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We study the properties of the decay of a self-gravitating radiation field by analyzing the relation
between behavior in the weak field regime, test field behavior in a Schwarzschild background, and
strong field behavior. Our model consists of a spherically symmetric scalar field incident on a
reQecting barrier, which allows all these regimes to be treated on a common nonsingular manifold.
Our primary conclusion, in the curved space case, is that there are two distinct types of late decay
determined by whether or not the Newman-Penrose constant for the scalar field vanishes. For the
nonvanishing case, the radiation tail decays as 1/t, with respect to Bondi time, but there are also
ln t/t corrections, as well as the exponentially decaying contributions associated with quasinormal
modes.

PACS number(s): 04.30.Db, 04.25.Dm, 04.40.Dg

I. INTRODUCTION

The theoretical understanding of the decay of the grav-
itational radiation from a highly general relativistic sys-
tem will be of great importance in the future of gravi-
tational wave astronomy because it can be used to ex-
tract information about the structure of the underlying
system from observed waveforms. In the case of black
hole formation, it is anticipated that the final decay of
the radiation might be quantitatively similar to the ring
down of a test wave in a Schwarzschild background. It
is expected that the higher order terms in a perturba-
tion expansion be small although there are no theorems
in this regard. There is a considerable understanding of
the perturbation problem in terms of the quasinormal
modes of a Schwarzschild black hole [1]. The quasinor-
mal modes are characterized by exponential time depen-
dence e' but with complex eigenfrequencies u which in-
clude the effects of radiation damping. However, there is
no straightforward mathematical analysis of a system in
terms of its quasinormal modes analogous to the normal
mode decomposition provided, for example, by Fourier
analysis. The role they play in radiative decay has been
elucidated in terms of the properties of the Laplace trans-
form of the system [2,3]. The quasinormal eigenfrequen-
cies correspond to the poles of the Green function for
the Laplace operator. For the black hole problem, this
(~reen function also has a branch cut which corresponds
to a power law decay, in powers of 1/t, which eventually
dominates the exponentially damped quasinormal modes
at late time. The ultimate power law decay is expected to
be too weak to be observationally important. However,
any precise statement of this type is diKcult to make and
would depend upon the initial conditions of the system
in a very sensitive way.

Observing this late time decay by numerical simula-
tion is also a sensitive matter because of the increasingly

high redshift between observers at infinity and the cen-
tral region where gravitational collapse takes place. In
the absence of curvature, there is no tail to the outgoing
radiation of a spherically symmetric, scalar wave whose
initial data have compact support. In previous numeri-
cal studies of black hole formation by a self-gravitating
spherically symmetric, scalar wave [4], the radiation tail
for a compact initial pulse was found to decay exponen-
tially with respect to Bondi time when tracked up to
redshift factors of 10 . The time constant of this expo-
nential decay corresponded closely to the lowest quasi-
normal mode for scalar perturbations of a Schwarzschild
background. However, there was no evidence of power
law radiation tails in this redshift regime.

Gundlach, Price, and Pullin [5,6] have recently reex-
amined the existence of power law tails. By approxima-
tions to the perturbation equations for a test field in a
Schwarzschild background, they generalized the earlier
analysis [1] of power law tails to include the radiation
fields at null infinity. Furthermore, they demonstrated
the existence of these power law tails in the full non-
linear case by extending numerical simulations to suf-

ficiently high redshifts. The consistency they establish
between perturbation theory and numerical evolution of
the nonlinear system is very reassuring.

In this paper, we carry out a similar examination,
based upon different boundary conditions, different ana-
lytic approxirnatioris, and di8'erent numerical techniques,
using the model of a self-gravitating scalar wave. Our
work confirms the major results of Guridlach, Price, and
Pullin and reveals how the presence or absence of a
Newman-Penrose constant differentiates between two dif-
ferent types of power law decay. In addition, we obtain
an exhaustive set of analytic solutions at the 'linear in
m" approximation which reveal a logarithmic correction
to the leading order power law decay of the radiation
amplitude. Numerical solutions based upon a grid which
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compactifies null infinity allows us to accurately distin-
guish between the different power laws that apply at fi-

nite radius and at infinity, as well as to verify that the
logarithmic terms appearing in the analytic approxima-
tion persist in the nonlinear regime.

Our theoretical model is a spherically symmetric space-
time satisfying the coupled Einstein-Klein-Gordon equa-
tions for a massless scalar field 4. We set this as a
nonlinear mixed boundary value problem for the region
of space-time outside a timelike inner boundary and to
the future of an initial null hypersurface. On the inner
boundary, we prescribe the intrinsic geometry and ex-
trinsic curvature corresponding to a surface of radius R
and mass m in a Schwarzschild space-time and we set
the scalar field to zero, so that this boundary acts as a
perfectly reflecting barrier. Here m is a free constant
subject to the constraint R ) 2m. The solution then de-
pends solely upon the characteristic data for the scalar
field on the initial null hypersurface. This is a well posed
(1+1)-dimensional boundary value problem. We explore
the decay of a scalar wave in (i) the flat space regime,
(ii) as a test wave on a Schwarzschild background, and
(iii) in the fully general relativistic regime in which it
forms its own black hole. The use of a reflecting bound-
ary allows these three regimes to be described smoothly
on a common manifold if a judicious choice of coordinate
conditions is made (with some technical qualification cor-
responding to choices of data that might evolve to form
weak solutions). We use null-polar coordinates consisting
of a retarded time u, which labels the outgoing null cones,
and a luminosity distance r, determined by the surface
area of the spherical cross sections of these cones. These
coordinates also provide a smooth description of future
null infinity g+, in terms of the compactified coordinate
l = I/r, in all three regimes.

In this coordinate system, the line element is

ds = e2~du
~

du+ 2dr
~

——r (d8 + sin Hdg ), (1.1)
fv

J

Bondi time is the physically relevant time for a gravita-
tional wave antenna whereas the internal proper time de-
termines the dynamical time scale of the collapsing wave.

No globally well behaved exact solutions are known
for this system. In the next section, the flat space limit
is treated analytically and its solution used to generate
an analytic solution to first order in m for a test wave
in a Schwarzschild background. This solution provides
the details of the final decay to this order of approxi-
mation. The fully nonlinear, general relativistic case is
then treated numerically in Sec. III, using the algorithm
for nonlinear scalar waves developed in Refs. [8) and [4].
The numerical solutions display the same critical behav-
ior established for the m = 0 case without a reflecting
boundary [9]. A weak scalar field is completely radiated
to infinity and the world tube of the reflector extends to
future time infinity I+, where the final Bondi mass equals
m. However, above a critical strength, the scalar field un-
dergoes gravitational collapse to form a horizon, whose
formation is indicated by the redshift factor Ch/dw ~ oo,
to within numerical limitations. In this event, some of
the scalar Geld is radiated to infinity and some crosses
the horizon. Thus the reflector itself must fall through
the horizon, for otherwise it would continue to reflect
the scalar field until all its energy were radiated to infin-
ity. Accordingly, the final black hole mass must satisfy
MH ) R/2, and so, unlike the case without the reflec-
tor [10,11], this system exhibits a "mass gap. " Critical
phenomena for black holes whose mass is close to R/2
seem to appear in our model but, as we have not yet
made a refined study of this, we focus here on the radi-
ation tail. Agreement with the analytic approximation
provides a means of confirming that the numerical de-
scription of the tail is valid at the high redshifts marking
the transition from exponential decay to power law decay.

and the Einstein-Klein-Gordon equations, for the spher-
ically symmetric case, reduce to [4,7]

II. LINEARIZED WAVES

p, = 2vrr(C „), (1.2)
A. Waves in flat space-time

V„=e2P

and the scalar wave equation OC = 0, which takes the
form

2(r4) „=r (rV4 „)„. (1.4)

The initial null data necessary for evolution consist of
4(uo, r), r & R, at a given retarded time which we set to
be uo ——0. At the reflecting boundary, O(u, R) = 0 and
we choose the coordinate condition P(u, R) = 0, while
the boundary conditions imply V(u, R) = R —2m. With
these conditions the scalar field and metric components
have a unique evolution. The resulting metric does not
have an asymptotic Minkowski form in the Iimit r —+

oo of future null infinity Q+. We set H(u) = P(u, oo).
Then Bondi time t at Q+ is related to proper time v =
upi —2m/R on the reflecting boundary by

Setting m = 0 and retaining only terms linear in C,
(1.2) and (1.3) imply P = 0 and V = r and (1.4) reduces
to the flat space wave equation

g:= 2g, u~ g,~v = 0)(') (2 1)

where g = r4. (In this limit, u, t, and 7 are all equal. )
The general solution satisfying the reflecting boundary
condition is

g(u, v ) = f (u/2 + r) —f (u/2 + R). (2.2)

Without loss of generality, we choose f (r) = g(0, r), to
satisfy the initial conditions. The first term in (2.2) de-
scribes an incoming wave, and the second, its reflection
ofI' the boundary.

Smoothness of the scalar field at future null in6nity,
from the point of view of the Penrose compactification
of Minkowski space-time, corresponds to the existence
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of an asymptotic Taylor series in powers of 1/r, i.e.,

g = Q + P/r +. . . . The leading term Q(u) is the time-
dependent monopole moment which carries the radiation
energy off to infinity. The next coeKcient P has the spe-
cial property of being time independent. It is an example
of a Newman-Penrose constant of the motion [12].

The late time decay of the wave depends upon the ini-
tial data. First consider data of compact support, i.e. ,

g(0, r) = 0 for r ) Ri & R. Then (2.2) implies that
g(u, r) = 0 for u ) 2(Ri —R). It should be noted that
this absence of a tail is peculiar to the spherically sym-
metric case. In the case of a flat space wave with com-
pact radial support but with l g 0 spherical harmonic
dependence, the reHection off a spherical barrier leads
to quasinormal mode decay characterized by a complex
eigenfrequency [2].

Next consider noncompact initial data for which

gp =const for T ) R1, i.e. , for data corresponding
to the static monopole solution 4 = Q/r in this re-
gion. Because of the reflecting boundary, the evolution
of these data is not static. However, we again have

f (u/2 + &) —f (u/2 + R) = 0 for u & 2(Ri —R) so that
there is no tail. This is an exceptional case because the
evolution of C' preserves the pure 1/r radiation form in
the outer region r & R1.

Other choices of noncompact data do lead to tails
whose decay rate is determined by the far field radial
falloff of the data. In particular, consider the family of
initial data, parametrized by an integer N, for which

Schwarzschild form, and (1.4) reduces to the test wave

equation

2guv ger = 2m
(2.7)

where again g = rC. In terms of the expansion g =
Zg(") m", this leads to an inhomogeneous flat space wave
equation for g("):

2g(~) g(~) 2g(~)g, u~ g,r~— ) (2 8)

with source

/g( — i y

determined by g(" ). We keep the same boundary con-
ditions as before, with the proviso R ) 2m. The per-
turbation system is seeded by a homogeneous solution
g~ol of (2.1). Our primary concern is how the decay of
the radiative amplitude is effected by the Schwarzschild
mass.

Consider the null parallelogram made up of incom-

ing and outgoing radial characteristics which intersect at
vertices P, Q, R, S as depicted in Fig. 1. By integrating
Eq. (2.8) over the area E bounded by these vertices, we

obtain

g(0, r) = (R/r) —1 for N ) 0, (2 3)
(~) (~) (~) (~)= gp +gs ga + Si"l {u',r') du, 'dr'. (2.10)

outside the barrier. The solution is

R~ [(u/2 + R)~ —(u/2 + r )
N

]

(u/2 + R)& (u/2 + r) iv (2.4)

The decay rate depends upon the direction of approach.
In the limit of time infinity, letting u ~ oo holding
r =const, we obtain

giv 2N (2R) (R —r ) /u (2.5)

At null infinity, the decay rate of the radiation amplitude

Q{u) = g{u, oo) is obtained by first taking the limit r ~
oo before letting u ~ oo. This gives

Q~ - —(2R/u) (2.6)

The leading term past the monopole Q in the 1/r ex-
pansion of the initial data g(0, r) determines the decay
rate, either according to (2.5) or (2.6). The slowest pos-
sible decay rate arises in the case N = 1, for which the
Newman-Penrose constant is nonzero.

B. Linearized waves in a Schwarzschild space-time

With this background, we now proceed to waves prop-
agating in a Schwarzschild space-time. Retaining only
linear terms in 4, (1.2) and (1.3) now imply P = 0 and
V = r —2m, so that the metric has the (null polar)

FIC. 1. Line segments drawn at 45 to the vertical rep-
resent radial characteristics. Their intersection defines the
fundamental nu11 parallelogram PQBS used in constructing
both our analytic and numerical solutions.
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d" (u, r) = / S~"~(u', r')du'dr', (2.11)

This identity may be used to solve the perturbation equa-
tions by taking Q to be the field point at (u, r); P to lie
on the refiecting barrier, so that gp = 0; and R and S to
lie on the initial null cone with coordinates (0, u/2 + R)
and (O, u/2 + r), respectively. We seed the expansion
with initial data g(o) (0, r), with g(")(0, r) = 0 for n & 1,
so that gR ——g&" ——0, for n & 1. The resulting solution( ) (~)

of (2 8), for n & 1, is

where the integration region Z consists of the parallel-
ogram -bounded by the outgoing light rays u' = 0 and
u' = u and by the incoming light rays u' + 2r' = u+ 2B
and u'+ 2r' = u+ 2r. We will only carry out this scheme
to order n = 1, at which the corrections to flat space are
linear in m.

Consider then a homogeneous wave g( ) whose initial
null data have compact support inside a radius Rq, so
that g( ) has no tail. Then, for u & 2(Ri —R), only the
outgoing wave in the decomposition (2.2) lies in Z and
there is no contribution to the field Rom the initial values
at points R and S. Consequently, (2.11) gives

g~ ~ (u, r) = f /(u'/2 + R)/r' du'dr'

(r —R) (u —u'+ r + R)
() (u —u'+ 2r)'(u —u'+ 2R)'

(2.i2)

(2.13)

This implies that the 6eld observed at 6xed r has the late
time asymptotic behavior

I

in the Appendix. At a fixed, 6nite value of r, this leads
to the asymptotic behavior

g(') (u, r) Fo/u (2.i4)

and the radiation amplitude has the late time behavior

(,) 4R(R —r) ( 1 )
ru (u )

(2.i6)

g(i)( ) Q( ) F/ (2.i5)

where the constants Fo and F depend upon the details
of the initial data. The dependence of (2.14) on proper
time or (2.15) on Bondi time is effectively the same.

Thus, to first order in m, a wave with compact ini-
tial data in a Schwarzschild background has the same
decay behavior as we found for a flat space wave with
noncompact initial data 40 having an asymptotic Tay-
lor series expansion with vanishing 1/r2 term. This has
a simple explanation in terms of backscattering by the
curvature of the Schwarzschild background. Although
the initial data at u = 0 are compact, this backscatter-
ing can potentially produce any power of 1/r in the null
data induced at a later time u = ui, with one excep-
tion. It cannot produce a 1/r term corresponding to
the Newman-Penrose constant, which is also conserved
by the curved space wave equation. As a result, compact
data at u = 0 induce data at u = uq, which is generic
except that its Newman-Penrose constant vanishes. At
times u )) uq, these data then decay according to the
same generic scheme as a flat space wave with vanishing
Newman-Penrose constant.

Now consider the decay of waves whose initial data
are noncompact. We isolate the same cases as in the
fiat space analysis. For initial data with g(o) (0, r)=const
for r & Ri the decay has the same behavior, (2.14) and
(2.15), as for compact initial data. This is because a
pure radiation field does not contribute to the source S( )

in the integration region Z corresponding to late times
u & 2(Ri —R). Next consider the noncompact initial
data (2.3) for the case N = 1, corresponding to a nonzero
Newman-Penrose constant. The calculation of g( ) via
(2.11) is lengthy but straightforward. The result is given

and, at null in6nity,

Q(i)( )
4Rln u

O
~ 1

~l

u (u )
(2.17)

1
gIv =

( )
(—2R(9~) gi (2.18)

As a result, since the perturbation equation (2.7) is in-
variant with respect to the time translation operator (9„,
the perturbation satis6es

,
(-2Ra„)"-'g," = o.

1
(2.19)

This implies that gIv satisfies the equivalent of (2.18),
up to a homogeneous solution H of the flat space wave
equation,

(2.2o)

Since g/v (O, r) = 0 by assumption, the homogeneous so-(~)

lution is determined by the initial value of B„gz . Be-
cause of the Newxnan-Penrose conservation law, a 1/r
expansion of (9„gi (0, r) has no 1/r term, but other-

According to (2.16), the decay at fixed r has the same
1/u behavior as the corresponding decay of the zeroth
order fiat space wave g(s). However, according to (2.17),
the first order radiation amplitude Q( ) decays faster
than the 1/u decay of Q(0). Thus, to this order, the
decay of the radiation field is not affected by backscat-
tering and has the same time dependence as a flat space
wave with nonzero Newman-Penrose constant.

For noncompact data (2.3) with N & 1, first note that
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wise the expansion is generic. According to our results for
the decay of flat space waves, this implies that H(u, r) =
O(1/u ) and H(u, oo) = O(1/u2). On the other hand,
0~ igi decays as O(1/u~+i) and 0~ iQi decays as
O(ln u/u + ), because the order relations (2.16) and

(2.17) obtained from the solution for gi (u, r) (given
in the Appendix) are differentiable with respect to u.
Putting these results together, we infer the leading order

time dependence g~ ——O(1/u ) and QIv
——O(1/u ),

for X) 1.

Se-05

Oe+00

I

I

I

f

I

I

I

1

m&+2

—--- m&.0

III. SELF-GRAVITATING WAVES

Given initial data which is smooth at null infinity, i.e.
has an asymptotic 1/r expansion, the leading order per-
turbation results of Sec. II for the late time decay can
be summarized as follows. Let P = rB,rC—!„bethe
Newman-Penrose constant. Then, if P g 0,

g( )(u, r)+mg (u, r) 1+ —+O(1/u )
4P(R —r) m

/Q 2

-Se-05

!

-1e-04
0 10

(3.1)

and

2P 4mP ln u
Q (u, r) + mQ '

(u, r) -— + + O(1/u').

(3.2)

Otherwise, if P = 0, g( )(our) + mg(i)(u, r) = O(1/u )
and Q(o)(u, r) + mQ(i)(u, r) = O(1/u ). ln the latter
case, the backscattering to linear order in m produces
tails which lead to the same generic decay for both com-

pact and noncompact initial data. Accordingly, there
are two distinct types of late time decay determined by
whether or not the Newman-Penrose constant vanishes.

%e now use solutions obtained by numerical evolution
to check the validity of these "linear in m" results in

the full test field case and to examine their extension
to strongly self-gravitating waves. In all the numerical
simulations, we have set the location of the reflecting
boundary at R = 1.

FIG. 2. Radiation amplitude Q(t) vs Bondi time t, com-

pared to the radiation profile for a Bat background m = 0.

of the radiation amplitude Q(t) vs Bondi time t, super-
imposed for purposes of reference on the corresponding
tail-&ee solution in a flat background, obtained by setting
m = 0. In addition to redshifting the radiation ampli-
tude, the interior mass introduces one extra oscillation
before the final decay. The late time power law decay
of the radiation tail of this solution is best illustrated by
a graph of t Q vs Bondi time, which is shown in Fig. 3.

0.0000

A. Compact initial data y -0.0001

As an example of initial data of compact support we
choose the incoming pulse

�

%[4(r —1)(r —2)]
g(uo, r) = for 1 ( r & 2

forr &2,
-0.0002—

which is normalized to have maximum value A.

%le first consider the perturbative regime by setting
A = 10 and m = 0.2, so that the wave has negligible
nonlinearity but the interior mass produces the redshift
dt/dr = 1.3 between the reflector and infinity, which rep-
resents the full perturbative as opposed to the "linear in
m" regime. Figure 2 displays the corresponding graph

~ ~ I

10
t

100 1000

FIG. 3. The graph of t Q makes evident the power law

decay of the radiation for the compact data (3.3).
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The constancy of this graph at large Bondi times confirms
the 1/t~ decay found for the "linear in m" solution. A
fit of ln(Q) vs ln(t) to a straight line in the interval from
t = 10 to t = 400 gives a power law coefficient 2.006, in
excellent agreement with the value 2. Similarly, the late
time decay of the Geld computed at Gnite r also exhibits
the 1/ts behavior found analytically in the "linear in m"
regime. The computed power law coefficient is 2.936.

For purposes of exhibiting the tail in the strongly non-
linear regime, we next consider the pulselike data (3.3)
with A = 0.4. In this regime, we set m = 0 since the back-
ground mass plays no essential role because this field is
well beyond the critical amplitude to collapse to a black
hole on its own. Only a small &action of the initial energy
is radiated to inGnity and an horizon with Gnal Bondi
mass MH 0.86 forms in the exceedingly short proper
time v 0.0004, measured along the re8ector's world
line. The graph of t~Q(t) vs Bondi time in Fig. 4 clearly
exhibits a 1/t~ decay of the radiation tail of this highly
nonlinear solution. However, this power law decay be-
comes the predominant signal only after the Bondi time
t = 200, at which the redshift has reached the enormous
value of 6 x 10

0.8

0.6

0.4

0.2

0.0
10

B. Noncompact initial data

Now consider the initial data

FIG. 5. The final decay of the radiation amplitude from
(3.4) with A = 10 and m = 0.2 has the asymptotic form

Q(t) 2A/(t+ 2) of the Sat space solution.

g(0, r) = A(1 —1/r), (3.4)

0.2

corresponding to the N = 1 data (2.3) with nonvanish-
ing Newman-Penrose constant P = —A. In order to

treat the perturbative regime, we again set A = 10
and m = 0.2. Figure 5 shows how the final decay of
the radiation amplitude approaches the asymptotic form

Q(t) 2A/(t + 2) of the Hat space solution. Figure 6
shows how the numerical solution manifests the asymp-
totic relation tQ 2P = 2—A predicted by (3.2). The

2.0

0.1

1.5

-0.1 1.0

-0.2
0

I

200
I

400

FIG. 4. For A = 0.4 and m = 0 in (3.3), the graph of
t Q(t) vs Bondi time exhibits a 1/t decay, which becomes
the predominant signal only after the Bondi time t = 200, at
which the redshift has reached the enormous value of 6 x 10

0.5 I

10
~ ~ ~ I

100

FIG. 6. The numerical solution manifests the asymptotic
relation tQ 2P = 2A predicted by —(3.2).
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1.0 200.0

o.o —~
-1.0— -200.0—

I

-3.0
0.0 2.0

I

4.0 6.0
-600.0

0.0
I

2.0
1

4.0
ln(t)

I

6.0

FIG. 7. In the "linear in m" regime, A 4mP ln(t)/
A + O(1), according to (3.2).

FIG. 9. The graph of 6 shows the logarithmic correction
to the decay in the nonlinear regime.

curvature dependent logarithmic term in (3.2) can also
be extracted by subtracting out the Hat space solution.
We define

(3.5)

1.0
)

I

so that in the "linear in m" regime
4mP ln(t)/%+const, according to (3.2). This is plot-

ted vs ln(t) in Fig. 7. At late time, the graph has slope
—0.83, in agreement with the "linear in m" prediction
4mP/A = —0.8 to well within the 20%% accuracy expected
from O(m ) corrections. Similarly, at fixed r the field de-
cays in accord with (3.1).

$pp, -~ - V~I-~TTr

I

I

0.5
I

I

1

1

———Q/k---- 2/((+2)

I1=2

I

pp '-

I

I

I

I

I

I

I

I

500

-0.5
1

I

10
~ I

100
t

I

1000 10000 -1000 I

10
I

100
~ I

1000
~ I

10000

FIG. 8. In the nonlinear regime, the numerical solution
again has the asymptotic form Q(t) 2A/(t + 2) of the liat
space solution.

FIG. 10. Graphs of the radiation field, for the data (3.6) in
the highly nonlinear case A = 3, clearly indicate a 1/t decay.
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In order to study the evolution of the data (3.4) in
the strongly nonlinear regime, we set A = 3 and m = 0.
This system has initial Bondi mass Mo —5.8 and forms
a black hole with final Bondi mass MH = 2.87 in proper
time ~ 9.6 x 10,measured along the reflector's world
line. Figure 8 shows how the decay approaches the flat
space behavior characteristic of a nonvanishing Newman-
Penrose constant. In Fig. 9, we extract the flat space
term to show how the logarithmic correction carries over
to the nonlinear regime. At late time, the graph of 6 has
an approximate slope of —20, corresponding to 4mP/A
for the value m = 5 lying between Mo and M~.

Finally, consider the initial data

(3.6)

which have a nonvanishing initial monopole moment
but a zero Newman-Penrose constant. Figure 10 shows
graphs of tQ and tzQ for the radiation field in the highly
nonlinear case A = 3. The initial mass is Mo 6.5 and
the system forms a black hole with mass MH 4.2 in
the reflector's proper time r = 5.5 x 10 zs. The graphs
clearly indicate a 1/tz decay, in agreement with the pre-
diction of the "linear in m" approximation. This estab-
lishes, in the nonlinear regime, that a nonzero initial
monopole moment does not produce an O(1/t) decay,
in contrast with a nonzero initial Newman-Penrose con-
stant.

that initial data with nonzero monopole moment but zero
Newman-Penrose constant have a radiative 1/tz power
law decay. It is the conserved Newman-Penrose quantity
that plays the deciding role.

In the pure self-gravitating case, for which the back-
ground mass m of the interior vanishes, the power law
decay only becomes apparent at enormous redshifts for
which there is potential of numerical underflow to affect
the accuracy of the numerical results. By being overly
conservative and stopping the evolution before this pos-
sibility, previous work [4] led to the erroneous conclusion
that the final radiative decay was exponential, with re-
spect to Bondi time. It is now clear that this was the
result of stopping the evolution prematurely in the quasi-
normally damped stage. An inspection of our numerical
algorithm shows that underflow is a serious problem in
the interior region where the time step is very small but
this is countered by the large redshift in the exterior to
give reliable results for the radiation field. Caution is
still warranted in extending numerical results to time in-
finity, where a true singularity in the conforrnal geome-
try exists. Nevertheless, there is a time scale at which
the transition &om exponential to power law decay is
cleanly discernible and consistent with the expectations
of perturbation theory. Furthermore, within the time
interval explored, the numerical results in the nonlinear
regime confirm the logarithmic corrections to the tail cor-
responding to the analytic approximation (2.17).

IV. CONCLUSION ACKNOWLEDGMENTS

The analytic and numerical results for our model are
in essential agreement with the work of Gundlach, Price,
and Pullin [5,6]. This confirms that their conclusions re-
garding power law tails are generic and not sensitive to
choice of boundary conditions or numerical algorithm. In
both the perturbative and nonlinear regimes we find in
addition that the Newman-Penrose constant determines
the order of the power law decay. For the radiation field,
the amplitude decays as 1/t for the case ofanonv'an-
ishing Newman-Penrose constant, and otherwise, as 1/tz
in the generic case. This clarifies the previous hypoth-
esis [1,6] that the choice between these two power laws
rested upon whether the system had a nonvanishing ini-
tial scalar monopole moment. In that work, the exact
static monopole solution, which was used to model an
initial monopole, also has nonvanishing Newman-Penrose
constant, so that the individual effects of monopole mo-
ment and Newman-Penrose constant were not isolated.
(This is a quirk of the curved space solution since the
flat space 1/r static monopole has vanishing Newman-
Penrose constant. ) However, our results clearly show

I

APPENDIX

We give here the expression for g~ ~ for the noncompact
initial data (2.3), with N = 1. For simplicity we have set
R = 1.

Ng N3

D D D4'

where
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by the Pittsburgh Supercomputing Center.

Ni ——4 (u + 20u + 32 r u + 108 u + 32r u+ 160r u+ 224u+ 96r + 192 r + 160) ln(1+ u/2),
Nz ——4(r —1) (u +10ru +8u +26r u +50ru +20u +20r u +104r u +84ru +16u

+64r u+144r u+48ru+64r +64r ),
= 4(u + 4 r u + 8 u + 4 r + 16 r + 8) in[1 + u/(2 r)],

N4 ——4 ln[(u + 2 r)/r (u+ 2)],
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D, = (u+ 2) (u+ 4)' (u+ 2 r + 2)',
Dz = r u (u+ 2) (u+ 4) (u+ 2 r)' (u+ 2 r + 2),
D, = (u + 2 r)' (u + 2 r + 2) ',
D4 ——u .2
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