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We consider the stochastic background of gravity waves produced by first-order cosmological
phase transitions from two types of sources: colliding bubbles and hydrodynamic turbulence. First
we discuss the Quid mechanics of relativistic spherical combustion. We then numerically collide many
bubbles expanding at a velocity v and calculate the resulting spectrum of gravitational radiation
in the linearized gravity approximation. Our results are expressed as simple functions of the mean
bubble separation, the bubble expansion velocity, the latent heat, and the efficiency of converting
latent heat to kinetic energy of the bubble walls. A first-order phase transition is also likely to excite
a Kolmogoro8'spectrum of turbulence. We estimate the gravity waves produced by such a spectrum
of turbulence and find that the characteristic amplitude of the gravity waves produced is comparable
to that from bubble collisions. Finally, we apply these results to the electroweak transition. Using
the one-loop efFective potential for the minimal electroweak model, the characteristic amplitude
of the gravity waves produced is 6 1.5 x 10 at a characteristic frequency of 4.1 x 10 Hz
corresponding to 0 ~ 10 in gravity waves, far too small for detection. Gravity waves from more
strongly first-order phase transitions, including the electroweak transition in nonminimal models,
have better prospects for detection, though probably not by LIGO.

PACS number(s): 04.30.Db, 98.70.Vc, 98.80.Cq

I. INTRODUCTION

First-order phase transitions in the early Universe can
be potent sources of gravitational radiation [1,2]. In a
recent series of papers we have calculated the radiation
emitted by colliding vacuum bubbles and obtained use-
ful approximations to the bubble dynamics, and applied
these results to very strongly first-order phase transitions
which occur through nucleation and percolation of vac-
uum bubbles [3—5]. In this paper, we extend these results
to more weakly first-order phase transitions which occur
in a thermal environment, and apply our results to the
electroweak phase transition.

In a first-order phase transition, the Universe starts
in a metastable high-temperature phase (the "symmet-
ric" phase) and converts to a stable low-temperature
(the "broken-symmetry" ) phase. The transition proceeds
via nucleation of bubbles of the low-temperature phase
within the high-temperature phase; these bubbles then
expand and merge, leaving the Universe in the broken-
symmetry phase.

Previously, we considered vacuum transitions, in which
the only component of the Universe is a scalar field.
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In this case true-vacuum bubbles are nucleated through
quantum tunneling [6]. The dynamics of these bubbles is
comparatively simple: Once the bubbles are nucleated,
the scalar field simply evolves according to the Klein-
Gordon equation. Bubbles that are larger than a critical
size begin to expand and rapidly approach velocities near
the speed of light. All of the liberated vacuum energy
goes into accelerating the bubble walls, which become
progressively thinner and more energetic as the bubbles
expand. These high velocities and large energy densi-
ties provide the necessary conditions for generating large
amounts of gravitational radiation, and the resulting ra-
diation spectrum depends very simply on the natural
length and energy scales of the problem.

For a thermal transition, the problem is more com-
plex. Nucleation of bubbles of the low-temperature phase
occurs through quantum tunneling and thermal fluctua-
tions. However, the evolution of these bubbles is not
driven simply by scalar-field evolution. Instead, it de-
pends on interactions of the bubble wall with the plasma
and on the resulting fluid dynamics. Part of the latent
heat released in the transition raises the plasma tempera-
ture, while another &action of the latent heat is converted
to bulk motions of the fluid. If the Reynolds number of
the Universe at the phase transition is large enough, then
bubble motion produces turbulence in the plasma.

In this paper, we perform detailed calculations of the
gravitational radiation produced by the collision of spher-
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ical combustion bubbles expanding at a velocity v, using
the linearized gravity approximation. The resulting spec-
tra are simply expressed in terms of v, the logarithmic
derivative of the bubble-nucleation rate P, the ratio of
vacuum to thermal energy density o., and an e%ciency
factor K giving the fraction of vacuum energy which goes
into kinetic energy of bulk motions of the fluid, as op-
posed to heating. As discussed below, the theory of rel-
ativistic combustion gives z and v as a function of n,
which in effect, measures the degree of supercooling (i.e. ,
how strongly first order the phase transition is).

Combustion occurs via two distinct modes: detona-
tion and deflagration. Roughly, detonations occur when
the phase boundary propagates faster than the speed of
sound, while for deflagrations the phase boundary prop-
agates slower than the sound speed. We show that the
bubble collisions in phase transitions proceeding via det-
onation will produce substantial gravitational radiation.
In contrast, production of gravitational radiation from
collisions of deflagration bubbles should be small, because
the bubble velocities are small (subsonic). It has recently
been argued that detonation is the only stable mode of
combustion for a cosmological phase transition, and that
a transition which begins via deflagration rapidly be-
comes unstable and converts to detonation [7]. For these
reasons we mainly focus on gravity waves produced by
detonation bubble collisions.

Both modes of combustion can stir up turbulence on
scales comparable to the bubble size. We estimate the
gravity waves produced by a fully developed Kolmogo-
roff spectrum of turbulence through simple dimensional
arguments, and And that the amplitude of the spectrum
is comparable to that from bubble collisions. This source
will generate gravity waves in addition to those produced
by the actual bubble collisions. We note that our esti-
mates are completely general, and apply to any injection
of energy in the early Universe on a large length scale.

Section II discusses the relevant results from relativis-
tic combustion theory. We review the solutions to the
hydrodynamic equations of motion for spherically sym-
rnetric detonation bubbles [8] and derive relationships
between bubble-expansion velocity, bubble kinetic en-

ergy, latent heat, and temperature. We also discuss the
solutions for spherical, relativistic deflagration bubbles,
which have not been previously addressed, and briefly
compare with the hydrodynamics associated with planar
combustion [9—ll]. In Sec. III, we review the gravity-
wave formalism used for our calculations. The calcu-
lation of the gravitational radiation produced by many
colliding bubbles is made tractable through the envelope
approximation [5]; we discuss the applicability of this
approximation to combustion bubbles. Then we numer-
ically calculate the radiation spectra for the collision of
many bubbles in terms of their expansion velocity and
kinetic energy, which are related to parameters of the
phase transition in Sec. II. Estimates of gravity waves
from turbulence conclude the section. Section IV con-
tains the necessary formulas to propagate the generated
spectrum of gravity waves to the present time. As a
sample application, we derive the gravitational radiation
produced by the electroweak transition, using the one-

loop effective potential of the minimal standard model.
We conclude by briefly considering detection prospects,
especially for more strongly erst-order phase transitions.
Appendix A analyzes spherical relativistic deflagration
bubbles, and in Appendix B a model effective potential
is analyzed and applied to the electroweak transition.

II. PLUID PLOW IN SPHERICAL COMBUSTION

In order to calculate the spectrum of gravitational
radiation from colliding bubbles, we need to know the
spatial components of the traceless part of the stress-
energy tensor T,~. For a relativistic Quid, this is simply
T,~ = mp v;v~, where m = e + p is the enthalpy density,
e and p are the energy density and pressure, v, are the
components of the fiuid velocity, and p = (1—

~v~ ) ~ is
the Lorentz factor. For spherical bubbles, the only non-
vanishing component of the stress tensor is T(r) = T„„,
and the Quid velocity has only a radial component v = v„.
The radial dependences of the enthalpy density w(r) and
fiuid velocity v(r) need to be determined. Gravitational
radiation from thin-wall bubbles depends on the quantity

T(r)r2dr =

The rest of this section is devoted to evaluating this ex-
pression.

To model a phase transition, we assume that the equa-
tion of state of the gas in the high-temperature ("sym-
metric" or "unburnt" ) phase describes a relativistic gas
plus a false-vacuum energy density:

ei= aTi + 6,
4

1
aT1 6

3

where e is the false-vacuum energy density (or equiva-
lently, 1/4 of the latent heat). In the low-temperature
("broken" or "burnt") phase the equation of state is sim-

ply that for a relativistic gas:

4
e2 ——aT&,

1 4p2= —aT2 .
3

(4)

Note that n; = (4/3)aT4 When a bu.bble forms in a
first-order transition, its interior is described by the bro-
ken phase equation of state, while its exterior is in the
symmetric phase. The phase boundary at the bubble
wall, the "detonation front, " is assumed to be infinitely
thin. The difference in free energy between the inside
and the outside of the bubble creates an effective pres-
sure driving the expansion of the bubble. We de6ne the
quantity

(6)

the ratio of vacuum energy to the thermal energy in
the symmetric phase; o. characterizes the strength of the
phase transition. The limits o. m 0 and n m oo cor-
respond to very weak and very strong first-order phase
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transitions, respectively.
In spherical combustion there is no natural length

scale, and the hydrodynamic equations can be written
in terms of ( = r/t where r is the distance from the
center of the bubble and t is the time since nucleation.
In other words, the velocity and enthalpy-density pro-
files v(r, t) and m(r, t) are self-similar, being functions of
only r/t Th.e variable ( is then the outward velocity of a
given point in the bubble profile. As shown by Steinhardt
[8], Euler's equation and the equations of continuity and
conservation of entropy can be combined in the case of
spherically symmetric flows to yield an equation for the
radial velocity as a function of (:

(pl' dv 2v~2(1- () l

—
l

-1 —= —,
c, ) d(

where p = (( —v)/(1 —v() and p2 = (1 —v2) i. The
enthalpy density satisfies

1 dm

QJ dv

4V'V
3c2 (8)

which can be integrated in terms of the velocity profile:

4 vg

m(() = my exp —, p'pdv
V(C)

The stress tensor T(r) can then be obtained from the
solutions to these equations with the proper boundary
conditions.

Conservation of energy and momentum assure that in
the rest frame of the bubble mall, Pi, the velocity of fluid
in the symmetric phase into the wall, is given by [8,9,12]

(p. - p )("+p )
'

pi =
)

(e2 —ei)(ei+ p2).
(10)

and that P2, the velocity of fluid in the broken-symmetry
phase away from the wall, is

(J2-ui)(ei+P2) '"
P2=

.( — )( +J )

The enthalpy densities on each side of the wall are related
by

ml pl m2p2

1 —p2 1 —p22
(12)

If mi (i.e., the temperature outside) and n are given, Pi,
P2, and m2 are still undetermined; however, once one of
the three quantities is given, the other two are deter-
IIllned.

It has been shown [9] that there are two qualitatively
difFerent kinds of combustion. If pi ) p2, the transi-
tion occurs via "detonation" and the wall propagates at
a supersonic velocity, i.e., at a velocity larger than c„
the speed of sound; if Pi ( P2, the transition occurs via
"deflagration, " and the wall propagates at subsonic ve-
locity. The sound velocity is given by dp/de at constant
entropy; in general, it is a function of the state variables,

but in the highly relativistic limit c, ~ 1/~3. In the re-
mainder of this paper we always take this limiting value
for the sound velocity. It has also been shown [8] (and
will be discussed below) that if the transition occurs via
detonation, P2

——c„and so Pi and m2 are given simply
in terms of a and mi. However, for deflagrations, P2 is,
in general, still undetermined.

In either case, the Huid velocities (in the rest frame of
the wall) in and out of the wall are unequal, Pi g P2,
and so the fluid velocity v must be nonzero somewhere.
Moreover, the fluid velocity is zero at the center of the
bubble (by spherical symmetry) and far away &om the
bubble (in the "rest" frame of the Universe). Thus, de-
flagration or detonation is characterized by a radial Huid
velocity profile v (r), which satisfies the fluid Eqs. (7) and
(8) with the appropriate boundary conditions. We now
discuss the solution to this hydrodynamic problem.

A. Detonations

The case of detonations has been discussed in detail by
Steinhardt [8], and we review the relevant results here.
If the transition proceeds via detonation, the unburnt
fluid enters the wall at a supersonic velocity. For this
reason, there can be no shock preceding the wall; so the
fluid is at rest outside the bubble wall, i.e., v(() = 0
for ( ) (g where (~ = pi is the propagation velocity
of the wall. Since pi ) p2, the Huid just behind the
detonation front is accelerated outward to a velocity ((g-
P2)/(1 —(gP2) (this is just the relativistic transformation
of the velocity from the wall frame to the rest f'rame of
the bubble). As shown by Steinhardt, the detonation
front is then followed by a rarefaction wave in which the
velocity profile v(() falls smoothly to zero at ( = c„and
remains zero for ( & c, .

Steinhardt also showed that detonation solutions to
Eq. (7) exist only if P2

——c, [13]. This is the relativis-
tic generalization of the Chapman-Jouget condition for
spherical detonations (see Ref. [12]). For a general planar
detonation [9—11), the value of P2 is not constrained to be
c,. Therefore, the detonations in a phase transition in the
early Universe, restricted to satisfy the Chapman-Jouget
condition, are not as general as those considered in some
previous work [9—11]. We should also point out that the
functional form of the velocity and enthalpy-density pro-
files are diR'erent in a spherical detonation from those
in a planar detonation (even with the Chapman-Jouget
condition), although they are similar qualitatively.

Given P2 ——c„one flnds that the velocity of the deto-
nation front, (q, for a given n is simply [8]

1/~3+ (a2 + 2n/3)'~4= 1+o;
In Fig. 1 we plot the velocity of propagation of the deto-
nation front, (d, as a function of a, the parameter describ-
ing the strength of the transition. The velocity profile is
then given by integrating Eq. (7) with the boundary con-
dition v((g)—:vg = ((~ —c,)/(1 —(~c,), from ( = (g to
(= c,.
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FIG. 1. Velocity (q of propagation of detonation front as s
function of a.

As ( ~ (g, dv/d( ~ oo; so Eq. (7) cannot be easily
integrated numerically from ( = (g. Instead, we write (
as a function of v, use the relation ((v) (g+(I/2)("(vg)
for v ~ vp, and integrate from some v very close to vp.
Here,

(14)

is the second derivative of ( with respect to v at the
detonation front. The velocity profiles for several values
of a are displayed in Fig. 2. As shown, v(() is zero for

( ( c, ; there is a weak discontinuity at ( = c„and v

increases until ( = (~ where dv/d( ~ oo. Also, as a is
increased, both (g and vg increase.

Once the velocity profile has been determined, the
enthalpy-density profile can be calculated using Eq. (9).
The enthalpy density at the detonation front, ivy = iv2,
can be determined in terms of ivi and n from Eq. (12).
Numerically integrating Eq. (9) is straightforward, but
as the detonation becomes strong (n & 1), iv(() varies
rapidly near the detonation front. The quantity p(()
equals c, at ( = c„increases until some ( which becomes
closer to (~ as a is increased, and then rapidly decreases
to c, at the front. One finds that the region near (q where

p is decreasing loosely defines a width, which decreases
as a is increased, for the detonation front, and that ur(()
varies quite rapidly in this region. The enthalpy-density
profile ur((), divided by ivi, the enthalpy density outside
the bubble, is plotted in Fig. 3. The enthalpy density
jumps at the detonation front, then decreases smoothly
until ( = c„and maintains a constant value ivp ( %pi

at the center of the bubble, ( ( c, . For larger n, m(()
becomes increasingly concentrated near the d.etonation
front.

In Fig. 4, we plot the stress-energy density T(()
mv p . Note that as a ~ 0, all the stress energy be-

comes concentrated near a thin shell near ( = c„while
as o. is increased, the stress energy becomes dramatically
concentrated near the detonation front. The thickness of
this shell tends to zero in both the strong- and weak-
detonation limits and always remains negligible com-
pared with the bubble radius; thus a thin-wall approxi-
mation to the stress-energy tensor of a detonation bubble
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FIG. 2. Fluid velocity for a detonation as a function of
( = r/t for (s) n = 0.01 (solid curve), (b) n = 1.0 (dot-dsshed
curve), snd (c) n = 100 (dsshed curve).
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(is)

mi(l + a)(„= iU(()f'(3+ v')d(. (i9)

Since ( = r/t, the integral over r, Eq. (1), is Eq. (18)
times t3. This should be compared with the analogous
result for the case of a pure vacuum bubble, Eq. (13) in
Ref. [5], which in our notation is f T(r)r2dr = m iat s/4.

In the strong-detonation limit a ~ oo, both (~ and
vg go to unity. Simple analytic expressions for io(() and

v(() cannot be found in this limit; however, we can find a
simple form for the stress-tensor integral, Eq. (1), using
conservation of energy. Equating E;„;ti ~ and Eb„bb~„

(=r/t
FIG. 4. Stress-energy density T(g) = ee p for a detona-

tion as a function of ( for (a) a = 0.01 (solid curve), (b)
a = 1.0 (dot-dashed curve), and (c) a = 100 (dashed curve).

In a strong detonation, m(() and p are both strongly
peaked at the detonation front, and so the dominant con-
tribution to the integral comes from values of ( near (~,
furthermore, near (g, v(() 1, and so, for a )) 1,

is valid.
To gauge the accuracy of our numerical integration,

we checked that the energy contained in a volume of
equivalent size before the bubble was nucleated, E;;q; i =
4m(1+ a)(&/3, was equal to the total energy of the bub-
ble:

Ebubble = ( '7 (3 + U )d(.
3 0

In all cases, we obtained Einitial = @bubb&e to within
about i%%uo.

Although we cannot write analytic expressions for v(g)
and ur((), analytic expressions are easily obtained in the
weak-detonation limit, n ~ 0. If a && 1, then the Quid
velocity u « 1 everywhere, and (g —c, « l. In this case,
the small v and (—c, expression of Steinhardt [8] can be
used to describe the entire velocity profile:

T(()( g wiaf~/4 ami/4,
0

(20)

which smoothly matches the pure-vacuum result,
Eq. (13) in Ref. [5].

For arbitrary values of o., we can write

f
4

T(()gzd( = r(a)gaia/4.
0

1 4 3n
r(a) = Aa+—1+Ao. 27 2

(22)

Here, r.(a) is an efficiency factor quantifying the fraction
of the available vacuum energy, or latent heat, that goes
into kinetic (rather than thermal) energy of the fiuid.
Given the weak- and strong-detonation limits for the
stress-energy integral, Eq. (18) and Eq. (20), and the
values at some intermediate points that we calculate nu-
merically, we find that e(a) can be given approximately
by

2 ( vg( = c, + —v
I

ln —+ 1
I

.
v ) (16)

In this limit, v~ = /3a/2, (g = c, + /2a/3, and ia~ ——

mi(1+ 2/2a). As a -+ 0, p -+ 1 and p ~ c, ; so Eq. (9)
can be integrated to give

zoo - md, exp( 4c,eg) - mg(1 ——2v 2a). (i7)

The enthalpy densities inside and outside the bubble are
equal to lowest order in n, mo mq. The stress-energy
integral, Eq. (1), can be also be integrated analytically.
Using d(/dv = (2/3) ln(v~/v), we find

where A = 0.715. The function e(a), along with the
numerically calculated value, is plotted in Fig. 5.

No signal precedes a detonation &ont. Therefore, ex-
cept for the regions in which the bubbles have collided,
the dynamics of collision of two (or more) bubbles is
simply that of the sum of the individual bubbles. This
is directly analogous to the case of collision of vacuum
bubbles, and justi6es the use of the envelope approxi-
mation for colliding detonation bubbles as explained in
the following section. We also mention that the deto-
nation &ont is stable to nonspherical perturbations and
therefore remains spherical as it expands [7,12). It has
also been recently postulated that although the detona-
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should be suppressed. However, we note that deflagra-
tion bubbles may be equally as effective as detonations
at stirring up turbulence, which also leads to generation
of gravity waves, as discussed in the next section.

Actually, the existence of deflagration as a possible
mode for a phase transition in the early Universe has
recently been questioned. It has been argued that a cos-
mological phase transition cannot occur via deflagration
because a bubble that begins expanding via deflagration
rapidly becomes unstable to detonation due to the ex-
istence of hydrodynamic instabilities [7]. On the other
hand, it has also been pointed out that the temperature
dependence of the propagation velocity of the bubble wall
could stabilize a deflagration [11],although it seems that
this conclusion applies only to very weak transitions. For
all of the above reasons, and especially the fact that little
gravitational radiation is expected from deflagrations, we

consider only detonations in the following analysis.

III. CRAVITATIONAI RADIATION

FIG. 5. The fraction ~ of vacuum energy that goes into
kinetic energy of the Quid in a detonation as a function of a.
The solid line is a numerical calculation; the dashed line is
the analytic fit given by Eq. (22).

tion &ont is spherical, the fluid behind it may undergo
a transition to turbulence [14]. We discuss the gravity
waves that could result kom the excitation of a fully de-
veloped spectrum of turbulence in the next section.

A. Radiation from colliding bubbles

As in previous work [4,5], we use the linearized-gravity
approximation in Minkowski space to compute gravity-
wave production. In the phase transition considered here,
we expect this approximation always to be valid; see [4]
for a detailed discussion. The fundamental quantity for
calculating the radiation spectrum is the Fourier trans-
form of the stress-energy tensor:

B. Deflagrations

In Appendix A we present a detailed discussion of the
fluid dynamics of spherical deflagration [15]. In contrast
with detonations, deflagration fronts propagate at sub-
sonic velocities and, as shown in Appendix A, are pre-
ceded by a precompression shock. However, unlike in the
detonation case, here T(r) is not concentrated in a thin
region (unless the transition is weak and (g happens to
be near c„which we consider unlikely), and the thin-wall
approximation does not accurately describe the bubble.
This makes calculating gravity waves &om deflagration
bubble collisions difficult. However, there are several rea-
sons to believe that the collision of deflagration bubbles
is actually a very weak source of gravity waves. Most im-

portantly, the smaller velocities will make deflagrations
a much weaker source than detonations (the fraction of
vacuum energy liberated in gravity waves is proportional
to v ). In addition, the propagation velocity of the defla-
gration &ont is subsonic; therefore, once the precompres-
sion shocks collide, signals can be sent back through the
bubble, and there is no reason to expect the evolution
of two (or more) bubbles to resemble the sum of indi-
vidual bubbles. The spherical shape of the bubble walls
is likely to be disrupted shortly after the precompres-
sion shocks collide. Thus, in a deflagration, there will be
no large concentration of kinetic energy near the bubble
walls, and so gravity-wave production &om the collisions

we adopt steinberg's unusual normalization convention
[16]. We consistently ignore any pure trace pieces of
the stress tensor, such as a spatially constant thermal-
energy term, as they cannot contribute to the production
of gravitational radiation. The source here is a number of
spherical bubbles within a sample volume, each expand-
ing at a given velocity &om a given nucleation site and
time. As a detonation bubble expands, its dynamics until
it meets another expanding bubble are simple, described
by the combustion formalism elaborated in the previous
section. Because of its spherical symmetry, a single ex-
panding bubble produces no gravity waves. Only after
bubble collisions destroy the spherical symmetry of indi-
vidual bubbles is gravitational radiation emitted. In prin-
ciple, the calculation of gravity waves is straightforward:
Once bubbles are nucleated, simply use the appropriate
equations to evolve them until the phase transition is
complete. For vacuum bubbles, the Klein-Gordon equa-
tion is the necessary evolution equation, while thermal
bubbles require hydrodynamic equations. The stumbling
block is the complexity of the bubble con6gurations once
collisions begin. The field or fluid equations in three spa-
tial dimensions require intensive computational resources
to solve, especially considering the dynamical range in
the problem: Rom the thickness of the bubble wall to
the Hubble radius. This difBculty prompted the develop-



49 GRAVITATIONAL RADIATION FROM FIRST-ORDER PHASE. . . 2843

ment of the envelope approximation [5].
In Ref. [4], the full numerical evolution for a pair of

vacuum bubbles was performed and the resulting gravity-
wave emission calculated. The results scale in a simple
manner with the natural length and energy scales of the
problem. In particular, the peak &equency of radiation
is determined by the size of the bubbles at the end of
their evolution, and the radiation spectrum varies with
the 6fth power of this length scale. The results do not
depend on the smaller-scale structure of the scalar field
which develops in the region where two bubbles collide.
This scaling result suggests that the fine details of the col-
lision region are not important to gravity-wave produc-
tion, but rather that the radiation is dominated by the
gross features of the evolving bubbles, namely, the un-
collided bubble walls. These observations prompted the
envelope approximation in [5], which consists of treat-
ing the uncollided bubble walls as infinitesimally thin
energy concentrations and ignoriag completely the col-
lision regions, in effect considering only the uncollided
"envelope" of the expanding bubbles. This approxima-
tion turns out to be surprisingly good. In the case of two
vacuum bubbles, the envelope approximatioa reproduces
the shape and features of the gravity-wave spectrum from
detailed field evolution, and its amplitude is correct to
within about 10%. The numerical utility of the approxi-
mation is illustrated by a calculation involving nearly 200

I

vacuum bubbles nucleated in a sample volume [5], which
would be impossible with full field evolution even with
extensive computational resources.

As demonstrated in Sec. II, detonation bubbles satisfy
the conditions of the envelope approximation. Speci6-
cally, the kinetic-energy density is concentrated in a thin
shell near the bubble wall. In addition, the walls propa-
gate at supersonic velocities, and so anything that hap-
peas in the collision region caanot affect the expansion of
the bubble in the uncollided region. On the other hand,
deQagratioas will not satisfy either condition. First, the
energy density is not concentrated near the bubble wall;
this complicates evaluation of the stress tensor, as de-
scribed below. The most serious problem, however, is
that the walls propagate at subsonic velocities. This
means that the spherical symmetry of the bubble walls
can be disrupted shortly after the precompression shocks
collide. Since efficient gravity-wave production requires
coherent motions of large energy densities, we expect the
radiation production &om colliding deHagration bubbles
to be substantially suppressed with respect to a detona-
tion of similar strength.

Using the envelope approximation and ignoring the
bubble-collision regions, we can divide the spatial inte-
gration in Eq. (23) into regions, one surrounding each
spherical bubble centered at the bubble-nucleation site
x„. The stress tensor becomes

N R

T~(k, u) = — dte' ) e ' "'"" dQ drr e ' "'"T;~(r,t)
7t p n=1 Sn

(24)

where N is the number of bubbles, S„ is the portion of the surface of bubble n that remains uncollided at time t, and
the integration variables are chosen independently around each bubble. If the bubble wall is thin, the exponential can
be factored out of the radial integral, leaving the r integral over the profile of the bubble stress tensor independent of
the angular integral over the uncollided bubble wall.

Given the stress-energy tensor, the total energy radiated in gravity waves into a frequency interval dv and a solid
angle dO is [16]

dE = 2G(u A,, )~(k)T,'(k, (u)T)~(k, ur),
dcudO

(25)

where A;~ ~ is the projection tensor for gravity waves:

A;~ (~(k) —= 6g6~~ —2k~k~6;) + —,k;k~k)k~ —,6y6)~ + —,6;~k)k—~+ —,6)~k;k~. (26)

Contracting with the tensor A;~ ~ projects out the
transverse-traceless piece of the source.

We model a phase transition by assuming an exponen-
tial bubble nucleation rate per unit volume [17]:

1" = Foe

Note that P here is unrelated to the velocities Pq and
P2 defined in the combustion analysis of the previous
section. This form is a reasonable ansatz since in gen-
eral the rate will be the exponential of a characteristic
nucleation action; keeping the lowest terms in a Taylor
expansion around the time of the phase transition gives
Eq. (27). In general, P is expected to be of the order

I

41n(mp~/T)H 100H for a Hubble rate H [18]. Bub-
bles are nucleated in a sample volume according to this
rate. Each bubble expands at a constant velocity until
all of the sample volume has been converted to the bro-
ken phase. The walls of the expanding bubbles, treated
as thin shells, constitute the stress-energy tensor T;~ (x,t).
in Eq. (24).

For this form for the nucleation rate, P is roughly
the duration of the phase transition [17], and thus P v
is roughly the mean bubble separation (i.e., the bubble
size at the end of the phase transition). The frequency
dependence of the spectrum is set by the time scale P
and so the characteristic &equency of the radiation is

P. To determine the scaling of the amplitude of the
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radiation spectrum, we note from Eq. (22) that, for a
single bubble of radius R,

R
drr T;, (r, t) = R—K(cr)ex, x, = R—K(n)nu)ix, x, ,

2 =13 -- =13
3 2

(28)

where K(cr) is the efficiency factor introduced previously
which measures the fraction of vacuum energy e con-
verted to bulk motions of the Buid. For vacuum bubbles,
v = 1 since all of the vacuum energy goes into accelerat-
ing the bubble wall. Ignoring for the moment the e'""
factors in Eq. (24), Eqs. (25), (28), and (24) imply that
for a fixed number of bubbles, N, dE/d~ oc N(R re)
[Note that the projection tensor A contracts with the unit
vectors in Eq. (28) to form a dimensionless number which
depends only on the geometry of the problem. ] Substi-
tuting P iv for the length scale gives

dEGw 1

(d @vac
oc NG(R Ke) /(Nv P e) oc Gv K nui/3

(29)

where E, NR e Nev P is the total vacuum

energy in the sample volume.
The neglected exponentials correspond to the usual

quadrupole approximation, t
'"" -+ 1. Since k x scales

like U, the quadrupole approximation will be valid for
small bubble velocities, as expected. As v becomes larger,
the contribution of the exponentials becomes important,
and the vs scaling in Eq. (29) will not hold. In fact,
for the case of vacuum bubbles, v = 1, the quadrupole
approximation overestimates the radiation spectrum by
around an order of magnitude [4]. Since the quadrupole
approximation scales exactly with v, the actual spec-
trum's amplitude will increase more slowly with e than

U for larger velocities. Our numerical results show that
the deviation from e scaling begins around v = 0.1; see
Fig. 6.

The radiation spectrum is determined by numerically
evaluating the integrals in Eq. (24) for the source config-
uration of many bubbles nucleated in a sample volume.
We use trials with 20—30 bubbles because this number is
computationally tractable and because significantly more
bubbles give essentially the same results for the radiation
efficiency, as demonstrated in Ref. [5]. Thus, for a given
value of P, the physical sample volume is proportional
to v, ensuring that approximately the same number of
bubbles will be nucleated in the sample volume for any
velocity. We have five trial nucleations in a spherical
sample volume, each with between 17 and 33 bubbles,
nucleated randomly according to Eq. (27). These are
the same nucleation trials used in Ref. [5). We use the
same nucleation trials for all bubble-expansion velocities
by rescaling all distances in the v = 1 case by a fac-
tor of v; using the same nucleation trials minimizes any
spectrum differences arising simply from geometry of the
bubbles. For each trial nucleation and bubble expansion
velocity, we calculate the radiation-energy spectrum in
the six directions (kx, +y, +z), and then average over
the five trials and six directions to obtain a mean spec-
trum. These spectra are plotted as power per octave for
various velocities in Fig. 7. The statistical variation in
the mean due to the averaging is around lo%%uo. Each spec-
trum peaks at a characteristic frequency of around 2P,
independent of bubble expansion velocity, as expected.
In Fig. 6, we plot the ratio of energy radiated in gravity
waves to the total energy (thermal plus vacuum energy);
the straight line displays e scaling. The departure from
v scaling as v ~ 1 is clear. The solid curve is the an-

alytic fit to the fraction of energy liberated into gravity
waves:
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FIG. 6. The fraction of to-
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trary volume) that is radiated
into gravity waves by collid-

ing bubbles as a function of
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for a phase transition with
spherical bubbles expanding at
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Note that in the strong-detonation limit v ~ 1 and ci ~
oo, this reduces to the vacuum-bubble result of Ref. [3].

The radiation spectra in Fig. 7 depend on the parame-
ters v, ic, P, and e = 3ivia/4. A particular phase transi-
tion is characterized by the temperature at which it oc-
curs and its latent heat, or equivalently by m~ and o.. For
detonation bubbles, v and cr are related by Eq. (13), and
r. and n by Eq. (22). The parameter P describing the
bubble-nucleation rate will be determined by the efI'ec-

tive action for nucleating bubbles. Thus we have assem-
bled all the necessary ingredients to calculate the gravity
waves produced by a thermal first-order phase transition
which proceeds via detonation bubbles.

B. Radiation from fully developed turbulence

Injection of energy into the Universe will cause tur-
bulence if the Reynolds number of the early-Universe
plasma is large enough at the time of energy injection.
Here we estimate the gravity waves produced by a Kol-
mogoro8' spectrum of turbulence, independent of any de-
tails of the phase transition dynamics.

The Reynolds number in the early-Universe plasma is
very large for length scales L not too difFerent than the
Hubble radius H i mpi/T2. Specifically, the Reynolds
number B = LV/v pg (mp~/T), with L = pH
the kinematic viscosity v vt. , I. 1/na 1/g4T is
the particle mean-free path (g is a typical gauge cou-
pling and T is the plasma temperature), and V/v
(bulk flow velocity)/(microscopic velocity) is taken to be
of order unity. Thus, it is quite reasonable to expect tur-
bulence to develop when the plasma is "stirred up" by

&
pturb ~ 2/3
dk

(31)

which is characterized by a constant How of turbulent
kinetic energy &om larger scales to smaller scales:

Pvt k dPturb
2

= const;
dk

here p is the plasma energy density. The turbulent veloc-
ity associated with an eddy of size L k, vl„and its
lifetime rl, are related: rl. L/vt, . For the Kolmogoroff
spectrum,

Li/3

That is, an eddy survives for about a turnover time
before it breaks into smaller eddies. (As long as the
eddy survival time is a scale-independent factor times the
eddy turnover time, the Kolmogoro8'spectrum should de-
velop. )

On very small scales k & kD, the spectrum is cut off
due to viscous damping of eddies. The damping scale kD
is the scale on which viscosity diKuses the turbulence as
fast as the transfer of kinetic energy from larger scales
replenishes it: rg f —L /I rl„ for the Kolmogoroff
spectrum, kLi oc I. . On scales k )) kD, kdpt, „,b/dk oc

The Kolmogorofi spectrum is established as turbulence

a phase transition (the critical Reynolds number for the
onset of turbulence is around 2000), especially if bubble
walls are unstable to perturbations and become highly
nonspherical.

In the case of fully developed turbulence the distribu-
tion of the turbulent kinetic-energy density is expected
to take the stationary Kolmogoroff form [19]
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is introduced on some large scale, e.g. , by the "stirring"
of the plasma by expanding bubbles, and is fed down to
small scales as large eddies break into smaller eddies. It
takes of the order of an eddy turnover time on the largest
length scale to establish the Kolmogoroff spectrum. The
stationary spectrum of turbulence persists as long as the
plasma is being stirred. Once the stirring stops, the tur-
bulence dissipates in about a turnover time for the largest
length scale.

Next, let us estimate the amount of gravitational ra-
diation produced by eddies of characteristic size I. Us-

ing the quadrupole formula, PGw G(d Q/dt ), and
estimating the triple time derivative of the quadrupole
moment of a typical eddy as d Q/dt Lspv~~/r', it fol-
lows that the volume density of gravitational radiation
produced by eddies of size L is

= Gp'L'7 v~4/~~2 ~ ~-",PGW
(34)

where time 7 is the duration of the turbulence and the
characteristic frequency a w& v~/L v~k. In
making this estimate we have made two reasonable as-
sumptions: (i) that the quadrupole moment of an eddy
varies by order unity on a turnover time and (ii) that the
radiation from different eddies adds incoherently. Like
the turbulent kinetic energy itself, the energy in gravi-
tational radiation achieves its maximum on the largest
length scale.

Finally, let us be more specific. Suppose that the
largest length scale on which the turbulence is being
driven is Lo = P v, and that the fluid velocities on this
length scale are vo (not to be confused with the velocity
v of propagation of the bubble wall). Further, we assume
that the turbulence persists for a time 7 = P, corre-
sponding to the length of the phase transition. Then we
have the approximate relations

where this spectrum extends from frequency cup up to
(dD.

Strictly speaking, these expressions are valid only in
the regime of nonrelativistic fluid velocities, vp (( 1 and
likely overestimate the gravity-wave production if applied
to a stronger transition. For a detonation, the initial fluid
velocity vp can be estimated &om the fraction of the total
energy that goes into kinetic energy of the fluid. Thus,
in the weak-detonation limit, vo (Kcx) ~, and in the
strong-detonation limit, vp 1. For a deflagration, the
fluid velocity may be estimated by Eq. (Al).

Our estimate for the gravitational radiation produced
in a phase transition should be viewed as an absolute,
albeit approximate, lower bound. No account was made
of the radiation emitted by the bubble walls themselves;
only that arising &om the turbulent motion of the plasma
that was stirred up by the release of the latent heat was
taken into account. Further, we wish to emphasize that
our analysis and estimates should apply to any violent
injection of energy on large scales in the early Universe.

IV. RELIC GRAVITY WAVES

To translate the results of the previous section into the
potentially observable background of gravity waves to-
day, we must propagate the gravity waves forward from
the phase transition until today. This is simple since the
gravity waves are essentially decoupled &om the rest of
the Universe. The energy density in gravity waves de-
creases as B, and the &equency of the gravity waves
redshifts as R, where 8 is the scale factor. If the Uni-
verse has expanded adiabatically since the phase tran-
sition, meaning that the entropy per comoving volume
S oc Rsg(T)Ts remains constant, then the ratio of the
scale factor at the transition to the scale factor today is
given by

1/3(Lb L
vg

~

—
~

vo, r' — L'Lo v
Lo)

'
vg

k~ = ( L,/S)'~'L = I.

(35)
R, ,4 (100) (1GeV)=80x 10
Ro ~g) ( T )

(39)

~ dpcw (~) s (w'
'~) &~o)

(37)

Mp ~7L, +V Vp, (38)

It then follows that the spectrum of the energy density
in gravity waves is

In these expressions, g(T) counts the total number of
relativistic degrees of &eedom at a given temperature,
and the asterisk subscript refers to the value of a quantity
at the time of the phase transition. If we denote the
fraction of total energy density in gravity waves at the
transition as OG~, and the characteristic frequency at
the transition as f„ then the fraction of critical density
today, O~w, and characteristic &equency fo today are

(40)

(R.)' (a.', , &100' "'
1.67x10 h

I /

"Gw. , (41)

where h is the current value of the Hubble parameter in units of 100kmsec x Mpc x and we have used the relation
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8~Gpraa 8' g,T,3 4

gp
(42)

We also define a characteristic ainplitude h, (f) produced by stochastic gravity waves around frequency f as

h, (f) = 1.3 x 10 [OGw(f)h ) )
(43)

where QGw(f) is the contribution per &equency octave to the energy density in gravity waves [20].
Using the results in the previous section, we can describe the gravity waves &om bubble collisions by

, , (H. l' t' a ~' f v' ~ t'100)"'
QGwh = 1.1 x 10

E&) EI+ ) &024+ ') t, ~ )
(44)

a l (H. '1 f 1 GeV~ f ~ ) (100~„=1.8 x 10 '4K
~&1+ ) ~~) & T ) &o +") k~) (46)

For detonation bubbles, in the weak-transition limit
a ~ 0, r. oc ~n, and so the amplitude of gravity waves is
suppressed by a factor of as~2 relative to the amplitude
in the case of a pure-vacuum transition.

For the case of turbulent mixing, the same analysis ap-
plies though our estimates are much rougher. We assume
that after the phase transition the ratio of the energy den-
sity in gravitational waves to that in radiation is of the
order of OGw, (K, /P) va r and the spectrum peaks
at the frequency 27rf, Pv ai~2zi~2 Then we. have
the following estimates:

, (H. ) ', (100'r"
flew&

)
(47)

„,(H. 1G t'100,
) 4 T~ ) 4& )

(49)

Note that the characteristic amplitude for gravity waves
&om bubble collisions and &om turbulence scales in
the same way, and our rough estimates indicate that
fully developed turbulence is comparable to, and maybe
more potent than, bubble collisions in generating gravity
waves.

For a particular first-order phase transition, knowledge
of the parameters v, P, r. , and a suffices to determine
the resulting gravity-wave spectrum &om bubble colli-
sions. For detonation bubbles, v and r are functions
of a (cf. Figs. 1 and 5). In contrast the time scale P
and the energy scale o. are determined entirely by the
bubble-nucleation probability. In terms of fundamental

, (P~ ~ T. i g. i»s
f „2.6 x 10 Hzvsv

i H, ) (1GeV) 100'

(48)

physical quantities, P and a are determined by the effec-
tive potential for bubble nucleation. Knowledge of the
mean bubble separation Lo ——P iv and the character-
istic ffuid velocity vs suffices to determine the spectrum
of gravitational radiation Rom turbulence resulting from
the transition.

As a direct application of our general formalism, we
consider the electroweak phase transition. This cosmo-
logical phase transition has been the focus of much atten-
tion recently. If the electroweak phase transition was first
order, then the baryon asymmetry of the Universe may
have been produced at the electroweak phase transition
[21]. Such a transition would have produced gravitational
radiation; we now use our results to estimate the strength
of this signal.

The minimal standard model electroweak phase transi-
tion occurs when the SU(2)r, x U(1)& gauge symmetry is
broken to U(l) EM. The bubble-nucleation rate and latent
heat of the transition follow &om the e8'ective potential
for the Higgs field P. In Appendix B, we review a gen-
eral form for the efFective potential and its specific real-
ization for a one-loop electroweak calculation. We adopt
the reference values mi ——100 GeV for the top mass and
mH ——60 GeV for the Higgs boson mass; the end of Ap-
pendix B shows how the relevant parameters vary with
these masses. The transition then occurs at a temper-
ature T, 104 GeV and results in H, /P = 1.3 x 10
o. = 1.4 x 10, ~ = 7.8 x 10, and v = c = 0.57.
Then for bubble collisions, we get Oh —9.8 x 10
and 6 —1.5 x 10, peaking at a frequency around
f „-4.1 x 10 Hz. Reasonable changes in the ref-
erence values for the Higgs boson and top masses and
uncertainties in the accuracy of the one-loop efFective po-
tential could conceivably change these values by an order
of magnitude or more. The weak gravity-wave signal that
results from the electroweak phase transition is a conse-
quence of the fact that the transition in the standard
model is very weakly first order, if first order at all.
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Various generalizations of the standard model, partic-
ularly enlarged Higgs sectors in supersymmetric models,
can substantially strengthen the electroweak transition
[22]. Other more speculative first-order transitions, such
as in various grand unified theories (GUT's), may also
have taken place. We can ask what characteristics must
a first-order phase transition possess to generate a gravity
wave signal which is potentially detectable. For the Laser
Interferometric Gravitational Wave Observatory (LIGQ)
facility with advanced detectors, the ultimate sensitiv-
ity to a stochastic background is an amplitude of around
2 x 10 z5 at 100 Hz [20,23]. Requiring the peak frequency
of the radiation spectrum to fall at 100 Hz, the most sen-
sitive LIGO frequency, gives (P/H, )(T,/1 GeV) 2 x10
by Eq. (45). Then for the expected value of /3/H, 100,
Eq. (46) gives ti, 9 x 10 z Kn/(1+ n) at the peak
frequency, making detection by LIGO marginal at best.

The situation is more promising for a space-based in-
terferometer. Projected capabilities of a long base line in-
terferometer between two satellites are a &equency range
from 10 to 10 Hz, and a sensitivity down to an am-
plitude of 10 zz at 10 4 Hz [20,24]. In this case, requir-
ing the peak of the gravity wave spectrum to fall at 10
Hz gives (/3/H, )(T,/1GeV) 2 x 10s. Again taking
/3/H, 100, this corresponds to a phase transition tem-
perature of 20 GeV; the characteristic amplitude of the
gravity waves is ti, 10 Kn/(1+ n). This background
is detectable as long as Kn/(1+ o.) & 10, a reasonable
condition for a strong phase transition. These estimates
can be made less stringent by noting that the gravity-
wave spectrum for colliding bubbles falls slowly with fre-

quency, and that measuring the gravity-wave background
at a frequency 10 or 100 times higher than the peak
frequency only results in the amplitude dropping by a
factor of a few. We have also not included any grav-
ity waves kom turbulence, which could give a compara-
ble and independent contribution. A strong electroweak
phase transition at T = 100 GeV is potentially detectable
by a space-based interferometer.

In conclusion, we have calculated the gravitational ra-
diation produced by two potentially strong sources dur-

ing a first-order phase transition: the collision of spheri-
cally symmetric bubbles and fully developed turbulence.
Detailed numerical simulation of many colliding bubbles
leads to a characteristic radiation spectrum which scales
with o. , r, and P, parameters related to the latent heat,
efficiency, and time scale of the transition, respectively;
the spectrum also depends on the bubble expansion ve-

locity v in a sensible way. Relativistic detonation bubbles
provide a simple model for bubble dynamics which allows
K and v to be expressed in terms of a. Likewise, estimates
of the radiation spectrum from stationary KolmogorofF
turbulence give similar scalings with these parameters.
These estimates indicate that turbulence is likely as po-
tent a source of gravitational radiation as bubble colli-
sions. The magnitude of the frequency and amplitude of
the resulting gravity-wave stochastic background makes
detection of a strong phase transition by a future space-
based interferometer an open possibility, but makes un-

likely detection of a first-order phase transition by the
upcoming LIGO detectors.
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APPENDIX A: FLUID FLOW IN
DEFLAGRATIONS

Here we present a detailed analysis of deflagration bub-
bles, analogous to that of detonations in Sec. II.A. Our
aim is to determine the radial-velocity profile of the de-
flagration bubble.

We again start with Eq. (7). If we are considering
deflagrations, then in the wall kame, fluid flows into the
discontinuity with a velocity vi and out of the wall frame
with a velocity v2 & vq, and both v~, v~ ( c, . In the case
of spherical deflagration, since the fluid at the center of
the bubble is at rest, this means that (in the "laboratory"
frame) the wall propagates at a velocity v2, and so the
fluid velocity is v = 0 for ( & vz. Since vz & vi, the
expansion of the gas during combustion exerts a piston
eEect on the fluid outside the bubble and pushes the fluid

just outside the bubble with a velocity

v2 —vy
V = V2 = = Vp.

1 —vyv2
(Al)

2 vp—t-, = —vln —,
'f)

v, ( —c, « l.

For v ) 0 the right-hand side is always positive, but the
left-hand side is negative for ( ( c„and so there is no

So in order to determine the radial velocity profile in a
spherical deflagration, we need to solve Eq. (7) subject
to the boundary condition Eq. (Al). This is straightfor-
ward.

To begin, note that since v, (, (1 —v(), p2 ) 0 always,

dv/d( & 0 as long as p, & c, . Since y, & c, for ( & c,
(the equalities holding only if v = 0 and ( = c,), we

know that dv/d( & 0 and that v is always decreasing for

( ( e, . The fluid far from the center of the bubble is at
rest, and so for some value of ( & 1, the fluid velocity v

goes to zero. The question is whether this occurs for (i)
( ( c„(ii) ( = c„or (iii) ( ) c, .

If at some value of (, v -+ 0, then lnv + —oo, and
d(ln v)/d( —+ —oo; however, d(lnv)/d( ~ —oo if and
only if the quantity in square brackets on the left-hand
side of Eq. (7) goes to zero (i.e., p = c,). Since this does
not occur for ( ( c„the fluid velocity v does not decrease
to zero for ( ( c, .

Now if we suppose that v —+ 0 at ( = c„ then we can
study Eq. (7) in the limit v « 1, (f —c, ) « 1, and we

find that the solution in this case is [8]
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——=1
Ce Cq

(A3)

solution to Eq. (7) where the velocity goes to zero at
= e, .
Therefore, the radial velocity must go to zero for some

value of ( ) c, . Again, if v is to go smoothly to zero,
then din v/d( ~ —oo, as v ~ 0. It is clear &om Eq. (7)
that this cannot occur for ( ) c„so a discontinuity must
occur, and as we may have guessed for supersonic prop-
agation, there must be a shock. Although din v/d( does
not diverge as v ~ 0, it does go to —oo for some ( ) c, ;
this occurs when p, = c, [where v = (( —c,)/(1 —v()].
So assume that this is where the physical discontinuity
occurs. Doing so, we find that in the &arne of the discon-
tinuity, Quid Qows into the discontinuity with a velocity
Pi ——( and flows out of the discontinuity with a velocity
P2

——c,(g s& ). In a shock, Pi ——
s& [8]; so this discon-

tinuity cannot be physical. Therefore, the shock must
occur at some value of ( less than that at which p = c,.

To find the value of ( at which the shock occurs, we

again note that in the &arne of the discontinuity the ve-
locities of the fluid in and out of the discontinuity are
Pi = ( and Pz ——p, and then note that in a shock

Pi ——
s&

. This then tells us that the shock occurs when
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FIG. 9. Fluid velocity for a deBagration as a function of
( = r/t for vp = 0.5 and vp = 0.45 (solid curve) and v2 ——0.1
and vp = 0.09 (dashed curve).

It is reassuring to note that this occurs for a value of (
smaller than that at which d ln v/d( diverges (determined
by p/c, = 1).

So, to determine the velocity profile (and from it the
stress-energy tensor) for a spherical deflagration bubble,
Eq. (7) is integrated subject to the boundary condition,
Eq. (Al), until p(/c, = 1. At this point there is a shock.
As the strength of the transition is increased, vo will in-

crease, and the value of ( at which the shock occurs will
increase. This simply means that the strength of the

0.01

/(' i dv 2v

(c2 ) d(
(A4)

which can be integrated subject to the boundary condi-
tion v((o) = vo to give

precompression shock preceding the deflagration &ont in-

creases as the strength of the transition increases.
Generally, Eq. (7) must be solved numerically, but if

the transition is weak, then v2 vi and vo « 1. In the
liinit of small velocities (v « 1, and as long as ( —c, is
not too small), Eq. (7) becomes

O.OOS—

v(() =vo
I

—
I

I'(o &

) "—o
(A5)
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FIG. 8. Fluid velocity for a de8agration as a function of
( = r/t for v2 ——0.1 and vp = 0.01.

According to this solution, near the deQagration front,
the radial velocity falls o8' quadratically with radius and
then begins to decrease even faster and goes to zero at
( = c,. Strictly speaking, this solution is not valid at
( = c, and the radial velocity does not go to zero ex-
actly at ( = c„but if the transition is indeed weak, the
precompression shock will be at a value of ( just slightly
larger than ( = c„and Eq. (A5) should provide a good
approximation to v((). In Fig. 8, we plot the fluid ve-
locity as a function of ( for a rather weak deflagration
(v2 ——0.1 and vp ——0.01). We plot the fluid velocity
as function of ( for stronger deflagrations in Fig. 9; the
dashed curve illustrates a deQagrations with v2 ——0.1 and
vp = 0.09, and the solid curve illustrates the case where
v2 ——0.5 and vp ——0.45.

The Quid Qow in a spherical deQagration is di8'erent
&om that in a planar deflagration [9—11]. In a planar
deQagration, the velocity of the Quid between the deQa-
gration &ont and the precompression shock is constant.
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On the other hand, the fluid velocity and enthalpy den-
sity decrease with increasing ( in spherical deflagration,
as we have shown. Therefore, for given values of Pq and

P2, the precompression shock is weaker in a spherical
deflagration than it would be in a planar deflagration,
and in the limit of a weak transition, it is much weaker.
(Similar conclusions were obtained for nonrelativistic de-
flagrations [25]). Consequently, the allowable modes of
deflagration in a phase transition in the early Universe
may be slightly different than those discussed previously
[9-ii].

B(T) = V—(v(T), T)
a4T4 8z' 4z t' 8z ) '~'

24As ,7 , + + —
9 )

(B5)

which is the difference in free energy density between the
two states of the system. The derivative of B is given by

ature T„with T, ) T, ) Tp.
To determine the latent heat and vacuum energy as-

sociated with the transition, we begin with the value of
the potential at the broken phase minimum:

APPENDIX B:THE EFFECTIVE POTENTIAL
FOR BUBBLE NUCLEATION

(T)( T+— ( )l~,
dT ( 3 )

and the latent heat is de6ned as

(B6)

Calculation of the gravity waves from a erst-order
phase transition requires two essential pieces of infor-
rnation about the transition: the parameters n and P.
These parameters characterize the overall properties of
the transition and follow from the effective potential for
bubble nucleation.

I =——T,
dB

T.

4n4n p
9A

(B7)

e = B(T) —TB'(T). (B8)

The vacuum energy associated with the transition is [10]

1. Model effective potential

In a typical erst-order phase transition, the probability
for nucleation of a low-temperature phase bubble will be
determined by the tunneling action between two vacua
of an effective potential. To parametrize this effective
potential, we consider the general form

V(P, T) = p(T —Tp )P— — o.TQ + —Az P, (B—1)
2 3 4

where p, o. , and A are arbitrary positive constants and
Tp sets the temperature scale [10,26]. This potential pos-
sesses two inequivalent minima. The symmetric phase
potential minimum is always at P = 0 where V(P) = 0.
The broken phase minimum occurs at

123' ~ f' T —Tp l

= 13.7~A-'~'z'~'~(z)

(9App(T —Tp) )
a2T )

(B9)

where the function I" is de6ned by

F(z)—:1+ — 1+
4 1

2.4 0.26
—z (1 —z)2

+ (Bio)

To calculate P for a given phase transition, the ba-
sic quantity we need is I'(t) = Ae ~'l, the bubble-
nucleation rate per unit volume per unit time. The di-
mensionful prefactor A is expected to be of order T, but
is unimportant for the present calculation. The argu-
ment in the exponential is the action for nucleating crit-
ical bubbles. At high temperatures, this action is well
approximated by [27]

8zl
P = v(T) =— 1+

2A 9)
where we have defined

9qA (T' —T,')
20.' T tp —te

(B2)

(B3)

This pararnetrization is accurate to around 1% for 0 &
z & 0.95 [27].

The nucleation rate is a rapidly increasing function of
time near the phase transition, and so it is sensible to
expand the action in a Taylor series about t = t, [17]:

S(t) = S, —P(t —t, ),

20.'T2
i

1 T2 (B4)

In the second expression for x, we have presumed a
quadratic relation between time and temperature, t T
tpTp, valid in a radiation-dominated universe at constant
entropy. The critical temperature T at which the free
energy of the symmetric and broken phases are equal is
given by the relation

dS
dt c=~.

9Ap 1 dS ) 0.
2o.2 tS dx ~=~.

(B12)

Then the nucleation rate can be rewritten as I'

I'pexpPt as Sec. III. Simple estimates show that the
electroweak transition takes place when S = 130 [10,27].

At the critical temperature, the energy density of the bro-
keli phase first dips below that of the symmetric phase;
at the temperature Tp, the symmetric phase becomes un-
stable. A first-order phase transition occurs at a temper-

2. Electroweak case

The exact parameters of the electroweak symmetry-
breaking phase transition are not yet well known, due
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(2 w+ z+ 2 t)~= 1 2 2 2

4v02
(B13a)

both to uncertainties in the standard model (e.g. , the top
and Higgs boson masses) and to theoretical difficulties in
calculating the effective potential, which determines the
order of the phase transition and the bubble-nucleation
rate. For the present calculation, we use the one-loop ap-
proximation to the 6nite-temperature effective potential
[28] with an improved cubic term [27]; the coefficients are
given by

with vo ——246 GeV, lna~ 3.51, and lnaF 1.14.
We adopt the following reference values: W mass

mw ——80.6GeV, Z mass mz ——91.2GeV, top mass
mq ——100 GeV, and Higgs boson mass mH ——60 GeV.
With these masses, the above coefBcients have the values

p = 0.17, n = 0.019, Tp ——103.6 GeV, and Ao = AT (T =
To) = 0.028. The Higgs self-coupling AT depends very
weakly on T, and we will ignore the variation in AT over
the temperature range of interest.

For the above parameters, x = 0.74 if the phase tran-
sition occurs when S = 130. Then Eq. (B8) gives
e = 0.049T, , and so

, (2mW + mZ),
3 3

2xvo
(B13b)

n = 30'/vr g, T, = 1.4 x 10 (B14)

Working out the derivative in Eq. (B12) leads to P
400/t„which gives

W

To = —me — (2mw + mz 4mt), (B13c)4 4 4
vr2v =13x10 (B15)

mH2
AT ——

2VO

m2—4m,' ln
aFT

(B13d)

4 mw 4 mz2 2

2 4 2mw n
2 + z n T216m'vo4 ( GgT O,I3T

using the relationship t, = 0.30mp~/T2g, . Since cr is
so small, Eq. (13) shows that the expansion velocity of
detonation bubbles is essentially v = c, = I/~3. Finally,
the fraction of the vacuum energy which goes into bubble
wall kinetic energy is, by Eq. (22), K = 7.8 x 10
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