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We derive the effective equations for the out of equilibrium time evolution of the order parameter
and the Suctuations of a scalar fieM theory in spatially Sat FRW cosmologies. The calculation is
performed both to one loop and in a nonperturbative, self-consistent Hartree approxixnation. The
method consists of evolving an initial functional thermal density matrix in time and is suitable for
studying phase transitions out of equilibrium. The renormalization aspects are studied in detail
and we Snd that the counterterms depend on the initial state. We investigate the high temperature
expansion and show that it breaks down at long times. We also obtain the time evolution of the initial
Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation
the time evolved state is a "squeezed" state. We illustrate the departure from thermal equilibrium

by numerically studying the case of a free massive scalar 6eld in de Sitter and radiation-dominated
cosmologies. It is found that a suitably de6ned nonequilibrium entropy per mode increases linearly
with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function
in the radiation-dominated case.

PACS number(s): 98.80.Cq, 11.10.Wx

I. INTRODUCTION AND MOTIVATION

Since its creation more than a decade ago, the inBa-
tionary Universe scenario [1—3] has become an integral
part of the standard model of cosmology. However, to
a great extent, this scenario is incomplete. One of the
problems is the lack of a model of inBation that is ade-
quate both &om the inflationary and the particle physics
viewpoints. While many models [4] exist that do all the
things an inBationary model needs to do, such as inBat-
ing, ending inBation gracefully, reheating the Universe,
and generating safe density Buctuations, none of these
models really is part of any reasonable extension of the
standard model of particle physics.

What we address in this work, however, is a more seri-
ous problem. This has to do with the dynamics of inBa-
tion, and more generally, the dynamics of scalar fields in
an expanding Universe. By and large, the various models
of inBation make the assumption that the dynamics of the
spatial zero mode of the (so-called) infiaton field is gov-
erned by some approximation to the efFective potential
which incorporates the efFects of quantum Buctuations of
the field. Thus the equation of motion is usually of the
form

The problem here is that the efFective potential is re-
ally only suited for analyzing static situations; it is the

efFective action evaluated for a field configuration that is
constant in time [5]. Thus, it is inconsistent to use the
efFective potential in a dynamical situation. Notice that
such inconsistency appears for any inBationary scenario
(old, new, chaotic, ...).

More generally, the standard methods of high temper-
ature field theory are based on an equilibrium formalism
[6,7]; there is no time evolution in such a situation. Such
techniques preclude us &om treating nonequilibrium sit-
uations such as surely exist for very weakly coupled the-
ories in the early Universe.

In this work we try to rectify this situation by address-
ing three issues: (a) obtaining the evolution equations for
the order parameter including the quantum fluctuations;

(b) studying departures &om thermal equilibrium if the
initial state is specified as a thermal ensemble; (c) under-
standing the renormalization aspects and the validity of
the high temperature expansion.

Our ultimate goal is to study the dynamics of phase
transitions in the early Universe, in particular, the for-
mation and evolution of correlated domains and sym-
metry breaking in an expanding Universe. From some
of our previous studies on the dynamics of phase tran-
sitions [8,9] in Minkowski space, we have learned that
the familiar picture of "rolling" is drastically modified
when the Buctuations are taken into account. As the
phase transition proceeds Buctuations become large and
correlated regions (domains) begin to grow. This en-
hancement of the fluctuations modifies substantially the
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evolution equation of the order parameter. Thus the time
dependence of the order parameter is not enough to un-
derstand the dynamical aspects of the phase transition;
it must be studied in conjunction with that of the Huc-

tuations. Vilenkin and Ford [15] and l,inde [16] studied
the fluctuations in a free scalar field theory in de Sitter
space and Guth and Pi [17] studied the growth of fluc-
tuations by approximating a broken symmetry situation
with an inverted parabolic potential in de Sitter space.
However, we are not aware of any previous attempt to
incorporate the growth of fiuctuations (arising from the
nonlinearities) in the dynamics of the order parameter
during cosmological phase transitions.

Our approach is to use the functional Schrodinger
formulation, wherein we specify the initial wave func-
tional iII[C( ~ );t] (or more generally a density matrix

p[4'( ~ ), 4( ~ ); t]), and then use the Schrodinger equation
to evolve this state in time. We can then use this state
to compute all of the expectation values required in the
construction of the effective equations of motion for the
order parameter of the theory, as well as that for the Huc-

tuations. The Schrodinger approach has already been
used in the literature at zero temperature [10] and to
study nonequilibrium aspects of field theories [11].

One advantage of this approach is that it is truly a dy-
namical one; we set up initial conditions at some time to
by specifying the initial state and then we follow the evo-
lution of the order parameter P(t):—(C)(x)) and of the
Huctuations as this state evolves in time. Another ad-
vantage is that it allows for departures from equilibrium.
Thus, issues concerning the restoration of symmetries in
the early Universe can be addressed in a much more gen-
eral setting.

There have been several attempts [12—14] to obtain the
evolution equations in expanding cosmologies. Our mo-
tivations, goals, and many technical aspects diH'er sub-
stantially &om those of previous treatments. In partic-
ular, we not only obtain the evolution equations for the
order parameter to one-loop approximation, but we also
find them in a nonperturbative self-consistent Hartree ap-
proxirnation. Within these approximation schemes, we

obtain the evolution of the fiuctuations (quantum and
thermal), departures from equilibrium, study in detail
the subtle aspects of renormalization and the validity
of a high-temperature expansion. Our analysis applies
quite generally to any arbitrary spatially Hat FRW cos-
mology. We also determine the time evolution of the ini-
tial (Boltzmann) distribution functions, relate the time
evolution to "squeezed states, " and perform a numeri-
cal integration in the case of free fields for de Sitter arjd
radiation-dominated cosmologies. We expect to provide
a numerical analysis of the evolution of the order pararn-
eter and the dynamics of phase transitions for interacting
fieMs in a forthcoming article.

In the next section, we set up the formalism for deter-
mining the dynamics of the order parameter P(t). This
involves constructing the order 6 equations of motion for
P(t) incorporating quantum fluctuations, and then con-
structing an ansatz for the time evolved density matrix
we need to use to evaluate the various expectation val-
ues in the problem. We then consider a self-consistent

II. EVOLUTION EQUATIONS

We start by setting up the Schrodinger formalism for

spatially Hat FRW cosmologies. Consider a scalar Geld

in such a cosmology where the metric is

ds = dt —a2(t)dx .

The action and Lagrangian density are given by

(2.1)

S= d xC. (2 2)

l: = a (t) —4 (x, t) —— ' —V[4)(x, t)]
1 [VC(x, t)]'

2 2 atz
(2.3)

V (C)) =
2 [m + (7Z]I) (x, t) + —4) (x, t),

(a a')%=6( —+ —, /,
(, a a2)

(2.4)

(2.5)

with R the Ricci scalar. The canonical momentum con-

jugate to C is

II(x, t) = a'(t)4(x, t) (2.6)

and the Hamiltonian becomes

II at
H(t) = d z i (VO)' ~ a'(t)V(C)) .

2as(t) 2

(2.7)

In the Schrodinger representation (at an arbitrary fixed

(Hartree) approximation to the equations of motion (Sec.
III) and deal with the issue of renormalization of these
equations (Sec. IV).

The initial state we pick for the field C)(x, t) is that
corresponding to a thermal density matrix centered at
P(t). It is then useful to try to understand the high
temperature limit of our calculations. We are able to
compute both the leading and subleading terms in the
high T expansion of (C' (x, t)). From this we show that
the high T expansion cannot be valid for all time, but
breaks down in the large time limit (Sec. V).

In Sec. VI we compute the time evolution of the Boltz-
mann distribution function (initially specified as ther-

mal) as a function of time, and find that to one-loop
order and in the Hartree approximation, the density ma-

trix describes a "squeezed" state. Section VII provides
a numerical analysis of the departure &om equilibrium
in the simpler case of a free massive scalar field in de
Sitter and radiation dominated cosmologies. We point
out, that a coarse-grained entropy used in the literature
is not a monotonically increasing function of time in the
radiation-dominated case. Section VIII contains our con-

clusions. There are two appendixes; the first contains
some technical results that are necessary in order to com-

pute the time evolved density matrix. The second ap-

pendix treats some of the results of the paper in confor-

mal instead of cornoving time.
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time to), the canonical momentum is represented as

b
11(x) =

b4 x

ih [ ' ] =HI[4, t]. (2.S)

Since we shall eventually consider a "thermal ensem-
ble" it is convenient to work with a functional density
matrix p with matrix elements in the Schrodinger repre-
sentation p[4 ( ~ ), 4( ~ ); t]. We will assume that the density
matrix obeys the functional Liouville equation

Wave functionals obey the time-dependent functional
Schrodinger equation dP(t)

d x(II(x, t))dt as t 0
1

d x Trp(t)II(x)

~(t)
as(t) ' (2.11)

d~(t) 1 „, , bV(@)
(2.12)

where 0 is the comoving volume, and the scale factors
cancel between the numerator (in the integral) and the
denominator. Note that we have used the fact that the
field operator does not evolve in time in this picture. The
evolution equations for the order parameter are

ih —= [H(t), p]t

whose formal solution is

(2.9)
It is now convenient to write the field in the Schrodinger
picture as

p(t) = U(t, tp)p(t )U (t, t ),

where U(t, to) is the time evolution operator, and p(to)
the density matrix at the arbitrary initial time to.

The diagonal density matrix elements p[4, 4'; t] are in-
terpreted as a probability density in functional space.
Since we are considering a homogeneous and isotropic
background, the functional density matrix may be as-
sumed to be translationally invariant. Normalizing the
density matrix such that Trp = 1, the "order parameter"
is defined as

d[t) = —/d x(4(x, t))

d x Trp(t)4(x)0
d'z TrP(t, )U-'(t, t, )C {x,t, )U(t, t, ), (2.10)0

4(x) =4(t)+g(x, t),
(]7(x, t)) = 0.

(2.13)
(2.14)

Expanding the right-hand side of (2.12) we find the
e8'ective equation of motion for the order parameter:

d'4(t) '(t) d4(t)
dt's a(t) dt

VIII
+ d'z{)7 (x, t)) + " = 0, (2.15)20

where primes stand for derivatives with respect to P.
To leading order in the loop expansion we need that
{]72(x,t)) = O(h). This will be guaranteed to this or-
der if the density matrix is assumed to be Gaussian with
a covariance (width) O(l/5). If (2.13) is introduced in
the Hamiltonian, we arrive at

A2 b2
H(t) = f d x(— + (Vtt)'+x (t) V(t[)+ V'(t[)tt+ t'V"(t[)tt'+ j. (2.16)

Keeping only the terms quadratic in ]7 in (2.16) gives the first-order term in the loop expansion.
It is convenient to introduce the discrete Fourier transform of the fields in the comoving frame as

q{x,t) = ) ~(t)e-*"".
0 (2.i7)

52 b2
H, = tt»'(t) V[d(t)] + —) —, + 2»'(t) V[qi( )] »+t»t» (ttt ) t»t»tt -»), -

2 - ast b~bi1 i,
{2.16)

In this representation, the quadratic approximation to the Hamiltonian {2.16) becomes the Hamiltonian of a collection
of independent harmonic oscillators for each mode k:

Vi', [P(t)] = V'[P(t)]it Ibi, o, ~&(t) = a(t)k + a (t)V"[P(t)] {2.19)

We propose the following Gaussian ansatz for the functional density matrix elements in the Schrodinger represen-
tation:
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P A), (t) A„'(t) By (t)~) (t) exp — »(t)~-~(t) + " ~~(t)~-~(t) +»(t)8-~(t)

+ ~k(t) q ), (t) —q ), (t) (2.20)

»(t) = C') —P(t)~Obk, o,

» (t) = C'g —(b(t) v Oh) (),

(2.21)

(2.22)

W„'(to) =," =, + V"[P„(t,)]as tp a2 tp
(2.23)

we find that the initial values of the time dependent pa-

where P(t) = (4(x)) and 7r), (t) is the Fourier transform of
(II(x)). This form of the density matrix is dictated by the
Hermiticity condition pt[4', 4, t] = p*[C), I), t]; as a result
of this, B),(t) is real. The kernel B),(t) determines the
amount of "mixing" in the density matrix, since if Bp ——

0, the density matrix corresponds to a pure state because
it is a wave functional times its complex conjugate.

In order to solve for the time evolution of the density
matrix (2.9) we need to specify the density matrix at
some initial time tp. It is at this point that we have to
assume some physically motivated initial condition. We
believe that this is a subtle point that has not received
proper consideration in the literature. A system in ther-
mal equilibrium has time-independent ensemble averages
(as the evolution Hamiltonian commutes with the density
matrix) and there is no memory of any initial state. How-
ever, in a time dependent background, the density matrix
will evolve in time, departing from the equilibrium state
and correlation functions or expectation values may de-
pend on details of the initial state.

We will assume that at early times the initial den-
sity matrix is thervnal for the modes that diagonal-
ize the Hamiltonian at to (we call these the adiabatic
modes). The effective temperature for these modes is

k~Tp ——I/Pp. It is only in this initial state that the
notion of "temperature" is meaningful. As the system
departs from equilibrium one cannot define a thermody-
namic temperature. Thus in this case the "temperature"
refers to the temperature defined in the initial state.

The initial values of the order parameter and average
canonical momentum are P(tp) = Pp and 7r(tp) = 7rp,

respectively. Defining the adiabatic frequencies as

rameters in the density matrix (2.20) are

Ag(to) = A„*(t()) = Wg(to)a (t()) coth [PohWg(to)],

W), (t() )as(to)
sinh [PohW), (to)]

'

(2.24)

(2.25)

JVi:(to) =
1

Wg(to)a (to) „(PohW), (to) l
~h q 2

(2.26)

P(to) = Po, n(to) = xo. (2.27)

The initial density matrix is normalized such that
Trp(tp) = 1. Since time evolution is unitary such a nor-
malization will be constant in time. For Tp ——0 the
density matrix describes a pure state since Bp ——0.

As an example, consider the case of de Sitter space.
The scale factor is given by a(t) = aoe ' and for To m 0,
'tp ~ —oo we recognize the ground-state wave functional
for the Bunch-Davies vacuum [10,18]. For To g 0 this
initial density matrix corresponds to a thermal ensemble
of Bunch-Davies modes. Certainly this choice is some-
what arbitrary but it physically describes the situation
in which at very early times the adiabatic modes are in
local thermodynamic equilibrium. Whether or not this
situation actually obtains for a given system has to be
checked explicitly. In the cosmological setting, the na-

ture of the initial condition will necessarily have to result
from a deeper understanding of the relationship between
particle physics, gravitation, and statistical mechanics at
very large energy scales.

Although we will continue henceforth to use this ther-
mal initial state, it should be emphasized that our for-

malism is quite general and can be applied to any initial
state.

In the Schrodinger picture, the Liouville equation (2.9)
becomes

Op[4 4' t] h & (I2

Ot - 2as(t) (,b»hq k

—
i
+ '(~)&' a(4(~)l(n» —v~) + 2~a-(')(m n-~ —6am a))ufoc'-,

~»~n ).)—
(2.28)

Since the modes do not mix in this approximation to the
Hamiltonian, the equations for the kernels in the density
matrix are obtained by comparing the powers of rj on
both sides of the above equation. We obtain the following
equations for the coefficients:

Ng,
i = (Ag —A„'),

xA),. —— —~„(t)t as

(2.29)

(2.30)
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. ~

iBt, = (Ag —A„'),as t

—erg = V'[P(t)]a (t) ~Ohi, p,

as(t)

(2.31)

(2.32)

(2.33)

Mi„(t) + Wg2(t)
&Pa t

ga'(t) W&(tp)
(2.45)

These mode functions obey a Schrodinger-like equation.
The initial conditions on &pg(tp) are (see Appendix A)

The last two equations are identified with the classical
equations of motion for the order parameter (2.15). The
equation for Bi,(t) reflects the fact that a pure state BI, =
0 remains pure under time evolution.

Writing Ag in terms of its real and imaginary compo-
nents Ai, (t) = A~i, (t) + ill~(t) (and because Bi, is real)
we find that

Bi,(t) Bi, (tp)

ARI (t) A~q (to)
(2.34)

and that the time evolution is unitary (as it should be),
that is

I (t) = const.
v'[~R. (t) + B.(t)]

(2.35)

The initial conditions (2.24) and (2.25) and the invari-
ance of the ratio (2.34) suggest that the solution for the
real part of A and for B may be obtained by introducing
a complex function Ai, (t) = ARg(t) + iAII, (t)

A~g(t) = A~g(t) tanh [pphWg(tp)]
= —Bg(t) sinh [PphWi, (tp)],

ARi. (to) = Wi. (to) a'(to),
Ai~(t) = ~is(t)

(2.36)

(2.37)

(2.3S)

In this form, the real and imaginary parts of A satisfy
the equations

ARI (t) =
s Aztec (t)Au(t),

—A (t) =, , A'„„(t) —A', „(t) — „'(t) '(t) . (2.4o)

(2.39)

These two equations may be combined in one complex
equation for the combination Ai, (t) = A~i, (t) + iAli, (t)
that obeys the Riccati-type equation

iA, (t) =, A&'(t) —~„'(t)a'(t) (2.41)

with the initial conditions

ARI, (to) = W~(tp)a (tp),

Ala(to) = o

(2.42)

(2.43)

The Riccati equation (2.41) becomes a more amenable
differential equation by the change of variables

A. (t) =-* '(t) "
p~(t)

(2.44)

The solution to the Ricatti equation with the above
initial conditions is detailed in Appendix A. We 6nd that
it is convenient to introduce two real mode functions (for
each wave vector k) and write

1
V~(to) =

gas (tp) Wi, (tp)

~~(t) l~. =i Wi (to)
a3 to

ARI, (t) is given by Eq. (A14) in Appendix A, so that

1
ARg(t) =

2
coth [PphWj, (tp)],

rpl t
1 1

Bg(t) =—
~

yi, (t) ~2 sinh [PphWg(tp)]

(2.46)

(2.47)

The equal time two-point function for the Huctuation
becomes

(""(')"-"('»=
2[~ (t)+B (t))

= —
] (pg(t) ]

coth [PphWi, (tp)/2]. (2.48)

The one-loop equation of motion for the order parameter
thus becomes

III. HARTREE EQUATIONS

Motivated by our previous studies in Minkowski space
[8,9] which showed that the growth of correlation and en-
hancement of Buctuations during a phase transition may

P + 3—P + V'($) + V"'(P)—
a 2

x coth[p, hW&(t, )/2] = o (2.49)
d'k

I Vs(t) I'

2' s 2

with the function &pi, (t) defined in Appendix A by (A7)
and (AS) in which, to this order in h, only the classi-
cal solution P,i(t) enters. A consistent numerical solu-
tion of these equations to O(5) would involve splitting

p(t) = p,~(t) + April (t) and keeping only the O(h) terms
in the evolution equation. This will result in two simul-

taneous equations, one for the classical evolution of the
order parameter and another for peril(t).

This equation of motion is clearly very different from
the one obtained by using the effective potential. It may
be easily seen (by writing the effective action as the clas-
sical action plus the logarithm of the determinant of the
quadratic Huctuation operator) that this is the equation
of motion obtained by the variation of the one-loop ef-
fective action.

The static effective potential is clearly not the appro-
priate quantity to use to describe scalar field dynamics
in an expanding Universe. Although there may be some
time regime in which the time evolution is slow and Buc-
tuations rather small, this will certainly not be the case
at the onset of a phase transition. As the phase transition
takes place, Buctuations become dominant and grow in
time signaling the onset of long-range correlations [8,9].
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not be described perturbatively, we now proceed to ob-
taining the equations of motion in a Hartree approxima-
tion. This approximation is nonperturbative in the sense
that it sums up in6nitely many diagrams of the cactus-
type [6]. The Hartree approximation becomes exact in
the N i oo limit of an O(N) vector theory. Although
its validity is not warranted in the present case, it at
least provides a consistent nonperturbative f'ramework in
which correlations and Huctuations can be studied. It

is conceivable that this approximation could be imple-
mented beyond the lowest (cactus) order in a consistent
fashion.

Vilenkin [19] has previously studied an approximate
version of the Hartree equations.

The Hartree self-consistent approximation is imple-
mented as follows. We decompose the field as in (2.13),
using a potential as in (2.4). We find that the Hamilto-
nian becomes

H = d z — + (Vrj) + a (t) I V(p) + V'($)rI+ V"(p—)p + &prj —+ —&i!'
I

52 P a(t) 2 f, 1 „2 1 1

2a (t) bq2 2 2! 3! 4!
(3.1)

The Hartree approximation is obtained by assuming the
factorization

cies are now given by (3.8). The classical equations of
motion (2.32) and (2.33) now become

rI (x, t) m 3{i!(x, t)) lr( xt),

q (x, t) m 6(il (x, t)))7 (x, t) —3()7 (x, t)),
(3.2)

(3 3)

— = V"[4(t)] '(t) (3.10)

where angular brackets denote the average using the time
evolved density matrix. This average will be determined
self-consistently (see below) . Translational invariance
shows that ()7 (x, t)) can only be a function of time.
This approximation makes the Hamiltonian quadratic at
the expense of a self-consistent condition. In the time-
independent (Minkowski) case this approximation sums

up all the "daisy" (or "cactus") diagrams and leads to
the self-consistent gap equation [6]. In this approxima-
tion the Hamiltonian becomes

as(t)
(3.11)

1
k2 + m~(Tp) '

wi(tp) w wg(tp) =
a(t )

(3.12)

The equations for the coefficients A), (t), B),(t), JVj, (t) are
again solved in terms of the mode functions given in Ap-
pendix A but with V"[P,i(t)] now replaced by V! ~[P(t)]
and the following replacement of the adiabatic &equen-
cies:

H = Aa (t)V(P)

+ d'z —, , + (Vq)
52 b2 a(t)

2as t il2 2

+~'(~)I~"'N)~+ -', &'*'(4)n')], )& 4)

' = v!'![y(.)].
a'(tp)

{3.i3)

I v ~(t) I'~l v a (t) I'

The mode functions of Appendix A obey the diKeren-

tial equations and initial conditions with this replacement
and

V(&) = V(&) —'&(n')'-
v!'!(y) = v'(y) + —,'xy(&'),

(3.5)

(3 6)

The initial conditions at to are now given in terms of
these new adiabatic frequencies (see Appendix A). The
equal time two-point function thus becomes

v!'!(y) = v" (y) + —,'~(&'). (3.7)

d3k
(~'( t)) = —

I ~~ (t) I' oth[&o&W (to)/21
2 (2~)'

We can now introduce the Fourier transform of the
field as in (2.17). The Hamiltonian will have the same
form as (2.18) but the time dependent &equencies (2.19)
and linear term in q become

{3.i4)

which leads to the following set of self-consistent time

dependent Hartree equations:

pr„'(t) = a(t)k'+ a (t)V!') [y{t)],

vk [4(t)] = v"'[4(t)]~»~,' (3.8)

(3 9)

P+ 3—P + V (4')

The ansatz for the Gaussian density matrix is the same
as before (2.20), as are the evolution equations for the
coefficients A), (t), Bg(t), A~(t). However, the frequen-

+Ay,
" '~

I
P"(') I',.th[AKW„(t, )/2] = 0,

2 (2m)s 2

(3.15)
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+A — " coth[Pph&), (tp)/2] p), (t) = 0,
d'k

] (pH(t) ~'

2 (2m)' 2

(3.16)

t
'Dg(t) = exp R(t')dt'

to

'Dg(tp) = 1,

satisfying the difFerential equation

d2 3 (a la2)--
I

-+-—I+dt2 2 ) a 2 a2) a2(t)

(4.5)

(4.6)

1
+H(t ) V"'(t.)~.(t.) (3.17) +V"[g (t)]+

2
( (,t)) 'D„(t) = o (4.7)

a(t) (, +) (tp)t &o=~
s( )

. (3.18)

IV. RENORMALIZATION

In either the one-loop approximation or the Hartree
self-consistent approximation, the renormalization as-
pects are contained in the momentum integrals of the
mode functions. Because the Bose-Einstein distribution
functions are exponentially suppressed at large momenta,
the 6nite temperature contribution will be convergent
and we need only address the zero temperature contribu-
tion. The study of renormalization is more conveniently
performed in terms of the following mode function satis-
fying a Schrodinger-like equation (see Appendix A):

& (') = ' (t)& (') v ~ ('o)
~."(tp) = 1,

M), (t) = + i~), (tp).
' a 3a(tp)

2a(t())

(4.1)

(4 2)

(4 3)

The one-loop case may be obtained by making the re-
placement Wg(P) -+ W), (P).

We will now analyze the renormalization aspects for
the Hartree approximation; the one-loop case may be
obtained easily from this more general case. We need to
understand the divergences in the integral

R+R' ——
~

-+-—,~+, +V"[~(t)]
3 (a la') k'
2&a

+-( '( .t)) = o (4 )2

We propose a WKB solution to this equation of the form

R = + R, (t) — + + ". (4.9)
—ik iR, (t) R, (t)
a(t) k k2

and 6nd the time dependent coeScients by comparing
powers of k. This yields

Rp(t) = a(t)
2a(t)

' (4.10)

R, (t) = ——+ V"[((()(t)] + —()7 (x, t)), (4.11)
a(t) R „A

2 6 2

1d
R, (t) = ———[a(t)R, (t)].2dt (4.12)

Finally, we write

with ()P(x, t)) being the self-consistent integral in the
Hartree equation (3.16). The one-loop approximation is
obtained by setting ()7z(x, t)) = 0 in the above equation.
The mode function 0 is obtained as a linear combi-
nation of the function D), (t) and its complex conjugate;
the coefBcients are to be determined kom the initial con-
ditions (see below). The function R(t) obeys a Riccati
equation

dsk
i MP(t) ]2

(2)r)s 2a (t)Wg(tp)
(4.4)

M„"(t) = —,' [1 + q]17„'(t) + -', [1 —q]17,(t), (4.13)

where p is determined from the initial condition (4.3):
The divergences in this integral will be determined &om
the large-k behavior of the mode function that is a so-
lution to the differential equation obtained from (3.16)
with the initial conditions (4.2) and (4.3). The large-
k behavior of this function may be obtained in a WKB
approximation by introducing the function 'D), (t);

. a(t()) m(Tp)'
k

+
2k2

a(t, )R, (t,)
k2

Thus in the k + oo limit we Gnd

(4.14)

Introducing an upper momentum cutoK A we obtain

dsk
] (p~(t) ~2

()7 (x, t)) = 5 " coth [Pphy), (tp)/2]
27r 3 2

h Az 5 f A & a2(tp)
8m a (t) 8vr2 (,K) a (t)

—
~

——+ V"[@(t)]+ —(g'(x, t))
~

+ finite,f R
6 2

+ ' —
I

——+v"(()+—(n'(, ~))
I

+&(~/&')+" I2 2a (t)k 4k a2(t) q 6 2
(4.15)

(4.16)
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where we have introduced a renormalization point K,
and the 6nite part depends on time, temperature, and
K. In the one-loop approximation, (rt (x, t)) does not
appear in the logarithmic divergent term in (4.16) (as it
does not appear in the differential equation for the mode
functions up to one loop).

There are several physically important features of the
divergent structure obtained above. First, the quadrat-
ically divergent term reHects the fact that the physical
momentum cutofF is being redshifted by the expansion.
This term will not appear in dimensional regularization.

Second, the logarithmic divergence contains a term
that reHects the initial condition (the derivative of the
expansion factor at the initial time to). The initial con-
dition breaks any remnant symmetry. For example, in
de Sitter space there is still invariance under the de Sit-
ter group, but this is also broken by the initial condition
at an arbitrary time 5o. Thus this term is not forbid-
den, and its appearance does not come as a surprise. As

a consequence of this term, we need a time dependent
term in the bare mass proportional to 1/a2(t).

We are now in a position to present the renormalization
prescription within the Hartree approximation. In this
approximation there are no interactions, since the Hamil-
tonian is quadratic. The nonlinearities are encoded in the
self-consistency condition. Because of this, there are no
counterterms with which to cancel the divergences and
the differential equation for the mode functions (3.16)
must be finite. Thus the renormalization conditions are
obtained &om

mR(t) + P'(t) + (R'R+ (rj')R

= mR + p'(t) + (RR + (g') R, (4.17)

where the subscripts B, B refer to bare and renormalized
quantities, respectively, and (rl2)R is read from (4.16):

fi A h (A) '2(t ) r' 7Z AR AR
(rt')R = » +, ln

~

—~, —
~

——+mR+ p'(t) +(R'R+ (g')R
~

+ fInite .
8vr2 a2 t 8vr2 qK) a2 t ( 6 2 2 )

Using the renormalization conditions (4.17) we obtain

(4.18)

ARh A ARh A) a (to) 2 ARh (A)mRt+ + In —
~

= mR 1+ ln
16vr2 a2(t) 16vr2 K) a2(t) 16vr (K)

A~A I (A)
'

ARA, (Al t' l1
t!a =(R+ 6, »

I K I
I (R —

6 I

(n') R = IR + ~,

(4.19)

(4.2O)

(4.21)

(4.22)

where

I v a (t) I'

(2vr) s
1 8(k —K)

2ka (t) 4k
+ mR+ 4' (t) +(R&+ (rl )R (4 23)

&'(to) A~

6 a2(t) 2 2

l~~(t) I'

(2')s exp PohWa(to) —1
{4.24)

The conformal coupling ( = 1/6 is a fixed point under
renormalization [18]. In dimensional regularization the
terms involving A are absent and lnA is replaced by
a simple pole at the physical dimension. Even in such
a regularization scheme, however, a time dependent bare
mass is needed. The presence of this new renormalization
allows us to introduce a new renormalized mass term of
the form

tion. This is a consequence of the approximations in-

voked. There is, in fact, no wave function renormaliza-
tion in either the one-loop or the Hartree approximation
for a scalar field theory in three spatial dimensions.

Notice that there is a weak cutoK dependence on the
effective equation of motion for the order parameter.

For fixed AR, as the cutofF A m oo,

This counterterm may be interpreted as a squared mass
redshifted by the expansion of the Universe. However,
we shall set Z = 0 for simplicity.

It is clear that there is no wave function renormaliza-

In addition,

(& = —+&
I6 gin A)

(4')'
l (x)

(4.25)

(4.26)
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m~(t) =, „+a'(t,) +0
~

~. (4.27)a2 t l A (1nA)

This approach to 0 of the bare coupling as the cut-
off is removed translates into an instability in the bare
theory. This is a consequence of the fact that the N-
component 4 theory for N —+ oo is asymptotically free
(see Ref. [20]), which is not relieved in curved space-time.
Clearly this theory is sensible only as a low-energy cutoff
efFective theory, and it is in this restricted sense that we
will ignore the weak cutoff dependence and neglect the
term proportional to the bare coupling in (4.28).

The renormalized self-consistent Hartree equations
thus become after letting A = oo:

4+3 p+m-lip+(RRp+ gP+ " (q')&=0,
a 2 2

(4.28)

d3 a(t) d k2

where (r12)~ is given by Eqs. (4.23) and (4.24).
For completeness we quote the renormalized equation

of motion for the order parameter to one loop:

For large temperature, only momenta k & To contribute.
Thus the leading contribution is determined by the first
term of the function R(t) [eq.(4.9)] of the previous sec-
tion. We find

[I+0(1/To) + l . (5.2)

T,ir(t) = To
a(tp)
a(t)

To leading order, the expression obtained for the time
dependent efFective temperature corresponds to what

would be obtained for an adiabatic (isentropic) expan-
sion for blackbody-type radiation consisting of massless

relativistic particles evolving in the cosmological back-

ground.
This behavior only appears at leading order in the high

temperature expansion. There are subleading terms that
must be taken into account;. These can be calculated
within the high temperature expansion and we do this
below. To avoid cluttering of notation, we will set kg ——

5 = 1 in what follows.
We de6ne

m'(Tp) = m~+ (~R(to) + P'(to) + (g'(to))R

Thus we see that the leading high temperature be-
havior rellects the physical redshift in the cosmological
background and it results in an effective time dependent
temperature

d3 a(t) d k3

dt' a(t) dt a3(t)™ (4.30)

and we will assume that m3(Tp) « To3. Since we are
interested in the description of a phase transition, we

will write

+(&R+ "P'(t) q, (t) =0. (4.31)
T2

mit + (/R(tp) + )t) (tp) =—,T ) 0. (5.4)

The one-loop coupling constant renormalization difFers
from that in the Hartree approximation by a factor of
3. This is a consequence of the fact that the Hartree
approximation is equivalent to a large-N approximation
and only sums up the 8-channel bubbles.

V. HIGH TEMPERATURE LIMIT

One of the payoffs of understanding the large-k behav-
ior of the mode functions (as obtained in the previous
section via the WKB method) is that it permits the eval-
uation of the high temperature limit. We shall perform
our analysis of the high temperature expansion for the
Hartree approximation. The one-loop case may be read
off from these results.

The finite temperature contribution is determined by
the integral

Thus, to leading order in To,

m'(To) = (Tp' —T,').

Our high temperature expansion will assume fixe m(Tp)
and m(Tp)/Tp « l.

It becomes convenient to define the variable

k' m'(Tp)
T'a'(t ) T'

Recall from our WKB analysis that the leading behavior
for k -+ oo is [see Eq. (4.15)]

I v~ (t) I'
2 2a3(t)k

d'k
i p~(t) i'

(2~)3 ePp hWp (tp } (5.1) adding and subtracting this leading term in the integral
J and performing the above change of variables, we have
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a(t)
a3(t) 2,2T2 m2(T )

I V'a ( ) a(t)
2a(tp)

Tp
2~2

1
Tp

2

a(tp) xdx

a(t) -(To) e* —1
To

a(tp) 1 m(Tp) m (Tp) (m (Tp) )
a(t) 12 2+2Tp 8+2Tp2 ( Tp )

(5.7)

We now must study the high temperature expansion of Jz. %e will restrict ourselves to the determination of the
linear and logarithmic dependence on Tp. For this purpose, it becomes convenient to introduce yet another change of
variables

m(Tp)
Tp

and use the fact that, in the limit Tp )) m(Tp),

rn{To)
&o

This yields the following linear and logarithmic terms in Tp.

(to) 'T. (T.) „.(,) (T )g, , l v "(t) I' a(t)
2a(tp)

(5.8)

Note that the above integral is 6nite.
The logarithmic contribution is obtained by keeping the O(1/ks) in the large momentum expansion of

I y(, (t) I

given by Eq. (4.15) (in terms of the new variable z). We obtain, after some straightforward algebra,

m(To)
~ 2 I 2'R a2(tp)

'

a(tp)
8+2 6 a2 (t) a(t)

ART2
m (Tp) +

24

ART2

That is, in the limit Tp )) m(T, ), J, = J»;„+J»., +
o((Tp)').

Comparing the O(Tp, Tp, lnTp) contributions it be-
comes clear that they have very diferent time depen-
dences through the scale factor a(t). Thus the high tem-
perature expansion as presented will not remain accu-
rate at large times since the term quadratic in Tp may
become of the same order or smaller than the linear or
logarithmic terms. The high temperature expansion and
the long time limit are thus not interchangeable, and any
high temperature expansion is thus bound to be valid
only within some time regime that depends on the initial
value of the temperature and the initial conditions.

As an illustration of this observation, we calculate
Jz ~;„explicitly in the case of de Sitter space. We need
to obtain

I y(, (t) I
in order to evaluate the integral

in (5.8). Inserting the term proportional to Tp in the
Hartree equations, we find that

I yP{t) I
obeys the dif-

ferential equation

X T.'l, +3H + —,+m'(T, )—+ e 'H'
dt2 dt (ap 24

The solution of this equation is given by

pP(t) = C&Hs&2(B(ee ) + C2H&I2(BI, e )

(5.11)

I-„2 P&T2B„=——,+ m'(T, ) +
H a~& 24

where H3&2 are the Hankel functions and we have as-(X,2)

sumed

m (Tp),
ART2 (( H.

24

The coefficients Cq, C2 are determined by the initial
conditions on yf (t) described above. We finally obtain

m(Tp)Tp ~ H, ~4 dz v z2 —1

8T 1 z A~T + m2(T)z

(5.12)

This term is time independent, Gnite, and positive. This
example clearly illustrates the fact that different powers
of Tp enter in the expansion with diferent functions of
time and that the high temperature expansion is nonuni-
form as a function of time.
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VI. EVOLUTION OF THE INITIAL
DISTRIBUTION

The initial density matrix at t = to was assumed to be
thermal. for the adiabatic modes. This corresponds to a
Boltzmann distribution for the uncoupled harmonic oscil-
lators for the adiabatic modes of momentum k, and &e-
quencies W), (to) [in the Hartree approximation; as usual,
the one-loop result can be found by replacing this with
Wg(to)]. That is

In a time dependent gravitational background the con-
cept of particle is ill-defined. However, by postulating
an equilibrium initial density matrix of the above form,
a preferred "pointer" basis is singled out at the initial
time. It is this basis that provides a natural deGnition
of particles at the initial time and we can use it to ask:
how does the expectation value of this number operator
evolve in time'?

At any time t, this expectation value is given by

e
—PpHp

Tre ~pHp (6.1)
Trnt&(to) n~(to) p(t) (6.5)

&o = ).&We(to) n~g(to)n). (to)+ —,
' . (6.2)

Ns(to) = nt~(to)n), (to),
1

(+&(to)) =
p sM) (g )

(6.3)

(6.4)

where the expectation value in (6.4) is in the initial den-
sity matrix at time to.

The creation and annihilation operators define the initial
occupation number of the adiabatic modes:

This quantity gives information on how the original
Boltzmann distribution function for the adiabatic modes
evolves with time. The k = 0 mode will receive a contri-
bution from the order parameter, but since the number
of particles is not conserved (no charge) there is no Bose
condensation and the k = 0 mode will give a negligible
contribution to the total number of particles. Thus we

only concentrate on the k g 0 modes.
The expectation value (6.5) may be easily computed by

writing the creation and annihilation operators in terms
of g)„ IIg = b/bg s in the Schrodinger picture at to The.
result of doing this is

1 + ga'(t, )W, (t,)q, ,
as(to) W), (to)

(6.6)

1 1
ns(to) =

v 2h Qa (to)Wg(to) ~g-)
(6.7)

After some straightforward algebra we find

(6 6)

(6.9)

where we have made use of (A14) and (A15). This re-
sult exhibits the two contributions from "spontaneous"
(proportional to the initial thermal occupation) and "in-
duced" (independent of it).

We now show that this result may be understood as
a Bogoliubov transformation. To do this, consider the
expansion of the Geld in the Heisenbery picture:

v~(~) = l'~~ra"'(&) +~aPa(&))
2 &

(6.10)

where the mode functions satisfy

d2 H ~ d H g2
," +3— " + —,+ V [P(t)] yP = 0 (6.11)

together with the self-consistency relation. Then the
Heisenberg field q), (t) is a solution of the Hartree Heisen-

berg equations of motion and the o.&t, o.p create and de-
stroy the Hartree-Fock states. Notice that in the Heisen-
berg picture, these creation and a~»hilation operators

do not depend on time. Using the Wronskian properties
of the functions ref (t) (see Appendix A) we can invert
and find the creation and annihilation operators in terms
of rig(t) and its canonically conjugate momentum II ~(t).
Once we have expressed these operators in the Heisenberg
picture in terms of the Geld and its canonically conjugate
momentum, we can go to the Schrodinger picture at time
tg. In this picture the creation and annihilation operators
depend on time and are given by

), (t) = II (t )p„ (t) — (t)g (to)(p„ (t)] ,
2

(6.12)

n' s(t) = II~(to)V. '(t) —a'(t)~~(to)~. '(t) .2-
(6.1S)

The Schrodinger picture Gelds at to can be written in
terms of the operators (6.6) and (6.7) and we finally find
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the creation and destruction operators at time t to be re-
lated to those at time to by a Bogoliubov transformation:

pie cases of a free massive scalar Geld in two relevant
cosmologies.

ai, (t') = X+ i, (t, to)og(to) + X i, (t, to)nt „(to). (6.14)

If we now compute the average of the new creation and
annihilation operators in the initial density matrix and
write the mode functions pi, (t) in terms of the real
functions Mq 2 as deGned in Appendix A, we recognize

~
P+ q(t, to)

~

to be the same as
~

P~(t, to) ~2 given by
(6.9).

We also find that

I &+,~(t t ) I' —
I
&-,k(t to) I'= 1

sg —ln ((Ni, ) (t) ) (6.15)

in the case when (Ni, )(t) )) 1. Thus the growth of en-
tl.opy is directly associated with "particle production'
or in our case to the evolution of the initial Boltzmann
distribution function.

The coeKcient of parametric ampliGcation is related
to the Bogoliubov coefficient given by Eq. (6.9). Thus
this coeKcient directly determines the time dependence
of the nonequilibrium coarse-grained entropy.

VII. TWO SIMPLE EXAMPLES

As an example of the method that allows the out-of
equilibrium time evolution, we solve numerically the sim-

as is required for a Bogoliubov transformation.
One way to interpret this result is that, at least within

the one-loop or Hartree approximations, time evolution
corresponds to a Bogoliubov transformation. This in-
terpretation is, in fact, consistent with the result that in
these approximation schemes, the density matrix remains
Gaussian with the only change being that the covariance
and mixing terms change with time.

Thus within the one-loop or Hartree approximation,
time evolution corresponds to a "squeezing" of the ini-
tial state. The covariance changes with time and this
corresponds to a Bogoliubov transformation. As argued
by Grishchuk and Sidorov [21] the amplification of quan-
tum Huctuations during inHation is a process of quantum
squeezing and it corresponds to a Bogoliubov transforma-
tion. The properties of these "squeezed" quantum states
have been investigated in Refs. [22—24].

Hu and Pavon [25), Hu and Kandrup [26], and Kan-
drup [27] have introduced a nonequilibrium, coarse-
grained entropy that grows in time as a consequence of
particle production and "parametric ampliGcation. " This
definition was generalized by Brandenberger et al. [22],
and Gasperini and collaborators [23] to give a measure
of the entropy of the gravitational Geld. The growth of
this entropy is again a consequence of the parametric
amplification of Huctuations and the "squeezing" of the
quantum state under time evolution.

These authors argue that the nonequilibrium coarse-
grained entropy in the mode of (comoving) wave vector
k is

A. de Sitter cosmology

In this case the scale factor is a(t) = aoe with H be-

ing Hubble's constant. The important quantities that en-

code the out-of-equilibrium evolution are the mode func-

tions p&(t) that obey Eq. (A2) with V"(P) = m2. With
these mode functions we construct the real and imagi-

nary parts of Ai, (t) and the kernels of the density matrix
[see Eq. 2.36] and the parametric amplification factor
(6.9). It is convenient to rescale the differential equation
and functions and define

ye
—HtP

z =H(t —t,), q=
~oH

(7 1)

the variable q is recognized as the physical wave vector at
the initial time to multiplied by the horizon size (or equiv-

alently, horizon size divided by physical wavelength). At
the same time it is convenient to rescale the mode func-

tions (in terms of their real and imaginary parts)

d@,"(z)
CfZ

4,'(0) = 0.

1

q + 6

(7.2)

(7 3)

(7.4)

The differential equation becomes

2—+3—+q e +e ~Ii ' (z) =0.a, l
dz2 dz

(7.5)

We have numerically integrated these equations with
the above boundary conditions choosing as representa-
tive parameters m = 1 GeV; H = 10 GeV, q
0.01, 0.1, 1, 10, 100. In Fig. 1 we show A~i, /(aosH) for

q = 0.1, 1.0, 10 as function of z for e = 10 . Fig-
ure 2 shows the logarithm of Ali, e "/(aoH) for q =
0.01,0.1, 1.0, 10, 100 as a function of z. Whereas the real
part tends to (a q-dependent) constant at large times,
the imaginary part grows at long times as = e (&—&p)

(the slope on the graph is 1). Figure 3 shows the loga-
rithm of the parametric amplification factor (6.9) for the
above values of q as a function of z. The slope of the
lines at long times is 2, thus the parametric ampliGca-
tion fact, or grows as = e & '~ at large times. Thus we

clearly see that if the distribution function at some ini-

tial time to was determined by an equilibrium Boltzmann
factor (in terms of the comoving wavelengths), this dis-

tribution function evolves in time out of equilibrium and
grows with time approximately as = e ~' '~ at long
times but with different rates for different wave vectors.

From the numerical integration we see that in the case
of de Sitter expansion, at late times [when the number
of' "particles produced" is large and the expression for
the entropy (6.15) is valid] the entropy per mode grows
linearly with comoving time.
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FIG. 2. ln (Are "/aoH) vs z for de Sitter for

q = 0.01; 0.1; 1; 10; 100, m/H = 10 . The slopes
of the lines at long times is 1.

B. Radiation-dominated cosmology

For a radiation-dominated cosmology the scale factor
is given by

2

a(t) = ap
Etp)

For this case, a convenient rescaling is in terms of the
variables

1 1 j
I 1 I ' I '

1 I '1 j 1 I 1 1 I I I
'

j I 1 1 I '
1 I 1

'1. 88 1'~. 8~~ j (' '~)I'j

1

s = mt, q =, III', (s) = (aspm)
' (Pg(t).

mao

The di8'erential equation for the mode functions, and
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FIG. 1. (a) AR/aIIH vs z for q = 0.1, m/H = ].0 . (b)
AR/aoH vs z for de Sitter for q = 1.0, m/H = ]0 ~0. (c)
AR/aoH vs z for de Sitter for q = 10, m/H = 10

FIG. 3. ln
~

X
~

vs z for de Sitter for q = 0.01;0.1; 10; 100,
m/H = 10 . The slope of the lines at long times is 2.
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boundary conditions thus become

R,l (s) = 0,
ds2 2s ds s

(7.6)

cation factor. As result, at long times the entropy per
mode (6.15) is not a monotonically increasing function
of comoving time.

dC ~(s)
ds

(so) = q + 1

d@1(s)=0
8s

S=8p

TI (sp) = 0, (7.7)

S=8p

1

q + 1, ' . (7 8)

There are several noteworthy features in the radiation-
dominated case as exhibited by Figs. 4 and 5. There
is a strong dependence on the initial condition as
parametrized by kp (sp = mt!I) and also a strong depen-
dence on the initial physical wave number q. Perhaps the
most notable features are the oscillations in both the real
and imaginary parts of the covariance A that translate
into an oscillatory behavior in the parametric amplifi-

VIII. CONCLUSIONS

Nonequilibrium aspects of the dynamics of scalar 6elds
in spatially Hat FR& cosmologies were studied by means
of a functional Schrodinger approach. The initial state
was speci6ed as a thermal density matrix at some early
initial time assuming local thermodynamic equilibrium
for the adiabatic modes at that particular time. This den-

sity matrix was evolved in. time and the evolution equa-
tions for the order parameter (ensemble average of the
scalar field) and the Buctuations were obtained both to
one-loop and in a nonperturbative self-consistent Hartree
approximation. The renormalization aspects were stud-
ied in detail and it was pointed out that the renormal-
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ization counterterms contain a dependence on the initial
conditions through the scale factor and its derivatives at
the initial time.

The high temperature expansion was investigated and
it was found that the limit of high temperatures and
long times are not interchangeable. As a consequence
of the redshift of the initial temperature the coeKcients
of the diferent powers of temperature are different time-
dependent functions. The high temperature expansion is
only valid within a short time interval after the initial
time and certainly breaks down at long times.

The time evolution of the Boltzmann distribution func-
tions (initially the thermal equilibrium distribution func-
tions) is obtained. It is pointed out that to one-loop order
and also in the Hartree approximation, the time evolved
density matrix describes quantum "squeezed" states and
time evolution corresponds to a Bogoliub ov transforma-
tion.

To illustrate the departure of equilibrium we have

studied numerically the case of a free massive scalar field

in de Sitter and radiation-dominated cosmologies. It was

found that a suitably defined coarse-grained nonequilib-
rium entropy (per k mode) grows linearly with time in

the de Sitter case but it is not a monotonically increasing
function of time in the radiation-dominated case. This re-
sult may cast some doubt on the applicability of this def-

inition of the nonequilibrium entropy. There still remain
some (open) fundamental questions regarding the con-
nection of this entropy and the thermodynamic entropy
of the Universe, in particular whether the amount of en-

tropy produced is consistent with the current bounds.
This work sets the stage for a numerical study of the

dynamics of phase transitions in cosmology fully incorpo-
rating the nonequilibrium aspects in the evolution of the
order parameter and which at the same time can account
for the dynamics of the Quctuations which will necessarily
become very important during the phase transition.

We expect to report on the numerical study of the
phase transition in a forthcoming paper [28].
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APPENDIX A

A„(t) = —ia (t)s I/' (t)
(P/, (t)

(AI)

~e find that qII, (t) obeys a simple evolution equation

The Riccati equation (2.41) can be transformed into a
linear differential equation by the change of variables

8.88
18.88

I I I I I
I

I I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I I I

1 2. 88 1 4.88 1 6.88 1 8.88 28. 88
S

fpg a dpi' k
dg2 a dg

+ 3— + —+ V"[4.((t)] I/I/, = o (A2)

FIG. 5. (a) ~
X

~

vs s for radiation dominated for q = 1
(solid line) and q = 10 (dashed line); sp ——l. (b)

~

P ] vs
s for radiation dominated for q = 1 (solid line) and q = 10
(dashed line); sp = 10.

wjfh qII i(t) the solution to the classical equation of mo-

tion (2.32) and (2.33). In the Hartree approximation
&"[P,i(t)] should be replaced by Vl I[/(t)] with P(t) the
full solution of the self-consistent equations:
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d'p~ a dp~ k'
—,+ V&'l[P(t)] y„= 0. (A3)

3 (a 1a')
2 (a 2 a2) a2(t)~

—+ ——
~

+ + V"(P,))(t) Ll ) (t) = 0,

The Wronskian for two arbitrary solutions to the above
differential equation is W[&i,i, &2, ) ] = CWa(to),

(A8)

(Ao)

W[pi, ')('2] = j2(t)P, (t) —ji(t)&2(t) =
as(t)

(A4)

with C a constant. Then writing p~(t) = pii, (t)+ip2), (t)
with pq 2 real solutions we 6nd

with W[. ] the Wronskian, and C is the same constant
as above. Since the choice of t corresponds to a choice
of normalization of these functions, we choose C = 1.
The initial conditions (2.42) and (2.43) still leave one
free condition on these functions, we choose

C
ARi(t) =

&i&+ &4]
(A5)

Dig(tp) g 0,

Uzi, (tp) = 0.
(A10)

(A11)

The boundary conditions on the mode functions Q
are..(,) ~»~»+~»~»

2 2
&ia + &2I

(A6)

(A7)

It proves convenient to introduce (for all k) the real
functions Ui 2(t) as

Ui), (tp) = 1, M2), (tp) = 0,
3 a(tp)

Mii, (to) =—
2 a(tp)

'

k2
u, „(t,) = W, (t, ) = + V"[P,i(to)]a'(tp)

(A12)

(A13)

The Q A, for a = 1, 2 are real and satisfy the Schrodinger-
like differential equation

and the corresponding replacement for the Hartree case.
Thus the final solution to the Riccati equation (2.41) with
the given initial conditions is

a'(t) W&(t, )

[U,'„(t) + M,'„(t)] '

((22 (((12 2 ((lk) +((22 ((22 2 ()22)
AIA,, (t) = —a'(t)

M,'„(t) + 92„(t)

(A14)

(A15)

In terms of the original functions pi, (t) (Al) the initial
conditions are simply

mal time de6ned by

1
Px(to) =

i)'as (to) Wi(to)
(A16)

(Bl)

~i(t) li. =i Wg(to)
a3 t

(A17)

APPENDIX B: CONFORMAL TIME ANALYSIS

Then the initial conditions for &pi(t); p&(t) are natu-
rally interpreted as those for negative and positive (adi-
abatic) frequency modes at the initial time tp

The reason for introducing the functions 0 i, (t) is be-
cause these obey a simpler second-order Schrodinger-like
equation which is amenable to be studied in the asymp-
totic regime via WKB approximations (see the section
on renormahzation) .

The erst thing we should note is that the physics
should not depend on what time coordinate is used,
since the theory should be generally coordinate invariant
(there are no gravitational anomalies in four dimensions

[29]). Thus, the field amplitude and the canonical mo-

mentum in conformal time should be related to those in
comoving time via a canonical transformation. We now

show that this is indeed the case.
Using the conformal time version of the line element

ds = a (q)(dq2 —dx ), the scalar field action can be
written as

S(C) = f d42d22244(42) 2 ((()O)' —(&+')'I,
2a

It is interesting to see how some of our results can be
obtained by rewriting the metric in terms of the confor-

—V[4 (g, x.)] (B2)
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where the potential term is as in the text (i.e. , it could
include a coupling to the curvature scalar). Following the
standard procedure for obtaining the canonical momen-
tum II(rt, x) to 4(rl, x), and to get at the Hamiltonian
density yields

The Liouville equation in comoving time can be rewrit-
ten in conformal time using the relation 0/Bt = a(rI) i8/
Bq. After doing this we find that Eq. (2.9) becomes

II(rl, x) = a (rt) 4'(rI, «),

'R = + (V4) + a (rI)V(4).
II' az (rt)

2G rt 2
(83)

But

Here conformal time derivatives are denoted by a prime.
The generator H of displacements in conformal time is
the spatial integral of 'R above. Thus the conformal time
Liouville equation reads

(84)

If we label the 6eld and its conjugate momentum in
the comoving time frame (i.e., that of the text) as 4, II,
respectively, the results of Sec. II are

II(x, t) = a'(t)4(x, t),
"2

H= dx + —V4 +a V4
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