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We describe a numerical calculation of Penrose’s quasilocal mass on a sequence of axisymmetric
two-surfaces in the three-surface of time symmetry of a numerically constructed vacuum space-time
corresponding to a Brill gravitational wave interacting with a Schwarzschild black hole. The resulting
mass is positive, responds very sensitively to the presence of gravitational waves, and tends rapidly

to the ADM mass outside the wave.

The isoperimetric inequality for black holes and the hoop

conjecture of Thorne are investigated with this definition of mass.

PACS number(s): 04.25.Dm, 04.20.Ex

I. INTRODUCTION

In any numerical calculation of the evolution of an iso-
lated system in general relativity an important issue is
always the radiation of energy out of the system to in-
finity. To give meaning to these terms, it is helpful to
have a definition of the mass of the system “close in” to
be compared with one of the standard definitions of mass
asymptotically and thereby detect the radiation.

In many specific calculations, ad hoc definitions of mass
can be found which work well enough. They are typically
coordinate dependent, which may not be a problem when
the coordinates are uniquely determined by the geome-
try of the problem. However, it would be desirable, for
logical simplicity if for no other reason, to have a single
uniform definition of mass close in which could be used
in all circumstances and which was manifestly invariant.
Penrose’s “quasilocal mass” [1] was intended to provide
just such a uniform definition: the aim of the quasilocal
mass construction as originally given was to measure the
total mass, momentum, and angular momentum, gravita-
tional as well as material, threading through an arbitrary,
topologically spherical, spacelike two-surface S in an ar-
bitrary space-time M. The construction is quasilocal in
the sense of being determined solely by the the metric
and connection of M at S.

Subsequent study has shown that the original aim of
Penrose’s construction cannot be achieved with the con-
struction in its original form. However, for a large class
of surfaces S, the “noncontorted” ones in the language
of Sec. II, it is possible to define a total mass within
S. Furthermore, the results obtained for noncontorted
surfaces are encouraging, and show that many distinct
kinds of mass energy, including radiating gravitational
energy, are successfully captured by the Penrose defini-
tion. (For a review of the construction, its successes with
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noncontorted S and its difficulties with contorted S see
2]

In this paper we present a calculation of Penrose’s
quasilocal mass for a class of axisymmetric two-surfaces
S in a class of axisymmetric space-times, the “black hole
plus Brill wave” space-times of Sec. III. We believe this
to be the first published example of a numerical study
of the quasilocal mass construction, although an unpub-
lished study of the mass of the static, axisymmetric Weyl
solutions was made by Jeffryes [3].

The Penrose construction calls first for the solution of a
system of elliptic equations on the surface S, followed by
integration over S of a functional of the solutions. While
this can be difficult analytically, it fits naturally into a
program of numerically calculating space-times. Our aim
has been partly to show how to implement the calcula-
tion practically, but also to study the results as providing
a further test of the “reasonableness” of the Penrose defi-
nition of mass. In this context, one looks for positivity of
the mass (which is not a foregone conclusion), for a corre-
lation with one’s intuition about processes which increase
or decrease mass, for a suitable approach to the known
asymptotic limits and for consistency with what has been
called the “isoperimetric inequality for black holes.”

The isoperimetric inequality for black holes [4, 5] is the
inequality

16m(mass)® > area (1)

which is conjectured to apply to black holes. When the
mass is defined asymptotically, then (1) is a prediction
of the cosmic censorship hypothesis. For a static black
hole, and with the mass being the Penrose mass, (1) can
be reduced to an inequality for functions on the sphere,
and then proved [2]. Although one does not have the
compelling reason provided by the Cosmic Censorship
Hypothesis for believing (1) quasilocally, nonetheless it
is an interesting question to test it, not just for black
holes, but also for marginally trapped surfaces.

Another inequality, similar in some respects to the
isoperimetric inequality for black holes, is the hoop in-
equality for black holes conjecture by Thorne [6]. This
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inequality is
4m(mass) > circumference of horizon. (2)

While “area” in (1) is uniquely defined, “circumference”
in (2) is not obvious. However, for axisymmetric surfaces
there are clear notions of equatorial and polar circumfer-
ence which, in a certain sense, are the most “reasonable”
definitions of circumference [7]. Hence one can test (2)
with the quasilocal mass and axisymmetric marginally
trapped surfaces.

The plan of this paper is as follows.

In Sec. II, we review the quasilocal mass construction
of Penrose and indicate how it associates a mass to a
noncontorted two-surface S.

In Sec. III, we review the numerical construction of
axisymmetric initial data for the “black hole plus Brill
wave” space-time. The data depend on a choice of one
free function ¢(7n,0) and we make a particular choice of
a three-parameter family of functions for q.

In Sec. IV, we show how to adapt the general scheme
of Sec. II to the specific metric of Sec. III. We present an
algorithm for calculating the quasilocal mass at a surface
S by first solving a coupled system of ordinary differen-
tial equations (ODE’s), then performing integrations of
functionals of the solutions of this system to define a 2x 2
matrix, and finally taking the determinant of this matrix.

The results are presented in Sec. V. We consider how
the geometry of the initial surface changes with the three
parameters in g, and how these changes are reflected in
variations in the mass. We note the asymptotic behavior
of the mass, and comment on the tests provided by the
isoperimetric inequality (1) and the hoop inequality (2).
There is a brief summary and conclusion in Sec. VI.

II. PENROSE’S QUASILOCAL MASS
CONSTRUCTION

In 1982, Penrose proposed a construction [1] with the
ambitious aim of associating a momentum and angu-
lar momentum to an arbitrary, spacelike, topologically,
spherical two-surface S in an arbitrary spacetime. The
construction was intended to measure the total momen-
tum and angular momentum, gravitational as well as
material, threading through S. Most subsequent inves-
tigations of the construction, and most of the success
achieved, has involved the more modest aim of defining
a total mass, in the sense of the length of the momentum
vector, for any S.

For brevity, we will use the term kinematical quantities
for the total momentum together with the total angular
momentum. The construction begins by considering the
definition of the kinematical quantities for an isolated
system, first in special relativity and then in linearized
general relativity.

In special relativity, for each Killing vector k¢ in
Minkowski space, one obtains a conserved current T,,k®
from the stress-tensor Ty of the isolated system. Integra-
tion of this current over a spacelike three-surface yields
one of the kinematic quantities of the source: a compo-
nent of momentum if the Killing vector is translational
and a component of angular momentum if the Killing
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vector is a rotation.

In linearized general relativity, the kinematical quanti-
ties of the source can be measured in the external gravita-
tional field which the source produces. Mathematically,
this is because the three-surface integral can be turned
into a two-surface integral over a two-surface outside the
source, in the external field. The two-surface integrand
is a product of the linearized curvature with a spinorial
quantity which is a potential for a Killing vector. There is
a 10-dimensional vector space V of these potentials, and
the ten kinematical quantities are thereby unified into a
single object, an element of the dual of V.

The flat-space construction is carried over to curved
space as follows: given the two-surface S, first find a
way to identify the vector space V of these potentials;
then use them with the full curvature tensor to form the
same integrand; this will give a definition of the ten, lin-
early independent kinematical quantities in curved space.
(See [8] or [9] for this material and the quasilocal mass
construction; see [2] for a review of the quasilocal mass
construction.)

To be more concrete, we need some notation. A space-
like two-surface S has a pair of null directions normal to
it at each point. These define a normalized spinor dyad
(o*, t*: 0,t* = 1) at each point. The vector space V
is obtained from the two-surface twistor space T(S) of
S which, in turn, is the four-dimensional complex vec-
tor space of spinor fields w* on S which satisfy the two-
surface twistor equations:

00w =0, ,0w*=0, (3)

where § = 0474’V (we will be using the Newman-
Penrose spin-coefficient formalism freely; see, e.g., New-
man and Penrose [10], Penrose and Rindler [8]).

Equation (3) defines an elliptic system on spinor fields
w*. The index (in the sense of the Atiyah-Singer index
theorem) of the operator is 4, so that on a generic S the
space of solutions T(S) is four dimensional. The two-
surface twistor equations are motivated by twistor theory
in Minkowski space, and from that theory we know that
the vector space V of potentials for Killing vectors is
the symmetric tensor product T(S) ® T(S). If {w;* :
i = 1,2,3,4} are the spinor fields defining a basis {Z;}
of T(S), then a basis of V is represented by the (ten
linearly independent) symmetric, valence-2 spinor fields
fwiCw; ).

With respect to the bases just introduced, the kine-
matic quantities for a vacuum space-time are defined by
the following integral over S:

Aij = - V¥, scp wiA “’jB do°® ’ (4)
4 S

where ¥ , 5. is the Weyl spinor and we have chosen units
so that Newton’s constant G is equal to one. In the
presence of matter the integrand in (4) has another term
involving the Ricci tensor.

The 4 x 4 symmetric matrix A = (A;;) apparently has
ten complex components. However, in linearized gravity
it has a Hermiticity property which reduces it to ten real
components, the correct number for the four components
of momentum and six components of angular momentum.
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In a general curved space-time and with a general S it is
not known how to define and establish the appropriate
generalization of this Hermiticity property, and this is a
problem for the Penrose construction.

It is at this point, therefore, that one chooses a more
modest course and seeks to construct a single scalar from
A to represent total mass. In flat-space twistor the-
ory, T(S) comes equipped with a pseudo-Hermitian inner
product ¥. This inner product can be used to define the
norm of A, and in flat-space twistor theory this norm de-
fines the total mass in the sense of the Minkowski, metric
length of the total momentum vector, P°:

1
nﬂ::gwpapbz-—iz(A,Ay (5)

Since the inner product is indefinite, there is no guarantee
a priori that the quantity on the right in (5) will be posi-
tive. However, for sources in linearized general relativity
satisfying an energy condition, it can be shown that the
momentum defined in this way is indeed time-like and
future pointing.

To be able to use (5) we need to have ¥ available. As-
sociated with any element of T(S), or equivalently with
any spinor field w* on S satisfying (3), there is another
spinor field 7,/ on S defined by

Tt = W10y — Morlyr

Ty = —1 L 0w, Mo =1 0,0w". (6)
In flat space twistor theory, the spinor 7, is automat-
ically covariant constant (this cannot happen in curved
space, of course). Further, the inner product £ on T(S)
is defined with the aid of the 7,/ as follows: given a pair
of elements Z;, Z; of the basis {Z;} of T(S), take the
corresponding spinor fields w;*, w;* and their associated
w4, 7 43 now construct the quantity

p o \
i =whml bt eet; (7)

then X3, although built from spinor fields which vary on
S, is actually constant on S, i.e., (7) defines a number
and this number is the inner product £(Z;, Z;).

In curved space, one may define 7, from w* as in
(6) and then seek to define the inner product ¥ by (7).
However, for a generic S the quantity defined by (7) will
not be constant on S and so will not serve to define an
inner product on T(S). Without the inner product one
cannot define the total mass as in (5). How should one
proceed?

One course is to look for other definitions of norm; an-
other is to restrict to two-surfaces S on which (7) does
define a norm. Penrose [11] has suggested that surfaces
S for which (7) is constant for every ¢ and j should be
called noncontorted and other surfaces contorted. It can
be shown that a surface is contorted if it can “detect”
through its first and second fundamental forms that it is
in the presence of conformal (Weyl) curvature: a surface
is noncontorted if it can be embedded in a conformally
flat space-time with the same first and second fundamen-
tal forms [12,13].

Although they are nongeneric, it is possible to find
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large classes of noncontorted two-surfaces in different
space-times and calculate a quasilocal mass for each of
them according to (5). By and large the results are quite
satisfactory [2]. One result worth noting here is that,
while the construction is tailored to give the right answer
in the limit of general relativity which is linearized gen-
eral relativity, it also turns out to give the right answer in
the other limit which is Newtonian and post-Newtonian
gravity [14].

It is also worth comparing the Penrose defintion with
the Hawking definition of mass [15]: both definitions are
genuinely gquasilocal on a two-surface S in the sense that
they depend only on the first and second fundamental
forms of S (that is, on the space-time metric and space-
time Christoffel symbols just at S); however the Penrose
definition will always give zero for an S in flat space, while
the Hawking definition will not in general; further, for a
sequence of two-surfaces contracting onto a disc or onto
a rod, like confocal spheroids in flat space, the Penrose
mass will tend to zero even in curved space, while the
Hawking mass will diverge to infinity even in flat space.

To connect with the work described in this paper, we
note that, if a space-time has a hypersurface-orthogonal
rotation Killing vector then any axisymmetric two-
surface is automatically noncontorted [3,16]. The metrics
of Sec. III have such a symmetry; thus the quasilocal
mass of axisymmetric surfaces in these metrics can be
defined.

To finish this section, we record another expression for
A. This can be obtained from (4) by integration by parts
using the definition (6) of the m,s field associated with
an w” field and is

7

—— [ 7wt do' B (8)
4m

Aij =
In Sec. IV, the existence of two expressions for A will
provide a check on numerical accuracy.

III. THE BLACK HOLE PLUS
BRILL WAVE SPACE-TIME

The space-time we propose to study has been under
investigation by the numerical relativity group at NCSA
for the past several years. It consists of a single black
hole interacting with an ensemble of gravitational radia-
tion. The space-time contains a surface of time symme-
try upon which the metric is given a form similar to that
first studied by Brill [17] for self-interacting gravitational
waves. In addition each spatial hypersurface is given
S? x R topology, sometimes called the Einstein-Rosen
bridge topology [18]. As in the Schwarzschild space-time,
we may endow hypersurfaces with this topology with a
metric which is reflection symmetric through a special
two-surface. This surface is then a closed trapped surface
[19] and so the space-times will generally contain black
holes. Hence we call them “black hole plus Brill wave
space-times.” In this section we will briefly discuss the
time symmetric slice only, for an overview of the entire
space-time see [20-22].

We work in the 3+1 formalism in which space-time is
viewed as a foliation of three dimensional hypersurfaces
each with a positive definite metric. The Einstein equa-
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tions are written in terms of the first and second funda-
mental forms of the hypersurfaces, v, and Kgp (in this
section only latin indices will be restricted to the range
{1,2,3}). The ten equations naturally break into four
elliptic constraint equations, which must be satisfied on
each slice, and six hyperbolic evolution equations, which,
when given the geometry of an initial slice, may be used
to compute the geometry of subsequent slices. The con-
tracted Bianchi identity guarantees that the evolution
equations maintain the constraints as long as they are
satisfied on an initial slice.

The initial value problem of general relativity then
consists of finding a three-metric and extrinsic curvature
which satisfy the Hamiltonian and momentum constraint
equations

R+ (trK)? — K®*K,;, = 0, (9)

Dy(K®® — v**rK) =0, (10)

where R is the scalar curvature and D, the covariant
derivative associated with ~,3;. These equations may be
put into an essentially elliptic form by the well-known
York conformal decomposition method [23]. In this
method some components of v,; and K, are specified
beforehand and the equations are then used to find the
remaining components.

Here we will consider initial data on time symmetric
hypersurfaces. Time symmetry requires the extrinsic cur-
vature to vanish and so the momentum constraint is sat-
isfied identically. The initial three-metric is given the
form studied by Brill:

ds? = o [ezq (dn2 + d92) + sin29d¢2] . (11)

Here 7 is a radial coordinate while § and ¢ are the fa-
miliar spherical polar coordinates on the constant 7 two-
spheres. The function ¢ is arbitrary and one may use
it to specify the form of the wave. The remaining de-
gree of freedom in 7,4, the conformal factor ¥, is then
determined by the Hamiltonian constraint.

Metric (11) is already in the conformal form 7,5 =
U454, necessary for York’s method. The conformal trans-
formation of the scalar curvature is

R=U"*R 80U °AY, (12)
and the Hamiltonian constraint becomes the linear equa-
tion

Aw = é\m‘z, (13)

where careted quantities are formed out of 44 in the
usual way. Given the Brill wave form of the metric (11)
this equation reduces to

8%y 9*T  9v 1 8%q 08%q
il - ~—— cotf = — = ~ 1 i
oy T a0z * g =17 (anz + 502 1)
(14)
In this work ¢ is chosen to be in what we call an “inversion
symmetric Gaussian” form

g =af(6) (exp [— (’%”)

There are three independent parameters a, b, and w
which, roughly speaking, specify the amplitude, range,
and width of ¢, and an angular dependence given by
f(6). In this paper we will consider only initial data with
f = sin?@. Thus our initial hypersurfaces are equatorial
plane symmetric, in addition to being axisymmetric.

The Hamiltonian constraint (14) is an eigenvalue-like
equation and may be solved using methods for elliptic
equations. The numerical details of its solution may be
found in {20, 21]. The numerical method was the follow-
ing: the domain of computation is taken to be 0 <7 < 6
and 0 < 6 < w/2 (in the Schwarzschild space-time n = 0
is the location of the event horizon and 7 = 6 lies at
202M), the grid is set to be evenly spaced in both 7 and
0 with A@ as close as possible to A7. Second-order cen-
tered finite difference approximations to the derivatives
of ¥ are substituted into (14) resulting in an inhomoge-
neous set of linearly equations to be solved for the value of
¥ at each grid point (the Robin condition, see York [24],
is used at the outer boundary). The linear equations are
then solved as a matrix inversion problem. Various error
quantities may be formed out of the solution and from
these the rate of convergence of the solution was deter-
mined to be second order in the grid spacing. The data
for this work was generated on a grid with 200 points in
the radial direction and 53 points in the angular direc-
tion.

When the amplitude parameter a is set to zero we re-
gain the Schwarzschild space-time. In this case the solu-
tion to the Hamiltonian constraint is

cen-(222)]).

(15)

¥ = v/2M cosh(n/2) (16)

and the radial coordinate 7 is related to the Schwarzschild
radial coordinate r by

r = ¥? = 2M cosh?(n/2). (17)

In these coordinates the initial three-metric takes the
form

ds? = 4M? cosh*(n/2) [dn® + d8? + sin®0d¢?] . (18)

Note that 7 — —n is an isometry with = 0 the isometry
surface (i.e., the fixed points of the isometry, sometimes
called the “throat” of the Einstein-Rosen bridge). The
black hole plus Brill wave space-time is constructed such
that this remains true on the time symmetric slice (and,
incidentally, on every subsequent slice of the numerically
generated spacetime).

The physical and geometrical properties of the initial
surface as a function of the parameters a, b, and w are
discussed in some detail in [20, 21]. Here we will only
mention the properties of the apparent horizon as this
has implications for the quasilocal mass. The method of
Cook [25] was used to located the horizon (see also [26]).
In the Schwarzschild space-time the apparent and event
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horizons coincide and on the ¢ = 0 slice the apparent
horizon is located at » = 2M or n = 0. For initial data
sets with b = 0 and w = 1 the isometry surface remains
the apparent horizon if —0.65 < a < 3.03. If a is less
than —0.65 the apparent horizon occurs outside of the
isometry surface. For data sets with b > 0 the horizon
detaches from the throat at a higher absolute value of a:
a = —0.84 for b = 0.5 and a = —1.42 for b = 1. Once
the apparent horizon is found its proper area may be
computed. The mass of the apparent horizon is defined
to be proportional to the square root of its proper area:

A_

The geometry of the horizon may be visualized by way
of an embedding in a flat three-dimensional Euclidean
space. Here a surface in the flat space is constructed
so as to have the same metric as that intrinsic to the
horizon. The method used to construct the embedding
was somewhat nonstandard, however, comparison with
the standard method gave the same result. In general the
horizon has the geometry of a prolate two-sphere for a >
0 and that of an oblate 2-sphere for a < 0. Figure 1(a)
shows cross sections of the embedding diagrams for the
data sets —0.144 < a <1,b =0, and w = 1. When a is
decreased below —0.144 the Gaussian curvature becomes
negative on the axis and no (axisymmetric) embedding
in a Euclidean space can be constructed.

Another measure of the shape of the horizon is ob-
tained by computing the ratio of its polar and equatorial
circumferences. For data sets with b = 0 and w = 1
this ratio is shown in Table I. The ratio may be very
large; embeddings of the horizon for a > 1 are very long,
thin spindles. Note also that an axisymmetric surface
embedded in a Euclidean space has a minimum value of
the ratio of circumferences. A very thin pancakelike fig-
ure with radius r will have polar circumference approx-
imately 4r and equatorial circumference 27r; the ratio
is 2/m or about 0.637. The ratio of circumferences of
the surface n = 0 attains this figure at ¢ = —0.34 and
drops below it for a less than this value (note that the
apparent horizon lies outside the throat for a < —0.65).
That the initial slice permits such a surface is an indica-
tion of its deviation from both Euclidean geometry and
the spherically symmetric geometry of the Schwarzschild
initial slice.

In general, for a > 0 all of the constant 7 surfaces
have the geometry of prolate two-spheres and for a < 0
that of oblate two-spheres. The maximum deviation from
sphericity occurs when 7 is in the neighborhood of the
range parameter b. An example is shown in Fig. 1(b)
where the embeddings of a family of constant 7 surfaces
for the data set a = 1, b = 0, w = 1 are plotted. The
distortion is greatest at the throat where the wave is cen-
tered and quickly dies off as 7 is increased. By n = 2.0
the surfaces are essentially spherical.

IV. CALCULATING THE PENROSE MASS

In this section we show how the general theory of Sec.
II can be used to calculate the quasilocal mass on a two-
surface S of constant 7 in the metrics of Sec. III. The
calculation begins by writing the relevant equations in
the Newman-Penrose (NP)—formalism [10, 8].

First, we choose a null tetrad tailored to the geometry.
In terms of the metric and coordinates of (11) define

(a
o - (a)
Na=1.0
a=0.6
Z i
<D( 2r-
~ ~
( 1 2
X (ADM massy
[ _— S — — A
T (b)
T~
\\\
~
L
AN
AN
AN
N\
.
.
P ~
z
:E \
‘2 N\ \M=2.08
P \
- \ \
‘\‘r]:l 66
i } n=1.24
L
i in=0.81
In=039
n=0/ |
| i
S NS RO ST IS DU
0 1 2 2 4
X (ADM mass)
FIG. 1. (a) Embeddings of the throat as a function of the

Brill wave amplitude a with b = 0 and w = 1. The flat space
axes are in units of the ADM mass for each initial data set.
(b) Embeddings of the constant 5 surfaces for initial data set
a=1,b=0, and w = 1. The flat space axes are in units of
the ADM mass.
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TABLE I. Ratio of polar to equatorial circumference of the surface = 0 as a function of the
amplitude @ with b = 0 and w = 1. Note that for @ = —1 the throat is no longer the apparent
horizon.
a -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cp/Ce 0.2803 0.5189 1.000 2.020 4.282 9.497 21.90 52.14 127.2
1 7 1 9 so is (@', —@°). A convenient way to separate the ¢
b= V2 + T2ea9n )’ dependence turns out to be
W =TUGe?? W =TFe¥?, (26)
1 1 0
n= ﬁ T- T2ea 3y ) (20) and then the system (23), with the spin coefficients given

1 19 i 0
"= V2 U2 (eq 56 * S0 8:}5) ’
where T is the unit normal to the intial hypersurface.
Then ! and n are the null normals to S, and m is the
complex null tangent to S, with the imaginary part of m
aligned with the Killing vector.

Next, we calculate the spin coefficients for this tetrad.
The relevant spin coefficients for our calculation are «,
B, A, u, o, and p. To calculate them, we must use the
fact that the tetrad given by (20) is on a surface of time

symmetry, i.e., the second fundamental form is zero. We
find

P S O 1.,
TP T Ty 2w \ T T W0 )

1 9q
=A=-———2 21
7 21/2 W2ea (21)

1 8q 40Y
p=p=-———r—— |t |-
22022 \On ¥ On
The symmetry makes these spin coefficients real and
forces the other relations among them.
The null tetrad defines a normalized spinor dyad
(o*,¢*) in the usual way and we expand w* and 7, in
this dyad with the standard conventions:

w? = w0t +wh'tt, T =TM0 — Torla. (22)

Now we can write out (3) in the NP formalism as

-PB)w —ow’ =0, (§+a)w’+I'=0, (23)
where
1 14 i 0
§=mVo=—=— =t — 2
mVe = sy (eqa9+sin96¢) (24)

while (6) becomes
To =1 [(6 — o) w* — pu°]
my =1[(6 + B) w® + pw']. (25)

Inspection of the spin coefficients shows that Egs. (23)
have an extra symmetry: if (w°, w') is a solution then

above, becomes

OF (e’ + cosO)F 108q

or _ Tt e _ _~Aqg

00 2sinf 20n

0G  (e? — cosf) 19q

4 /e =-2F 27
a0 2 sinf 2 9n (27)

We need two linearly independent solutions (Fi, G,),
(F2, G2) to (27) and by inspection of the Wronskian we
may normalize them by

1
GlF2 - F1G2 = 5 sinf. (28)

Taking account of the extra symmetry noted above, we
may write the general solution of (23) as

W=V [(alGl + a2G2)8i¢/2 + (a3F1 + a4F2)e—i¢/2] ,

w'=1¥ [(G1F1 + agF)e®’? — (a3Gy + a4G2)e“i¢/2] ,
(29)

where a;, i = 1,2, 3,4, are coordinates on T(S).

If we substitute (29) into (25), we find the correspond-
ing associated general 7,/ field, and then we may substi-
tute into (7) to find the inner product. The result of this
last calculation, using the normalization (28), turns out
to be

E,-ja,-dj = w“irA + G}A’ﬂ’A/
—2 _
= —\/—2_ (a1a2 — a20a;1 + aqa3 — (13(_14). (30)

As anticipated, all dependence on 6 and ¢ has disap-
peared from (30) because S is noncontorted.

At this point we have the two-surface twistors explic-
itly and we have the inner product. The next step is to
calculate A, either using (4) and (29) or using (8) and
(25). This leads to

A= ——iAijaiaj = —le:f_r / U, pcp w* w? do? (31)

[here, for later convenience, we have introduced a factor
(—%). Thus A;; from (31) differs by this factor from A;;
in Sec. II]. In the first case we find
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A13 ——A [V(Fl Gl) +2UF1G1] e sinfd6 5 U= \I’anae 2 87] 90 T 90 67]
. L9g0% 199 5 (33
Ags = / [V(F2 - G2) + 2UF,G,) e ~sinddf , Ton oo 20y
0
(B2) o _ 1 18T (19%) 10¥
=727 39er \vos) Tvaw
A14:A23:/0[V(F1F2—G1G2) 18g _1@3_\11 ) 1‘9_‘1’ 2+l§ga—q}
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and all other components of A are zero, where while in the second case
I
e xm e 22%0)  (ver - 2220 | wreesinoas
13—20 1\113771 1\1’8771J )
Agg = L /" r XF, + 2 8—\I!G ’ YG 2 6-\1117’ ’ W2e~%sinh do (35)
24—20 2 \Ilanz 2 ‘118772 )
1 (7 2 0¥ 2 0V
A=t =3 [ (XF1 ¥ ;I;a—nGl) (XFl + 58—7701)
2 9V 2 0¥
— - ——F YGy — = —F, )| ¥%e 9sinfd
(YGl 7 a1 1> ( G, T an 2) e ?sinf db,
[
and all other components of A are zero, where ?l " f(1 — e9) _ 9 @ cot(6/2),
o0 2 sinf 2 0n
X = cosf + e? 2 8_‘1'
~ sinf ¥ 50’ dg g(1—e?) fogq
= = 2 == —tan(0/2), (40)
a6 2 sinf 2 O0n
cosf —e? 2 9Y
Y= T sinf U o8 (36) and the normalization condition becomes
- =1. 41
Again we emphasize that (32) and (35) are simply re- 91z = 9211 (41)
lated by integration by parts but it is useful for compu- f and g must satisfy the boundary conditions
tational purposes to have two different expressions. The 9 9
quantities U and V are closely related to Weyl tensor ?i = g ) -9 =0. (42)
components at S. It is a simple matter to calculate from 0 \g_g 00lg_, 00lg_y 004,

these the curvature quantities which go into the inte-
gral (4) for A;;. In terms of U and V these are

Uy =Ty =T 4 29U, T,=T % 2V. (37)

For vanishing ¢, i.e., spherical symmetry, equations
(27) decouple and the solutions are easily seen to be

F = asin(6/2), G =bcos(§/2); constant a, b. (38)
If we introduce f and g by
(F,G) = (fsin(6/2),gcos(6/2)) (39)

then (27) becomes

If the two-surface happens to be equatorial plane sym-
metric, as in our space-times, we may generate another
solution from a given solution (F;,G1) by

(Fz(m — 6), Ga(m — 0)) = (G1(0), F1(0)) (43)
or

(f2(m —0),g2(m — 0)) = (91(8), f1(9)) - (44)

Finally, to obtain the quasilocal mass we must calcu-
late the norm of A given by (32) or (35) using the inner
product implicitly defined by (30). This gives

m? = —A13424 + A14Ass. (45)

The numerical calculation proceeds as follows.
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(1) We choose the Brill wave parameters a, b, and w
and solve the Hamiltonian constraint for the conformal
factor W.

(2) The two-surface twistor equations (40) are solved
with the initial conditions f = 1 and g = 0 at § = 0.
Another set is generated by the symmetry relation (44)
and these are normalized according to (41). An implicit
Adam’s method in the package ODEPACK was used to
perform the integration. Note that no interpolation is
needed because all of the quantities appearing in (40)
are given exactly in terms of §. The maximum allowable
residual of the equations is set at 3 x 1072 (F, G, f, and
g are all dimensionless) and fourth-order centered finite
difference approximations are used in the equations to
generate the residuals. The normalization condition (41)
is checked and the solution is rejected if there is a maxi-
mum deviation greater than 1x10~%. The fully “dressed”
two-surface twistors (F, G) are then constructed and the
solutions to (27) and the normalization condition (28)
are checked according to the same tolerances.

(3) The kinematic twistor is constructed using both
(32) and (35). The Penrose mass is constructed from
both expressions and the two are compared. The solution
is rejected if the percentage difference is greater than
1x 1074,

(4) If the solution is rejected at any step then different
sets of initial conditions are tried whereby g(0) = 0 and
f(0) ranges from 0 to 2. However, except in extreme
cases, adequate solutions were usually found with f(0) =
1.

A tentative check of the accuracy of the calculation
may be made by comparing the result with the Arnowitt-
Deser-Misner (ADM) mass when the two are computed
on the outermost = constant shell. When this is done,
by computing the Penrose mass with the above proce-
dure, the relative difference between the Penrose mass
and the ADM mass is on the order of 107° if the range
parameter b is less than 2 and the amplitude is not too
large (—1 < a < 2). This difference rises rapidly when
the range is greater than 2 to about 10~2 at b = 3 (this
is evident in Fig. 3).

In the figures in the following section we will plot the
quasilocal mass as a function of  and the Brill wave

TABLE II. Convergence of the Penrose mass taken at
n = 0 for representative initial data sets: a = 1, b = 0,
w = 1, and the same with a = 0.1. mg is a preset scale
parameter, constant for all initial data sets, which in the
Schwarzschild space-time is equal to the mass of the hole.
(The ADM mass itself generally varies with the Brill wave
parameters and hence also with the resolution.) The grid size
is the number of points in the 7 direction x the number of
points in the @ direction. The outermost point is located at
n = 6 in each case.

a=1 a=0.1
Grid size  m (mo) m (ADM) m (mo) m (ADM)
100 x 27 42.93177 38.90189 0.984806 1.034517
200 x 53 42.89451 38.89884 0.984786 1.034629
300 x 79 42.88744 38.89833 0.984781 1.034665
400 x 105  42.88495 38.89698 0.984782 1.034678
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parameters a, b, and w. With these fixed we may ask
how quickly the Penrose mass converges to a set value as
the grid is refined so as to get an idea of how large the
“error bars” should be around the points on these figures.
In Table II we show the convergence of the mass in two
typical cases, one low amplitude and one high amplitude.
We see that the mass varies by no more than five parts in
10° when the resolution is quadrupled from 200 radial by
53 angular points, the value at which the data displayed
in this paper was computed, to 400 x 105 points.
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FIG. 2. (a) The Penrose mass taken on the constant 7
surfaces for data sets 0 < a < 1 with b = 0 and w = 1.
The data is in units of mapm. (b) The Penrose mass on the
constant 7 surfaces for data sets —1 < @ < 0 with b = 0 and
w = 1. The data is in units of mapm-
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V. EXAMPLES

In this section we present in graphical form the results
of calculating the quasilocal mass of Sec. IV in the space-
times of Sec. III. In Figs. 2 and 3 we plot the quasilocal
mass m of Eq. (45), in units of the ADM mass mapy to
which it tends at infinity, against the radial coordinate
7. The scale starts at 7 = 0 which is the minimal surface
at the throat.

In Fig. 2 the parameters b and w of Eq. (15), which
determine the location and width of the Brill wave part of
the data, are taken to be 0 and 1, respectively: the wave
is centered at the throat. In Fig. 2(a) the mass is plotted
against 7 for a range of positive values of the amplitude
a, and in Fig. 2(b) for a range of negative values of a.
Recall from Fig. 1 that an increase in a in the positive
direction corresponds to an increasingly prolate throat,
and an increase in a in the negative direction corresponds
to an increasingly oblate throat.

From Fig. 2 we see that m rises rapidly as compared
to mpym With increasing deformation of the throat, much
more rapidly than, for example, a geometric measure of
the deformation like the ratio of polar and equatorial
circumferences. Also, the rate of rise with |a| is greater
toward a prolate deformation. [Something similar to this
is seen in the quasilocal mass of comoving cylinders in the
locally rotationally symmetric (LRS) cosmologies, where
the quasilocal mass rises rapidly with the length of the
cylinder and diverges much more rapidly than the shear
on the approach to the singularity [27, 28].]

The quasilocal mass drops rapidly with increasing dis-
tance to the asymptotic value, m,py. Recall that the
gravitational disturbance at the horizon has width pa-
rameter one and, by n = 1, m is very close to m,py. In
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FIG. 3. The Penrose mass on the constant n surfaces for

data sets 1 < b < 3 with a = 1 and w = 1. The data is in
units of mapwm-.
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Fig. 2(b), m actually overshoots m,py but it returns to
approach it from above. In other cases, m may oscillate
several times about m,py.

In Fig. 3, m is plotted against 7 for a variety of values
of the parameter b with a = 1 and w = 1. Varying b cor-
responds to varying the location of the Brill wave, and in
Fig. 3 we see that m rises from its value at the throat to
a maximum at the location of the wave before dropping
back to its asymptotic value. This location also corre-
sponds to the location of extrema of various measures of
the curvature, e.g., the curvature invariants Rapea R4
and R 4R ;R°f,;,, the Weyl tensor component ¥,
(37), and the York curvature tensor components. Note
that m at the throat may be greater or less than m,py.

What we see from these figures is that m is real and
nonzero, which there was no guarantee of from its defin-
ing equation (45), m responds very sensitively to gravi-
tational waves distorting the Schwarzschild background,
and, from Fig. 3, peaks at the location of the waves, m
tends to m,py asymptotically, as one knows from gen-
eral theory; the fact that m reaches m,p, so rapidly
outside the wave is an indication that the data rapidly
approach the data for Schwarzschild, since m is known
to be equal to m,py for any topologically spherical sur-
face in a constant-time hypersurface in the Schwarzschild
solution [13], and m is very definitely not monotonically
increasing with increasing radius.

This last point calls for comment. Since the quasilocal
mass is quasilocal, it is not the integral over a spanning
three-surface of a local density. Indeed, for the situation
considered here with the Einstein-Rosen bridge topology,
there are no spanning three-surfaces. Correspondingly,
there is no ‘flux-formula’ for the difference in quasilo-
cal mass between neighboring concentric two-surfaces: if
one moves the two-surface out to a larger radius, one
must simply calculate m again on the new two-surface.
The expression (45) for m in terms of A;; is quadratic,
so even in a situation where the A;;’s for different sur-
faces are additive, as for example in the time-symmetric-
initial-value-problem [29], the masses will not be. From
this last example, one knows that the quasilocal mass
detects gravitational potential energy, which is negative
in as much as it reduces total mass. If the mass drops
with increasing radius, that does not mean that there
is a patch of “negative-energy-density”, rather it means
that the total energy within the two-surface, including
gravitational potential energy, has decreased.

The remaining figures are related to the isoperimetric
inequality and the hoop inequality discussed in the In-
troduction. Again, our motivation is twofold, both to
investigate these inequalities and to provide support for
the quasilocal mass definition.

Figure 4 shows m on the throat in units of may, the
irreducible mass of Eq. (19). Inequality (1) is the require-
ment that this ratio be greater than one. In Fig. 4(a),
the ratio is plotted for b = 0, w = 1 and a in the range
—0.5 < a < 0.5 and in Fig. 4(b) on a different vertical
scale with 0 < @ < 1. For this range of parameters, there
is no other minimal surface outside the throat, i.e., the
throat is the apparent horizon.

The ratio has a very attractive minimum at unity when
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a = 0, which is the Schwarzschild solution, and then m
increases rapidly away from mpay as the deformation in-
creases. In the discussion of Fig. 2 we noted that m
increases rapidly as compared with one geometric mea-
sure of deformation, the ratio of circumferences; here we
see it increasing rapidly as compared with another, the
square root of the area.

In Fig. 4(c) the same ratio is plotted with b = 2 and
w = 1 with the range —1.6 < a < 3. Again, there is a
minimum of the ratio at the Schwarzschild solution and
otherwise it is greater than one, increasing in both di-

rections with increasing deformation. Both the isoperi-
metric inequality and the quasilocal mass survive this
encounter.

Figure 5 shows a “hoop-ratio” 47m/C at the throat
n = 0 plotted against a for the data set with b = 0
and w = 1 which was used in Figs. 4(a) and 4(b) (and
also in Figs. 1 and 2). The circumference C is taken to
be the larger of the polar and equatorial circumferences.
The two branches of the curve are for the two different
circumferences, which are equal for the Schwarzschild so-
lution at @ = 0 where the two branches meet.
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FIG. 4. An investigation of the isoperimetric inequality. The Penrose mass is taken on the apparent horizon (7 = 0 in all

cases) for the data sets: (a) —0.5 < a <05 withb=0andw=1. (b)0<a<1llwithb=0andw=1.(c)-1.6<a<3
with b = 2 and w = 1. m is in units of may in each figure.
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FIG. 5. An investigation of the hoop inequality. We
show the “hoop ratio” 4mm/C taken on the apparent hori-
zon (n = 0) as a function of the Brill wave amplitude a for
data sets —0.6 < a < 0.5 with b = 0 and w = 1. The circum-
ference C is taken to be the larger of the polar and equatorial
circumferences of the apparent horizon.

In both directions, the hoop ratio, which should be
greater than one for a literal interpretation of (2), drops
below one away from Schwarzschild, so the result is less
clear-cut than for the isoperimetric inequality. Still there
are minima on both branches of the curve so that an in-
equality such as (2) but with a number slightly greater
than 47 on the left-hand side will hold. Graphs similar
to Fig. 5 may be drawn for other data sets, and lead
to similar conclusions. Other studies of the hoop conjec-
ture have also indicated that a different number might be
needed [30, 31] and Thorne [6] never claimed that “4x”
was cast in stone. With these qualifications, we have
found some support for the “only if” part of the hoop
conjecture [“black holes form only if (2) holds”].

We noted above that the Penrose mass m decreases
with radius at least for some coordinate ranges. There is
an interesting vindication of this property in connection
with the hoop inequality. If one uses the ADM mass
instead of the Penrose mass to test the hoop inequality
one will not in general find that the inequality is satisfied.
For example, for the data set a = 1, b = 0, w = 1,

the ratio 4nC/mapMm is 0.72, and for a = 2 and a =
3 it is 0.41 and 0.15, respectively (for a = —0.6 it is
0.60). Hence the ratio is a decreasing function of a when
computed with the ADM mass and an increasing function
when computed with the Penrose mass. This implies
that any definition of mass which increases monotonically
with the radial coordinate n and approaches the ADM
mass at infinity could only satisfy the hoop inequality
(taken on the apparent horizon) with a number on the
left hand side greater than 47 by a rather large factor,
at least six or seven on the evidence of this particular
family of initial data sets.

VI. SUMMARY AND CONCLUSIONS

We have shown that it is a practical matter to cal-
culate Penrose’s quasilocal mass numerically for axisym-
metric two-surfaces as part of the process of numerically
constructing an axisymmetric space-time. It is impor-
tant for the calculation that such two-surfaces are guar-
anteed to be noncontorted, but the mass so obtained
then has reasonable properties. It is nonzero, it responds
sensitively to gravitational radiation, peaking where, in-
tuitively, we would expect the radiation to be, and it
rapidly approaches the ADM mass at large distances.

The calculation of the mass is moderately laborious as
compared with other, more ad hoc definitions, but the
definition has the virtue of having a solid rationale, and
being universally applicable, at least on noncontorted
two-surfaces. When used as a test of the isoperimet-
ric and hoop inequalities, the quasilocal mass provides
satisfactory answers which reinforce both the status of
the inequalities and the use of this definition of mass in
them.

It remains to be studied how the quasilocal mass will
fare in a numerical calculation of a dynamical space-time.
The principle of the calculation would remain the same,
at least for an axisymmetric space-time, but the calcula-
tion would be more complex in detail. From the study
of cylindrical gravitational waves, which can be handled
explicitly, one knows that the quasilocal mass will rise
and fall in time with the passage of the wave.
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