simplest choice is to set b3 ——0. So, what
one has to do is to complete the action (42) with the axial
term

S = — d'x g aC Cp5C ' (58)

1 2
(8a2 4aZI'...a;. = —— d'z~g I, (S —n)+

2s ( q2

Let us turn our attention to Eq. (57). At first glance, it
may seem a little strange. The reason is that its left-hand
side is chiral invariant while both terms on the right are
not —however, the noninvariant contributions cancel in
pairs. Thus we note that the total action S+ S is only
chiral invariant if a(4')—:—b(O), and so are the one-loop
divergences. Hence the extra divergences to arise [cf. Eq.
(54) above] are

Second, expand the action

S „= d z~ga(O) (gpsMQ)

in quantum fields g ~ g + q and note that the gauge-
fixing terms (and thus the ghosts) acquire no extra terms.
After the fermion operator squaring we obtain some ad-
ditive corrections to elements of the matrices E" and
II. Therefore, it is the Tr (E"E~) that gives the desired
mixed contribution.

A little thought suggests that the only correction that
leads to ab terms is

&(&"),'= — Js(Myse") — (»MV )(0M»V")
g g

(63)

so that the desired mixed term contribution is found to
be

~mixed terms d2 /
— jJ2 J2 Jp Jax, div 2c g

4a 2a'

C C'
8aq')
q

J, + (59)
(64)

which is zero by virtue of Eq. (57). The final answer is
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1 I24 —n 2 2, fc' Z) ic"r„„=—— d'z~g R+ —v+ —v'i
~

———,
I
(&c')+ ~c, , c

( 3qZ 3q q' l (8b 4bZ 4b 2b' 8bq' )+ 2+ ——T+ n —1 + J2
q4C" 4C C') q q' C ' C C' qC')

(8a 4aZ 4a 2a' 8aq' )+ 1 —n+ ——— —,iJs2
)

c" c"z)
(&"@)(&~o)C2 CI2

(65)

Thus, we have calculated the one-loop divergences of the covariant efFective action in 2D dilaton gravity within the
most general four-fermionic theory described by Dirac fermions. An interesting remark is that the renormalization
of all fermionic terms in the action is given by the same term (and the same generalized coupling constant). For
example, if b(4) = 0 in (42), then the term J2 is absent in (65).

V. THE ONE-LOOP RENORMALIZATION

In the previous sections we have calculated the diver-
gences of the one-loop covariant efFective action for 2D
dilaton gravity interacting via various kinds of fermionic
matter. I.et us here discuss the issue of renormalization,
to one-loop order. Without loss of generality, we will
restrict ourselves to the case of 2D dilaton gravity with
Majorana spinors, viz. Eq. (28). By adding to the classi-
cal action (8) the corresponding counterterms (rg;„with

I

opposite sign), one obtains the one-loop renormalized ef-
fective action.

Choosing the renormalization of the metric tensor in
the form

1 1 Z(4)
~ c(4) 2c '(e) (66)

(this choice absorbs all the divergences of the dilaton ki-
netic term), one can obtain the renormalized efFective
action as (for simplicity, we drop the superscript "R" ofF

g„„and R)

I 1( V' Zv& 1/q Zq q'l
SR = — d'z ~g Zg""8„48-„4i CR+ V+ —

~

——,i, ~
i T q i —

~2 " e ( C' 2C' ) (8C 8C' 2C')
1 /'3b 3bZ b' 4bq' 8b2(n —2) )

C 4C' C' C' (67)

where we choose N b = b b.
Now, the conditions of multiplicative renormalizability

of the theory in the usual sense have the form

v' zv——+ = agv,2C'I'

R 1(ai
qi =qi 1+-

I

e g2ci

R 1 (a2 4ai
b, =b, 1+ —

i

—+ 4C')

q zq q'

8/I 2 2/1 ) (68)

sb 3&z s' 4sq'

4~12 ~i gl
8b (n —2) = a3b,

q2

where az, a2 and a3 are arbitrary constants. These condi-
tions restrict the form of the functions under discussion.

Some sets of solutions of Eqs. (68) can be obtained
explicitly. The simplest choice in the gravity sector is

Z=1, C(4) =Ci@, V=O, (69)

where Cp is an arbitrary constant. Choosing also n = 2,
we get the following family of renormalizable potentials:

q(4) =qi4 / e ' b(4) =biC e ' (70)

where qq, o.q and bq, n2 are coupling constants. The
renormalization of these coupling constants follows as:

(@) o—i/4 ny 4 b(@) b @
—3/2 2ngs

but now Ci is fixed by (12a2 —as)ci + 3/(4Ci) = 0 and
qi/bi ——16(n —2)Ci. Another interesting choice is

Z=e '

We find, in this case (for n = 2),

and ai and a2 do not get renormalized in the one-loop
approximation. It is interesting to notice that for aq ——

1/(4Ci) and a2 ———1/(4Ci), the coupling constants qi
and bq do not get renormalized in the one-loop approach
either.

For n & 2 these multiplicatively renormalizable poten-
tials look like
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1(1q=q, exp 2a2e ' + —
~

——di
~

C

6 = bi exp (as —8a2)e ' —
~

+ 2di
~

4
(4di j (74)

Now it is interesting to compare the conditions of mul-
tiplicative renormalizability (68) with the case when the
gravitational field is a purely classical one. Using ex-
pression (41) we easily get the renormalized effective ac-
tion for the dilaton interacting with Majorana spinors in
curved spacetime:

SR = — d'z ~g

I+T q—
26

—Zg" B„CB Cf 1

f II

(Z qZ)

1 (V" Z" 3Z&
CB V

Z 'Z'

1 f 6" bq' 1662(n —2) rJ b ——
~

—— +
2e iZ qZ q )

As we see, the conditions of multiplicative renormaliz-
ability look completely difFerent from (68):

V//
= aiV,

2q = a3q,
qZ

Zl/ 3Z/~
= a2Z~

2Z 4Z&
bl/ b

/2

+
Z qZ

(76)

1662(n —2) = a4b.
q2

(77)

In the same way one can study the renormalization
of Dirac spinorial matter with 2D dilaton gravity. No-
tice also that one can also investigate the renormaliza-
tion in the 1jn approximation; however, then only the
four-fermion term is renormalized.

VI. CONCLUSIONS

gaT( Z, C, ,qbV)
To =p T+

In summary, we have studied in this paper the co-
variant effective action approach in 2D quantum dila-
ton gravity with four-fermion models described by Ma-
jorana or Dirac spinors. The one-loop renormalization of
the theory has been considered and the (rather involved)
conditions for multiplicative renormalizability have been
obtained. The solution of these conditions gives explicit
families of multiplicatively renormalizable dilaton poten-
tials. These potentials may be the starting points to dis-
cuss 2D quantum dilaton-fermion cosmology along the
ideas expressed in Refs. [18,19).

One can also investigate the generalized renormaliza-
tion group How in the models under discussion. To be
more specific, let us consider again the theory (8), and
let T = (Z, C, q, b, V) be the set of generalized effective
couplings. The general structure of the renormalization
1S DO%

aiq = 3qZ 3q q

8C 2C"
26Z 26 6' 4bq' 862 (n —2)
C/2 C Cl qC/ q2

Now, the generalized P functions can be defined ac-
cording to

~aiT ~aiT
V

~aiT
bZ 8C bV

baiT baiT
+b +q (80)

Zl 2CI ~

C+ C
Pc =0,

V V' VC" CV" 2CV'C"
CI CI2 CI2 Cps

3q q' 3CZq' 3CqZ' 9CqZC"
8C 2C' 4C~' 4C~'

ZC// 2CZ'C// 4C" 3CZ"

(81)

/l

+ ——
2C/

Cq'C// 3qZ qC//

C/3 8C/2 2C/2

2b 5b' 2bZ 5bC//A= +P/ C/2 C/Q

Cb" 8(n —2)62
+ +C/~ q2

2Cb'C// 4Cb'Z 4CbZ' &2CbZC/l
C/3 C/3 C/3 C/4

4Cb'q' 4Cbq" 4Cbq' 8Cbq'C"+ +
qC' qC' q~C/ qC'

(82)

Notice that these P functions are different from the ones
appearing in the e-model approach. Applying this rule
to the above functions, we get

ag~ ——0,

Z' 2C' 2ZC/l

C/Q 7

V V'
&xv = ———

C C''

where, as follows from (32),

{79)

The renormalization group fixed points of the system
under discussion are defined by the zeros of the abave P
functions. What we obtain is the following. As is not
diKcult to see, the same structure of fixed points that
we analyzed in detail in our paper [7] is maintained here.
In fact, the first three of the P functions are exactly the
same as the ones for that restricted case, and it suKces
to impose q(4) = 0 and 6(4):—0 in order to obtain cor
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responding fixed points in the present, generalized case.
However, one has to take care of the limits; that is, we

must actually set q(4) = ri = const, where rl is arbitrarily
small, in order that the families of 6xed points obtained
in [7] also give corresponding families here, which are ap-
proached as g -+ 0. We shall not repeat this construction
here and simply refer the reader to this paper.

In the same way, the case of the more general four-
fermion theory can also be discussed.
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APPENDIX

In this short appendix we shall see how our results give
the one-loop renormalization of such a well-known model
as the sine-Gordon one. Let us start &om the action

I]S= — d x g —g"" „4 „C+ 24R+pe ~
2

1+ mcos(pX)e + q—"B„X~„X (AI)

1 z
g~ = exp g

~g24

one obtains the renormalization of the coupling constants
in the following way:

(
yR = y I

I+ —
1e)

fP2
mR=m I+-

]

——
e I 2

(A3)

The coupling constant a is not renormalized at one-loop
order. Hence, there is no interesting renormalization
group dynamics at the one-loop approximation. (It is
well known that, in fact, interesting dynamics appear in
the nonperturbative approach, as in the matrix models
[20])

Here p is some number and m, o., and p are coupling
constants. The one-loop effective action of this theory
has been calculated in Sec. II, Eq. (28). Using this result
and making the renormalization of the metric according
to
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